当前位置:文档之家› 角平分线辅助线专题练习

角平分线辅助线专题练习

角平分线辅助线专题练习
角平分线辅助线专题练习

D

A

B

C

角平分线专题

1、 轴对称性:

内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴。

思路和方法:边角等 造全等,也就是在角的两边上取相等的线段 构造全等三角形 基本结构:如图,

2、 角平分线的性质定理:注意两点(1)距离相等 (2)一对全等三角形

3、 定义:带来角相等。

4、 补充性质:如图,在△ABC 中,AD 平分∠BAC ,则有AB:AC=BD:DC

针对性例题:

例题1:如图,AB=2AC ,∠BAD=∠DAC,DA=DB

求证:DC ⊥AC

B

例题2:如图,在△ABC 中,∠A 等于60°,BE 平分∠ABC ,CD 平分∠ACB 求证:DH=EH

例题3:如图1,BC >AB ,BD 平分∠ABC ,且∠A+∠C=1800, 求证:AD=DC .:

思路一:利用“角平分线的对称性”来构造

因为角是轴对称图形,角平分线是其对称轴,因此,题中若有 角平分线,一般可以利用其对称性来构成全等三角形.

证法1:如图1,在BC 上取BE=AB ,连结DE ,∵BD 平分

∠ABC ,∴∠ABD=∠DBE ,又BD=BD ,∴△ABD ≌△EBD (SAS ), ∴∠A=∠DBE ,AD=DE ,又∠A+∠C=1800,∠DEB+∠DEC=1800,∴∠C=∠DEC ,DE=DC ,

则AD=DC . 证法2:如图2,过A 作BD 的垂线分别交BC 、BD 于E 、F ,

连结DE ,由BD 平分∠ABC ,易得△ABF ≌△EBF ,则AB=BE ,

BD 平分∠ABC ,BD=BD ,∴△ABD ≌△EBD (SAS ),

∴AD=ED ,∠BAD=∠DEB ,又∠BAD+∠C=1800, ∠BED+∠CED=1800,∴∠C=∠DEC ,则DE=DC ,∴AD=DC . 说明:证法1,2,都可以看作将△ABD 沿角平分线BD 折向BC 而构成 全等三角形的.

证法3:如图3,延长BA 至E ,使BE=BC ,连结DE , ∵BD 平分∠ABC ,∴∠CBD=∠DBE ,又BD=BD ,∴△CBD ≌△EBD (SAS ), ∴∠C=∠E ,CD=DE ,又∠BAD+∠C=1800,∠DAB+∠DAE=1800, ∴∠E=∠DAE ,DE=DA ,则AD=DC . 说明:证法3是△CBD 沿角平分线BD 折向BA 而构成全等三角形的.

B A

C D E 图1

B A

C

D

E

F 图2

B A

C

D E

图3

思路二:利用“角平分线的性质”来构造

由于角平分线上的点到角的两边的距离相等,所以根据这个性质,可以 过角平分线上一点向角的两边作垂线而构成两个全等的直角三角形.

证法4:如图4,从D 分别作BC 、BA 的垂线,垂足为E 、F ,∵BD 平分 ∠ABC ,∴DE=DF ,又∠BAD+∠C=1800,∠BAD+∠FAD=1800, ∴∠FAD=∠C ,∴△FAD ≌△ECD (AAS ),则AD=DC .

例题4 已知:如图5,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB .

求证:AC +CD =AB

证明:在AB 上截取AE=AC ,∵AD 平分∠CAB ,∴∠CAD = ∠DAB ,AD =AD , ∴△CAD ≌△EAD ,∴∠DEA =90°,∵∠C =90°,AC =BC ,∴∠B =45°, ∴∠B =∠BDE =45°

∴DE =BE ,∴AC +CD =AE +DE =AE +BE =AB ,即AC +CD =AB .

例题5.已知:如图6,在Rt △ABC 中,∠C =90°,沿过B 点的一条 直线BE 折叠这个三角形,使C 点与AB 边上的一点D 重合,

当∠A 满足什么条件时,点D 恰为AB 中点?写出一个你认为适当的条件,并利用此条件证明D 为AB 中点.

解:当∠A =30°时,点D 恰为AB 的中点.∵∠A =30°,∠C =90°(已知),∴∠CBA =60°(直角三角形两锐角互余).又△BEC ≌△BED (已知),∴∠CBE =∠DBE =30°,且∠EDB =∠C =90°(全等三角形对应角相等),∴∠DBE =∠A (等量代换).∵BE =AE (等角对等边),又∠EDB =90°, 即ED ⊥AB ,∴D 是AB 的中点(三线合一).

B A

C

D F

E 图4

角平分线定理使用中的几种辅助线作法

一、已知角平分线,构造三角形

例题、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。 求证:1

()2

BE AC AB =

- 证明:延长BE 交AC 于点F 。

因为角是轴对称图形,对称轴是角的平分线所在的直线, 所以AD 为∠BAC 的对称轴, 又因为BE ⊥AD 于F ,

所以点B 和点F 关于AD 对称,

所以BE=FE=1

2

BF ,AB=AF ,∠ABF=∠AFB 。

因为∠ABF +∠FBC=∠ABC=3∠C ,

∠ABF=∠AFB=∠FBC +∠C , 所以∠FBC +∠C +∠FBC=3∠C , 所以∠FBC=∠C ,所以FB=FC ,

所以BE=

12FC=12(AC -AF )=1

2(AC -AB ), 所以1

()2

BE AC AB =-。

二、已知一个点到角的一边的距离,过这个点作另一边的垂线段

如图所示,∠1=∠2,P 为BN 上的一点,并且PD ⊥BC 于D ,AB +BC=2BD 。 求证:∠BAP +∠BCP=180°。

证明:经过点P 作PE ⊥AB 于点E 。 因为PE ⊥AB ,PD ⊥BC ,∠1=∠2, 所以PE=PD 。

在Rt △PBE 和Rt △PBC 中

BP BP

PE PD =??

=?

所以Rt △PBE ≌Rt △PBC (HL ), 所以BE=BD 。

因为AB +BC=2BD ,BC=CD +BD ,AB=BE -AE , 所以AE=CD 。

因为PE ⊥AB ,PD ⊥BC , 所以∠PEB=∠PDB=90°. 在△PAE 和Rt △PCD 中

PE PD PEB PDC AE DC =??

∠=∠??=?

2

1F E

D

C

B

A

N

P

E D

C

B

A

所以△PAE ≌Rt △PCD , 所以∠PCB=∠EAP 。

因为∠BAP +∠EAP=180°, 所以∠BAP +∠BCP=180°。

三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段 例题、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠2 证明:过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F . 因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC , 所以PE=PF 。

同理可证PF=PG 。

所以PG=PE , 又PE ⊥AB ,PG ⊥AC , 所以PA 是∠BAC 的平分线, 所以∠1=∠2。

与三角形的角平分线有关的结论的探究

三角形的内角和等于1800

,三角形的外角等于和它不相邻的两个内角的和。应用以上定理和推论可以探究与三角形的角平分线有关的结论。从结论的探究过程中,希望同学们能从中得到有益的启示:在平时的数学学习中,要学会运用所学知识去探索新的结论,学会探究,从而不断地提高自己的数学发现与创新的能力,提高数学学习水平。

探究一:在ABC ?中,∠A ,∠B 的平分线交于点P ,试探究 ∠BPC 与∠A 的关系?

探究:因为∠BPC 在ΔBPC 中,由三角形的内角和定理,有:

()PCB PBC BPC ∠+∠-=∠0180

而由BP ,CP 分别是∠ABC 和∠ACB 的角平分线 知:∠PBC=

ABC ∠21,∠PCB=ACB ∠2

1

所以()ACB ABC ACB ABC BPC ∠+∠-=??

?

??∠+∠-=∠21180212118000

而在在ABC ?中,A ACB ABC ∠-=∠+∠0

180 所以()

A A BPC ∠+=∠--

=∠2

1

9018021180000

故有结论一:在ABC ?中,∠A ,∠B 的平分线交于点P ,则有A BPC ∠+

=∠2

1

900

探究二:在ABC ?中,BP 是∠ABC 的平分线,CP 是ΔABC 的外角∠ACE 的平分线,

G

2

1

P

F E C B

A

C

B

A

试探究:∠BPC 与∠A 的关系?

探究:由CP 是ΔABC 的外角∠ACE 的平分线, 所以有:∠BPC=∠PCE -∠BPC

又BP 是∠ABC 的平分线,CP 是∠ACE 的平线 所以:∠PBC=

ABC ∠21,∠PCE=ACE ∠21

所以∠BPC=ACE ∠21-ABC ∠21

()A ABC ACE ∠=∠-∠=2

121 故有结论二:在ABC ?中,BP 是∠ABC 的平分线,CP 是ΔABC 的外角∠ACE 的平分线,

则有:A BPC ∠=∠2

1

探究三:在ABC ?中,BP , CP 分别是ΔABC 的两个外角的平分线,

试探究:∠BPC 与∠A 的关系? 探究:因为∠BPC 在ΔBPC 中,由三角形的内角和定理,有:

()PCB PBC BPC ∠+∠-=∠0180

由BP , CP 分别是ΔABC 的两个外角的平分线,有: ∠PBC=

EBC ∠21,∠PCB=BCF ∠2

1

而∠ABC+∠CBE=1800

,∠ACB+∠BCF=1800

所以∠ABC+∠CBE+∠ACB+∠BCF=3600

所以∠EBC+∠FCB=3600

-(∠ACB+∠ABC )(

)

A A ∠+=∠--=0

180180360

所以()()

A A FC

B EB

C BPC ∠-=∠+-=∠+∠-

=∠2

1901802118021

1800000

故有结论三:在ABC ?中,BP , CP 分别是ΔABC 的两个外角的平分线,

则有A BPC ∠-=∠2

1900

线段垂直平分线的性质定理及其逆定理 角平分线的性质定

理及其逆定理 水平测试

一、选择题

1.下列说法,错误的是( )

A.三角形任意两个角的平分线的交点到这个三角形的三边的距离都相等

B.三角形任意两个角的平分线的交点必在第三个角的平分线上

C.三角形两个角的平分线的交点到三角形的三个顶点的距离都相等

D.三角形的任意两个角的平分线的交点都在三角形的内部

E

C B

A

F

P

E A

2.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定

3.如图所示,在R t ABC △中,90ACB ∠=,BC 的中垂线交斜边AB 于D ,7.8AB =,

3.9AC =,则图中有多少个角等于60(

A .2个

B .3个

C .4个

D .5个

4.等腰△ABC 两腰AB ,AC 的垂直平分线交于点O ,下列各式不正确的是( ) A .OA BC ⊥ B .OA 平分BAC ∠ C .OB OC = D .OA BC =

5.已知△ABC 中,AB AC =,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60cm 和38cm ,则△ABC 的腰长和底边BC 的长分别是( )

A .24cm 和12cm

B .16cm 和22cm

C .20cm 和16cm

D .22cm 和16cm 6.将一张长方形纸片按如图所示的方式折叠,BC ,BD 为折痕,则∠CBD 的度数为( ) A .60° B .75° C .90° D .95°

7.若△ABC 三条角平分线的交点到三顶点的距离相等,则该三角形一定为( )

A .等腰三角形,但不一定是等边三角形.

B .直角三角形.

C .等腰直角三角形.

D .等边三角形.

8. 如图,△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,在以下结论中:①△ADE ≌△ADF ;②△BDE ≌△CDF ;③△ABD ≌△ACD ;④AE=AF ;⑤BE=CF ;⑥BD=CD .其中正确结论的个数是( ) A .1 B .2 C .3 D .4

9.已知P 点在AOB ∠的平分线上,60AOB ∠=,10OP =cm ,那么P 点到边OA ,OB 的距离分别是( )

A .5cm ,53cm

B .4cm ,5cm

C .5cm ,5cm

D .5cm ,10cm

10.如图,△ABC 中,∠C =90o,BD 平分∠ABC 交AC 于D ,DE 是AB 的垂直平分线,DE=

2

1

BD ,且DE=1.5cm ,则AC 等于( )

A .3cm

B .7.5cm

C .6cm

D .4.5cm 二、填空题

1.已知线段AB 和它外一点P ,若PA=PB ,则点P 在AB 的____________________;若点P 在AB 的

C D

B B

C D E

A A B

C

D E

F

____________________,则PA=PB .

2.如图,△ABC 中,EF 是AB 的垂直平分线交于D ,12BF =,3CF =,则AC = .

3. 如图,50ABC AD ∠=,垂直平分线段BC 于点D ABC ∠,的平分线BE 交AD 于点

E ,连结EC ,则AEC ∠的度数是 .

4.如图所示,在ABC △中,90C ∠=,DE 是AB 的垂直平分线,2AB AC =,

18cm BC =,则BE 的长度为

5.在锐角三角形ABC 中,60A ∠=,AB ,AC 两边的垂直平分线相交于点

,则的度数是

6.△

ABC 中,90C ∠=,AD 平分BAC ∠,交BC 于D ,若

7DC =,则D 到AB 的距离是 .

7.△

ABC 的三边长分别为3cm 、4cm 、5cm ,若O 为△ABC 三内角平分线交点,则点O 到斜边AB 的距离等于 .

8.如图,已知BO 平分CBA ∠,CO 平分ACB ∠,MN BC ∥,且过点O ,若12AB =,14AC =,则AMN △的周长是 .

9.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,2

36m ABC S =△,18cm AB =,

12cm BC =,则DE 的长是

10.如图,ABC △中,90C ∠=,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,且10cm AB =,则DEB △的周长是 .

三、解答题

1.如图所示,直线OA ,OB 表示两条相互交叉的公路.点M ,N 表示两个蔬菜基地.现要建立一个蔬菜批发市场,要求它到两个基地的距离相等,并且到公路OA ,OB 的距离相等,请你作图说明此批发市场应建在什么地方?

2. 如图△ABC 中,BA BC =,120B ∠=,AB 的垂直平分线交AC 于D ,求证:

1

2

AD DC =

3.用三角尺画角平分线:如图,∠AOB

M 、

N 作OA ,OB 的垂线,交点为P ,画射线OP 理.

4.如图所示,已知AD 是△ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .

求证:AD 垂直平分EF .

四、探索题

1.如图,在ABC △中,90A ∠=,AB AC =,BD 是ABC ∠的平分线,请你猜想图中哪两条线段之和等于第三条线段,并证明你的猜想的正确性(证明你的猜想需要用题中所有

的条件).

2.如图所示,在等腰ABC △中,AB AC =,120BAC ∠=. (1)请你作出两腰的垂直平分线.

(2)若AB 边的垂直平分线与AB ,BC 分别交于点D ,E ,AC 边上的垂直平分线与AC ,

BC 分别相交于点G ,F ,则AEF △是什么形状?你能证明吗? (3)连结DG ,DG 与BC 有什么关系?

(4)若5cm DG =,试求AEF △的周长.

答案:

一、1D ;2C ;3D ;4D ;5D ;6C ;7D ;8B ;9C ;10D .

二、1. 垂直平分线上;垂直平分线上;2.15;3.115°;4.12cm ;5.120;6.7;7.1cm ;

8.26;9.12

cm 5

;10.10cm . 三、1.解:分别作AOB ∠的平分线OC 和线段MN 的垂直平分线DE ,则射线OC 与直线DE 的交点P 即为批发市场应建的地方.

2.证明:连接BD .AB 的垂直平分线交AC 于D ,DA DB =∴ 又BA BC =,120B ∠=,30A C ∠=∠=∴

30A ABD ∠=∠=∴,90DBC ∠=∴

Rt △DBC 中,有12BD DC =

,1

2

AD DC =∴. 3.解:∵OM=ON ,OP=OP ,∴Rt △OMP ≌Rt △ONP(HL),∴∠MOP=∠NOP ,∴射线OP 是∠AOB 的

平分线.

4.证明:AD ∵是ABC △的角平分线, DE AB ⊥,DF AC ⊥,

DE DF =∴(角平分线上的点到角的两边距离相等)

. ∴DEF DFE ∠=∠(等角对等边)

. 90AED AFD ∠=∠=∵(垂直定义),

AEF AFE ∠=∠∴(等角的余角相等)

. AE AF =∴(等角对等边)

∴A ,D 在EF 的中垂线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).

即AD 是EF 的中垂线.

四、1.解:猜想结论:AB AD BC +=,过D 作DE BC ⊥于E .

BD ∵平分ABC ∠,90A ∠=,AD DE =∴. ABD EBD ∴△≌△,AB BE =∴. AB AC =∵,45C ∠=∴,DE EC =∴. AD EC =∴,AB AD BC +=.

2.解:(1)如图所示.

(2)AEF △是等边三角形.

证明:AB AC =∵,120BAC ∠=,30B C ∠=∠=∴.

DE ∵垂直平分线AB ,EB EA =∴,

30BAE B ∠=∠=∴,60AEF ∠=∴.

同理可证60AFE ∠=.AEF ∴△是等边三角形.

(3)因为点D 、G 分别是AB 、AC 的中点,所以DG 是中位线,则1

2

DG BC =. (4)AE BE =∵,AF FC =,

AEF ∴△的周长为:AE EF AF BE EF FC BC ++=++=. 又210cm BC DG ==∵.AEF ∴△的周长为10cm .

选做题

1.ABC △中,2

2.5B ∠=,60C ∠=,AB 的垂直平分线交BC 于D ,交AB 于F

BD =AE BC ⊥于E ,求EC 的长.

解:连结AD .

DF ∵是AB 的垂直平分线,

AD BD =∴=

122.5B ∠=∠=∴(等边对等角) 2145B ∠=∠+∠=∴.

又AE BC ∵⊥,

3902904545∠=-∠=-=∴,23∠=∠∴

AE DE ∴=(等角对等边) 222DE AE AD +=∵(勾股定理)

222AE =∴,6AE =∴.

在R t ACE △中,60C ∠=,430∠=∴

2AC CE =∴(30所对的直角边等于斜边的一半)

222AC EC AE -=∵(勾股定理)

222(2)CE CE AE -=∴,223CE AE =∴,

212CE =∴

,CE =∴.

2.如图,90A AD BC =?,∠∥,P 是AB 的中点,PD 平分∠ADC. 求证:CP 平分∠DCB.

证明:过点P 作PE⊥DC,垂足于E , ∴3490A ===?∠∠∠, ∵PD 平分∠ADC ,∴12=∠∠, ∴PA PE =,

A

D E C

B

P 2

1

4 3

∵P 为AB 的中点,

∴PA PB PE PB ==,, ∵90AD BC A =?,∥∠,

∴P 点在∠DCB 的平分线上. ∴CP 平分∠DCB.

3. CE BF ,分别是锐角三角形ABC 的ACB ∠,ABC ∠的平分线,AF BF ⊥于F ,

AE CE ⊥于E ,试说明:

(1)EF BC ∥;(2)

1

()2

EF AB AC BC =+-.

提示:由于BF 是角平分线,且AF BF ⊥,所以延长AF 交BC 于N ,则有ABN △是等腰三角形,从而F 是AN 的中点,且AB BN =,同理E 是AM 的中点,且AC CM =,所以EF BC ∥,且11

()()22

EF BN CM CB AB AC BC =+-=+-.

备用题

1.如果三角形内的一点到三边的距离相等,则这点是( )C

A.是三条边中垂线的交点

B.是三角形三条边的中线的交点

C.是三角形三个内角平分线的交点

D.是三角形三条边上的高的交点 2.如图,△ABC 中,∠CAB =120o,AB ,AC 的垂直平分线分别交BC 于点E 、F ,则∠EAF 等于( )C

A .40o

B .50o

C .60o

D .80o

3.如果ABC △的边BC 的垂直平分线经过顶点A ,与BC 相交于点D ,且2AB AD =,则ABC △中必有一个内角的度数为( )D A .45

B

.60

C .90

D .120

4.如图,Rt △ACB ,90C ∠=,AD 平分CAB ∠,DE AB ⊥于E ,则下列结论中不正确的是( )B A .BD ED BC += B .DE 平分ADB ∠

A B

DE B

C .A

D 平分EDC ∠ D .ED AC AD +>

5.等腰三角形内有一点P 到底边的两端点距离相等,则连结顶点和P 的直线一定把底边 .垂直平分

5.如图,在R t ABC △中,90B ∠=,ED 垂直平分AC 交AC 于点D ,交BC 于点E ,已知:2:5EAB BAC ∠∠=,求C ∠的度数.

解:设2EAB x ∠=,则5BAC x ∠=,3C EAC x ∠=∠=∴.

而90C BAC ∠+∠=,5390x x +=∴,11.25x =,33.75C ∠=∴.

6.如图所示,AD 是BAC ∠的平分线,DE AB ⊥于E ,DF AC ⊥于F ,且BD CD =. 求证:BE CF =.

证明:AD ∵是BAC ∠的平分线,DE AB ⊥,DF AC ⊥

DE DF =∴.

(角平分线上的点到这个角两边的距离相等) 又BD CD =∵,Rt Rt HL DBE DCF ∴△≌△()

BE CF =∴.

7.如图,已知在△ABC 中,90C ∠=,点D 是斜边AB 的中点,2AB BC =,DE AB ⊥交AC 于E .

求证:BE 平分ABC ∠.

证明:D ∵是AB 的中点,1

2

BD AB =

∴, 2AB BC =∵,1

2

BC AB =

∴,BD BC =∴. 又∵DE AB ⊥,90C ∠=,90C BDE ∠=∠=∴, 又BE BE =,∴Rt △BDE ≌Rt △BCE (HL ), DBE EBC ∠=∠∴,BE ∴平分ABC ∠.

角平分线性质定理之应用

三角形的角平分线是三角形的主要线段之一,它在几何的计算或证明中,起着“桥梁”的作用.那么如何利用三角形的角平分线解题呢?下面举例说明. 一、由角平分线的性质联想两线段相等

例1 如图1,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF

证明 连结DB ,DC .

∵D 在∠A 的平分线上,∴DE=DF .

∵D 在BC 的垂直平分线上,∴ 又∠BED=∠CFD=90°, ∴Rt △BDE ≌Rt △CDF ,∴BE=CF .

例2 如图2,BC >AB ,BD 平分∠ 求证:∠A+∠C=180°.

证明 延长BA 至F ,使BF=BC .由BD 在△FBD 与△CBD 中,BF=BC ∠ABD=∠CBD BD=BD ∴△FBD ≌△CBD ,

∴∠C=∠F ,DF=CD=AD ,∠F=DAF , ∴∠A+∠C=∠BAD+∠DAF=180°.

三、过角平分线上一点作一边的平行线,构成等腰三角形

例3 已知:如图3,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于点F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,求证:BD+CE=DE .

证明:∵BF 是∠ABC 的平分线 ∴∠DBF=∠CBF 又∵DE ∴∠DFB=∠CBF

∴∠DBF=∠DFB ∴BD=FD ,同理CE=FE .

∴BD+CE=DF+FE=DE . 四、实际生活中的应用

A D

B

C

E

图1-1

例4 如图4,有三条公路1l 、2l 、3l 两两相交,要选择一地点建一座加油站,是加油站到三条公路的距离相等,应如何选择建加油站的地址?这样的位置有几种选择?

解析:分别作△ABC 两内角的平分线,它们相交于一点,根据角平分线的性质知,这个点到三条公路的距离相等;或者分别作△ABC 相邻两外角的平分线,它们的交点到三条公路的距离也相等,这样点共有三个,所以建加油站的位置共有4种选择.

角平分线携“截长补短”显精彩

角的平分线具有其特有的性质,这一性质在许多问题里都有着广泛的应用.而“截长补

短法”又是解决这一类问题的一种特殊方法,利用此种方法常可使思路豁然开朗.请看几例. 例1 如图1-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB .

求证:CD =AD +BC .

分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,

只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的.

证明:在CD 上截取CF =BC ,如图1-2 在△FCE 与△BCE 中,

??

?

??=∠=∠=CE CE BCE FCE CB CF ∴△FCE ≌△BCE (SAS ),∴∠2=∠1.

又∵AD ∥BC ,∴∠ADC +∠BCD =180°,∴∠DCE +∠CDE =90°, ∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△FDE 与△ADE 中,

??

?

??∠=∠=∠=∠43DE

DE ADE FDE ∴△FDE ≌△ADE (ASA ),∴DF =DA , ∵CD =DF +CF ,∴CD =AD +BC . 例2 已知,如图2-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD .

图4 A

D

B C

E F

1

23

4

图1-2

求证:∠BAP +∠BCP =180°.

分析:证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造. 证明:过点P 作PE 垂直BA 的延长线于点E ,如图2-2 ∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中,

?

?

?==BP BP PD

PE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD .

∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE . 在Rt △APE 与Rt △CPD 中,

??

?

??=∠=∠=DC AE PDC PEA PD PE ∴Rt △APE ≌Rt △CPD (SAS),∴∠PAE =∠PCD 又∵∠BAP +∠PAE =180°,∴∠BAP +∠BCP =180° 例3 已知:如图3-1,在△ABC 中,∠C =2∠B ,∠1=∠2.

求证:AB =AC +CD .

分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC 至E 使CE =CD ,或在AB 上截取AF =AC .

证明:方法一(补短法)

延长AC 到E ,使DC =CE ,则∠CDE =∠CED ,如图3-2 ∴∠ACB =2∠E ,

∵∠ACB =2∠B ,∴∠B =∠E , 在△ABD 与△AED 中,

??

?

??=∠=∠∠=∠AD AD E B 2

1 ∴△ABD ≌△AED (AAS ),∴AB =AE . 又AE =AC+CE =AC +DC ,∴AB =AC +DC . 方法二(截长法)

在AB 上截取AF =AC ,如图3-3 在△AFD 与△ACD 中,

??

?

??=∠=∠=AD AD AC AF 21 ∴△AFD ≌△ACD (SAS ),∴DF =DC ,∠AFD =∠ACD . 又∵∠ACB =2∠B ,∴∠FDB =∠B ,∴FD =FB . ∵AB =AF +FB =AC +FD ,∴AB =AC +CD .

上述两种方法在实际应用中,时常是互为补充,但应结合具体

A

B

C

D

P

12

N

图2-1

D

C

B A 12

图3-1

E

D

C

B A 12

图3-2

F

D

C

B

A 12

图3-3

P

12

N

A

B

C

D

E 图3-2

2-2

题目恰当选择合适思路进行分析。让掌握学生掌握好“截长补短法”对于更好的理解数学中的化归思想有较大的帮助。

角平分线问题中的一题多解

如图1所示,在△ABC 中,∠C=2∠B ,∠1=∠2。 求证:AB=AC +CD 。 证法一:截取法。就是在较长的线段中截取一段与求加法运算的两条线段中的一条相等,然后证明另一段等于加法运算的另一条线段。

如图2所示,在AB 上截取AE=AC ,连结DE 。 在△AED 和△ACD 中

12AE AC AD AD =??

∠=∠??=?

所以△AED ≌△ACD , 所以ED=CD ,∠3=∠C 。

因为∠3=∠B +∠4,∠C=2∠B ,

所以∠B=∠4, 所以BE=DE 。

所以AB=AE +BE=AC +DE=AC +CD 。

证法二、补短法。就是在较短的一条线段的基础上通过延长在截取的方法将求和的两条线段连结在一起。本种方法是延长AC ,再在延长线上截取CF=CD 。

如图3所示,延长AC 到点F ,使CF=CD ,连结DF 。 因为CF=CD ,

所以∠3=∠F 。

因为∠ACB=∠3+∠F ,

所以∠ACB=2∠F 。 又因为∠ACB=2∠B ,

所以∠B=∠F 。 在△ABD 和△AFD 中 12B F AD AD ∠=∠??

∠=∠??=?

所以△ABD ≌△AFD , 所以AB=AF 。

因为AF=AC +CF=AC +CD , 所以AB= AC +CD 。

第三种方法:也是属于补短法,本种方法是延长DC ,再在延长线上截取CM=AC 。 证明:延长DC ,在DC 的延长线上截取CM=AC ,连结AM 。 因为因为CM=CA , 所以∠3=∠M 。

因为∠ACB=∠3+∠M ,

43

2

1E D

C

B A 图2 3

21F

D C B A 图3

所以∠ACB=2∠M=2∠3。

又因为∠ACB=2∠B,

所以∠B=∠M=∠3,

所以AB=AM。

因为∠4=∠B+∠1,∠DAM=∠2+∠3,

∠1=∠2

所以∠4=∠DAM,

所以AM=DM=DC+CM=DC+AC,

所以AB=DC+AC。

练习:如图5所示,在△ABC中,BC边的垂直平分线DF交△BAC的外角平分线AD于点D,F为垂足,DE ⊥AB于E,并且AB>AC。

求证:BE-AC=AE。

提示:可以将减法运算转化为加法运算,然后利用“截长”或者“补短”法解决问题。

4

3

2

1

M D C

B

A

图4

图3 F

E

D

C

B

A

图5

专题16角平分线及中点问题

二轮复习之角平分线问题 【考点一:角平分线+平行→等腰三角形】 典例1. 已知:如图,在平行四边形ABCD 中,AB=4,AD=7,∠ABC 的平分线交AD 于点E ,则ED 的长为( ) A .4 B .3 C .72 D .2 关键点分析:关注题目中有无平行线环境,这个平行线环境包括题目给出来的平行线条件,也包括平行四边形中的隐性平行线环境,在这样的题目中我们要积极地寻找等腰三角形。 模型图总结: 【考点二:角平分线+垂直→等腰三角形】 典例2.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则CD 的长是( ) A .2 B .2.5 C .2 D . 关键点分析:关注题目中有无“双重身份”的线,即角平分线还有另外一重身份“垂线”,这样的题目中图形中也都隐藏着等腰三角形,需要我们作辅助线把这个等腰三角形找出来。 模型图总结:

【考点三:见角平分线→作双垂】 典例3. 如图,△ABC 中,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,∠BAC=84°,则∠BDC=_______度。 关键点分析:遇到角的平分线作双垂,应用角平分线的性质定理解题是基本的辅助线。 模型图总结: 【考点四:见角平分线→作对称】 典例4. 如图,在△ABC 中,AD 平分∠BAC ,∠C=2∠B ,若AC=3,CD=2,则AB=________。 关键点分析:轴对称性是角平分线的本质属性,所以遇到含有角平分线的题目经常需要将角平分线一侧的三角形作对称处理,利用角的轴对称性来解决问题。 模型图总结: 【模型应用】 1.已知OC 平分∠AOB ,点P 为OC 上一点,PD ⊥OA 于D ,且PD=3cm ,过点P 作PE ∥OA 交OB 于E ,∠AOB=30°,求PE 的长度为_________cm 。 2. 如图,在矩形ABCD 中,AB=5,AD=3,点M 在边CD 上,若AM 平分∠DMB ,则DM 的长是________. 3. M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则△ABC 的周长等于___________. 4.如图,在Rt △ABC 中,∠ACB=900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,若AC=3,AB=5,则CE 的长为( )。

讲义 角平分线辅助线

人教版八年级上第十二章 全等三角形 12.7 角平分线辅助线添加方法 教师: 学生: 时间: 教学目标:学会解平面几何题常用辅助线作法——题中有角平线的时。 重难点:根据平面几何题中有角平分线时——采用相对应的辅助作法。 知识回顾与新知识准备 【回顾要点】 角平分线的性质: 1、 2、 3、 【新知识】 角平分线辅助线添加1:角分线上点向角两边作垂线构全等 【知识要点】 角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上 的点到两边距离相等的性质来证明问题。 【典型例题】 【例1】如图,BD 是四边形ABCD 中∠ABC 的平分线,∠A +∠C =180°,求证:DA =CD A B C D

1、如图,在四边形ABCD中,AC平分∠BAD,∠ADC+∠ABC=180度,CE⊥AD于E,猜想AD、AE、AB之间的数量关系,并证明你的猜想, 2、如图,已知∠B=∠C=90。,DM平分∠ADC,AM平分∠DAB,探究线段BM与CM的关系,说明理由。 【例2】如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上一点,且∠EDF+∠BAF=180°,求证:DE=DF. 举一反三:如图,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G,求证:BF=CG. 角平分线辅助线添加方法2------截取构全等 E B A C D B C M A D

【知识要点】 截取构全等 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD , 从而为我们证明线段、角相等创造了条件。 【典型例题】 【例1 方法2】如图,BD 是四边形ABCD 中∠ABC 的平分线,∠A +∠C =180°,求证:DA =CD 图1-1 O A B D E F C A B C D

几何证明角平分线模型(高级)

几何证明——角平分线模型(高级) 【经典例题】 例1、已知如图,ABC ?中,BC AC =,AD 平分CAB ∠,若ο 100=∠C ,求证:CD AD AB +=。 例2、如图,已知在ABC ?中,ο 60=∠B ,ABC ?的角平分线CE AD ,相交于点O ,求证:AC CD AE =+。 E O B 例3、如图,BD 平分ABC ∠,?=∠45ADB ,BC AE ⊥,求AED ∠. A B C D 例4、已知,如图ABC ?中,AD 为ABC ?的角平分线,求证:BD AC DC AB ?=?.

例5、如图,已知P 为锐角△ABC 内一点,过P 分别作AB AC BC ,,的垂线,垂足分别为F E D ,,,BM 为ABC ∠的平分线,MP 的延长线交AB 于点N ;如果PF PE PD +=,求证:CN 是ACB ∠的平分线。 A B C N M P D E F 例6、如图,在梯形ABCD 中,BC AD //,DC AB =,?=∠80ABC ,E 是腰CD 上一点,连接BE 、AC 、 AE ,若?=∠60ACB ,?=∠50EBC ,求EAC ∠的度数. B C E 例7、已知:ABC ?中,BC AB <,AC 的中点为M ,AC MN ⊥交ABC ∠的角平分线于N . (1)如图1,若?=∠60ABC ,求证:BN BC BA 3= +;

(2)如图2,若?=∠120ABC ,则BA 、BC 、BN 之间满足什么关系式,并对你得出的结论给予证明. A C 【提升训练】 1、在ABC ?中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-. B 2、如图,在ABC ?中,A ∠等于ο 60,BE 平分CD ABC ,∠平分ACB ∠,求证:EH DH =。 3、如图所示,在ABC ?中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证:2AB AC AM +=。

三角形培优训练100题集锦

E D F C B A 三角形培优训练专题 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。 7、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 1、已知,如图△ABC中,AB=5,AC=3,求中线AD的取值范围. 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

角平分线定理专题

1.如图,2是/ DE = DG* △ ADG*U A AED 的而枳分别为 35,见I △ EDF 的而积为( ) 2 - A ?25 B ? 5.5 C ? 7.5 2?如图f 是ZAOB 平分线OC 上一点f D 丄OB,垂足为D, 若PD=2M 点P 到边OA 的距离是 3?如图,AABC 的三边AB,BC,CA 长分别是20,30,40,M 三条角平分线将Z\ABC 分为 三个三角形,则 S. .ABO : S A BCO : S/.CAO ,: .r \ ' _______________ ? 4. (2016?怀化)如图,OP 为Z AOB 的角平分线,PC 丄OA, PD 丄OB,垂足分别是C, D,则下 列结论错误的是() 4 PC=PD B ? ZCPD=Z DOP C ? ZCPO = Z DPO D ? OC = OD 5. (2016?淮安)如图,在PtAABC 中,ZC=90°,以顶点A 为圆心,适当长为半径画弧,分 别交AC, AB 于点M, N,再分别以点M, N 为圆心,大于扌MN 的长为半径画弧,两弧交于 点P ,作射线AP 交边BC 于点D,若CD=4, AB = 15,则厶ABD 的面积是( 6. 如图,AABC 中,ZC=90°, AD 平分Z BAC 交BC 于点D ?已知BD : CD = 3 : 2,点D 到 AB 的距禽是6,则BC 的长是 _________ 7. 如图所示,已知AABC 的周长是20, OB, OC 分别平分Z ABC 和Z ACB, OD 丄BC 于点D, 且OD = 3,贝U ABC 的面积是. _______ 之定理专题(基础题) B.2 C. 4 1 5 B. 30 C ? 45 D ? 60 () 為DF 丄AB ,垂足为& A D. B D B O A D H

一 遇角平分线常用辅助线

第一章 遇角平分线常用辅助线 【添法透析】 角相等时,添线段可构造线段相等、三角形全等或相似,常用有如下四大添法: 一.点在平分线,可作垂两边 二.角边相等,可造全等 三.平分加平行,可得等腰形 四.平分加垂线 ,补得等腰现 例1.已知如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,CD=1.5,BD=2.5,求AC . 邦德点拨:过点D 作DE ⊥AB ,则DE=CD ,AE=AC , 再利用方程思想、勾股定理解AC . B E D C

练习1:已知如图,P 为△ABC 两外角∠DBC 和∠ECB 平分线的交点,求证:AP 平分∠BAC . 例2.已知如图,AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD . 邦德点拨:在BC 上截取BF=BA ,问题转化为证CF=CD . 练习2.已知如图,AD 是△ABC 的内角平分线,P 是AD 上异 A B C E D P A P C B E D A F B

于点A的任意一点,,试比较PB-PC与AC-AB的大小,并说明理由.

例3.已知如图,在△ABC 中(AB AC ),D 、E 在BC 上,且DE=EC ,过D 作DF//BA 交AE 于点F ,DF=AC ,求证:AE 平分∠BAC . 邦德点拨:过C 点作AB 平行线交AE 延长线于点G , 则∠G=∠BAE ,接下只需证∠G=∠CAE . 练习3.已知如图,过△ABC 的边BC 的中点D 作∠BAC 的平分线AG 的平行线,交AB 、BC 及CA 的延长线于点E 、D 、F .求证:BE=CF . A E F B C D G F A E B C G D

遇角平分线常用辅助线

第一章遇角平分线常用辅助线 【添法透析】 角相等时,添线段可构造线段相等、三角形全等或相似,常用有如下四大添法:一.点在平分线,可作垂两边 二.角边相等,可造全等 三.平分加平行,可得等腰形 四.平分加垂线,补得等腰现

练习1:已知如图,P为△ABC两外角∠DBC和∠ECB平分线的交点,求证:AP 平分∠BAC.

例3.已知如图,在△ABC中(AB≠AC),D、E在BC上,且DE=EC,过D作

例4.如图,ΔABC 中,过点A 分别作∠ABC, ∠ACB 的外角的平分线的垂线AD 、AE ,D 、E 为垂足.求证: (1)ED//BC ; (2)ED=2 1(AB+AC+BC ). 邦德点拨:延长AD 、AE 交直线BC 于F 、G , 可证得△BAF 、△CAG 为等腰三角形. 练习4.已知如图,等腰Rt △ABC 中,∠A=90°,AB=AC ,BD 平分∠ABC ,CE ⊥BD ,垂足为点E ,求证:BD=2CE . 【homework 】 1.已知如图,在△ABC 中,BD 、CD 分别平分∠ABC 和∠ACB ,DE//AB ,FD//AC .如 果BC=6,求△DEF 周长. 2.已知如图,四边形ABCD 中,∠B+∠D=180°,BC=CD .求证:AC 平分∠BAD . A D E C B A E D F G C B A D F E C B

B C A D

3.已知如图,∠BAD=∠CAD ,AB>AC ,CD ⊥AD 于点D ,H 是BC 中点,求证:DH=2 1(AB-AC). 4.如图,ABC ?中,AM 平分A ∠,BD 垂直于AM ,交AM 延长线于点D ,DE∥CA 交AB 于E .求证:AE=BE . 5.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD . A B H D C A E C M B D A E B D C

几何辅助线之角平分线专题

几何辅助线之角平分线专题1、角平分线辅助线四种基本模型 已知:AD是∠BOC的角平分线 (1)(2) (3)(4) 2、补充性质: 如图,在△ABC中,AD平分∠BAC,则有AB:AC=BD:DC

典型例题 例1、已知:如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB.求证:AC+CD=AB 例2、已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合,当∠A满足什么条件时,点D恰为AB中点?写出一个你认为适当的条件,并利用此条件证明D为AB中点. 例3、如图,AB=2AC,∠BAD=∠DAC,DA=DB ,求证:DC⊥AC。

D E H A B C 例4、如图所示,已知AD 是△ABC 的角平分线,DE AB ⊥,DF AC ⊥, 垂足分别是E , F .求证:AD 垂直平分EF . 例5、 如图,在△ABC 中,∠A 等于60°,BE 平分∠ABC ,CD 平分∠ACB 求证:DH=EH 例6、如图,已知等腰直角三角形ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥ BD ,垂足为E ,求证: BD =2CE 。

例7、如图,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。 变式练习 请你参考上图构造全等三角形的方法,解答下列问题: ⑴如图,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断写出FE与FD之间的数量关系; ⑵如图,在△ABC中,如果∠ACB不是直角,而⑴中的其他条件不变,请问,你在⑴中所

角平分线常用模型

每日一题:三角形中角平分线的基本模型 武穴市百汇学校徐国纲 在初中阶段,角平分线问题涉及角度的计算和证明。经过总结归纳,有相当部分可以转化为基本模型,掌握这些模型,可以为我们迅速找到解题思路,形成良好的数学思维习惯奠定基础。下面举例说明。 【模型一】角平分线+垂直一边 若PA⊥OM于点A,如图a,可以过P点作PB⊥ON于点B,则PB=PA。可记为“图中有角平分线,可向两边作垂线”,显然这个基本图形中可以利用角平分线的性质定理,也可以得到一组全等三角形; 【模型二】角平分线+斜线 若点A是射线OM上任意一点,如图b,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA。可记为“图中有角平分线,可以将图形对折看,对称以后关系现”。 【模型三】角平分线+垂线 若AP⊥OP于点P,如图c,可延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”,实际上这是“两线合一”的一种情形,这个图形中隐含着全等和等腰三角形; 【模型四】角平分线+平行线 若过P点作PQ∥ON交OM于点Q,如图d,可以构造△POQ是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现”,这个基本图形使用频率那是相当的高,切记。 【模型五】角平分线+对角互补 若∠A+∠C=180°,BD是∠ABC的平分线,则AD=CD. 【模型六】夹角模型 ①BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=90°+1 2 ∠A. ②BP、CP分别是∠ABC、∠ACE的角平分线,则:∠P=1 2 ∠A.

BP、CP分别是∠CBD、∠BCD的角平分线,则:∠D=90°-1 2 ∠B.

角平分线习题精选(专题)

第 1 页 共 2 页 角平分线习题精选 1、已知:如图1,中,∠C =2∠B ,∠1=∠2, 求证:AB =AC+CD 。 2、已知,如图2,∠1=∠2,P 为BN 上一点, 且PD ⊥BC 于D ,AB+BC =2BD , 求证:∠BAP+∠BCP =180°。 3、如图,△ABC 中,AC =BC ,∠BAC 的外角平分线交 BC 的延长线于点D ,若∠CAD =2∠ADC ,求∠B 的度数 5、如图5、A B ∥CD ,∠B =90°,E 是BC 的中点。DE 平分∠ADC , 求证:AE 平分∠DAB 。 6、如图6、在△ABC 中,AB =7, 求内心到边的距离。 7、如图7、已知在△ABC 中,分别以AC 、BC 为边向外作 正△BCE 、正△ACD ,BD 与AE 交于M , 求证:(1)AE =BD 。(2)MC 平分∠DME 。 D D C

第 2 页 共 2 页 8、如图8、AB =CD ,△PCD 的面积等于△PAB 的面 积,求证:OP 平分∠BOD 。 9如图9、在△ABC 中,∠B =60°,△ABC 的角平分 线 AD 、CE 交于点O ,求证:AE+CD =AC 。 10、如图10、已知在四边形ABCD 中,B D >AB ,AD =DC , BD 平分∠ABC ,求证:∠A+∠C =180°。 11、如图11、△ABC 中,AD 是∠A 的平分线,E 、F 分别为AB 、AC 上的点,且∠EDF+∠BAF =180°,求证:DE =DF 。 12、如图12、△ABC 中,AD 是∠BAC 的平分线, AD 的垂直平分线交AD 于点E , 交BC 的延长线于点F 。 求证:FD 2=F B ×FC C F

角平分线模型的构造

支付宝首页搜索“ 933314”领红包,每 天都能领。付款前记得用红包 第二讲角平分线模型的构造 3月 角平分线 (l)定义:如图2-1,如果∠AOB =∠BOC ,那么∠AOC=2∠AOB=2∠BOC ,像OB 这样,从一个角的顶点出发,把这个角分成相等的两个角的射线,叫作这个角的角平分线. (2)角平分线的性质定理 ①如果一条射线是一个角的平分线,那么它把这个角分成两个相等的角, ②在角的平分线上的点到这个角的两边的距离相等. (3)角平分线的判定定理 ①在角的内部,如果一条射线的端点与角的顶点重合,且把一个角分成两个等角,那么这条射线是这个角的平分线, ②在角的内部,到一个角两边距离相等的点在这个角的平分线上, 与角平分线有关的常用辅助线作法,即角平分线的四大基本模型, 已知P 是∠MON 平分线上一点, (l)若PA ⊥OM 于点A ,如图2-2(a),可以过P 点作PB ⊥ON 于点B ,则PB=PA.可记为“图中有角平分线,可向两边作垂线”. (a) O (b) (2)若点A 是射线OM 上任意一点,如图2-2(b),可以在ON 上截取OB=OA ,连接PB ,构造△OPB ∽△OPA.可记为“图中有角平分线,可以将图对 折看,对称以后关系现”. (3)若AP ⊥OP 于点P ,如图2-2(c),可以延长AP 交ON 于点B ,构造△AOB 是等腰三角形,P 是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”. (c) O (d) O (4)若过P 点作PQ ∥ON 交OM 于点Q ,如图2-2(d),可以构造△POQ 是等腰三角形,可记为“角平分线十平行线,等腰三角形必呈现”. 例1 (1)如图2-3(a),在△ABC 中,∠C=90。,AD 平分∠CAB ,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是( )cm. 图2-3 (a ) (2)如图2-3(b),已知:∠1=∠2,∠3=∠4, 求证:AP 平分∠BAC . 图2-3(b )

(完整word版)垂直平分线角平分线培优提高练习

垂直平分线角平分线培优提高练习 一.选择题(共6小题) 1.如果三角形内有一点到三边距离相等,且到三顶点的距离也相等,那么这个三角形的形状是() A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形 2.下列各语句中不正确的是() A.全等三角形的周长相等B.全等三角形的对应角相等 C.到角的两边距离相等的点在这个角的平分线上 D.线段的垂直平分线上的点到这条线段的两端点的距离相等 3.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下: (甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求; (乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求. 对于甲、乙两人的作法,下列判断何者正确() A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确 4.如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADC度数为() A.45°B.47°C.49°D.51° 5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为() A.B.C.D.6 6.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF 的周长最小时,∠EAF的度数为()

A.50°B.60°C.70°D.80° 二.填空题(共5小题) 7.△ABC中,DF是AB的垂直平分线,交BC于D,EG是AC的垂直平分线,交BC于E,若∠DAE=30°,则∠BAC等于. 8.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=. 9.在△ABC中,AB、AC的垂直平分线分别交BC于点D、E.若BC=10,DE=4,则AD+AE=.10.△ABC中,∠C=90°,DE是AB的中垂线,AB=2AC,且BC=18cm,则BE的长度是.11.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,△PMN的周长为. 三.解答题(共6小题) 12.如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD. 13.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,求证:HF∥BC. 14.在△ABC中,AB边的垂直平分线交直线BC于点D,垂足为点F,AC边的垂直平分线交直线BC于点E,垂足为点G. (1)当∠BAC=100°(如图)时,∠DAE=°;

角平分线辅助线专题练习

D A B C 角平分线专题 1、 轴对称性: 内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴。 思路和方法:边角等 造全等,也就是在角的两边上取相等的线段 构造全等三角形 基本结构:如图, 2、 角平分线的性质定理:注意两点(1)距离相等 (2)一对全等三角形 3、 定义:带来角相等。 4、 补充性质:如图,在△ABC 中,AD 平分∠BAC ,则有AB:AC=BD:DC 针对性例题: 例题1:如图,AB=2AC ,∠BAD=∠DAC,DA=DB 求证:DC ⊥AC

B 例题2:如图,在△ABC 中,∠A 等于60°,BE 平分∠ABC ,CD 平分∠ACB 求证:DH=EH 例题3:如图1,BC >AB ,BD 平分∠ABC ,且∠A+∠C=1800, 求证:AD=DC .: 思路一:利用“角平分线的对称性”来构造 因为角是轴对称图形,角平分线是其对称轴,因此,题中若有 角平分线,一般可以利用其对称性来构成全等三角形. 证法1:如图1,在BC 上取BE=AB ,连结DE ,∵BD 平分 ∠ABC ,∴∠ABD=∠DBE ,又BD=BD ,∴△ABD ≌△EBD (SAS ), ∴∠A=∠DBE ,AD=DE ,又∠A+∠C=1800,∠DEB+∠DEC=1800,∴∠C=∠DEC ,DE=DC , 则AD=DC . 证法2:如图2,过A 作BD 的垂线分别交BC 、BD 于E 、F , 连结DE ,由BD 平分∠ABC ,易得△ABF ≌△EBF ,则AB=BE , BD 平分∠ABC ,BD=BD ,∴△ABD ≌△EBD (SAS ), ∴AD=ED ,∠BAD=∠DEB ,又∠BAD+∠C=1800, ∠BED+∠CED=1800,∴∠C=∠DEC ,则DE=DC ,∴AD=DC . 说明:证法1,2,都可以看作将△ABD 沿角平分线BD 折向BC 而构成 全等三角形的. 证法3:如图3,延长BA 至E ,使BE=BC ,连结DE , ∵BD 平分∠ABC ,∴∠CBD=∠DBE ,又BD=BD ,∴△CBD ≌△EBD (SAS ), ∴∠C=∠E ,CD=DE ,又∠BAD+∠C=1800,∠DAB+∠DAE=1800, ∴∠E=∠DAE ,DE=DA ,则AD=DC . 说明:证法3是△CBD 沿角平分线BD 折向BA 而构成全等三角形的. B A C D E 图1 B A C D E F 图2 B A C D E 图3

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

(完整版)中考复习2角平分线专题

角平分线专题 【类型一】角平分线倒角模型 例1、把一副学生用三角板)9060 30(???、、和)904545(???、、如图(1)放置在平面直角坐标系中,点A 在y 轴正半轴上,直角边AC 与y 轴重合,斜边AD 与y 轴重合,直角边AE 交x 轴于F,斜边AB 交x 轴于G,O 是AC 中点,8=AC . (1)把图1中的AED Rt ?绕A 点顺时针旋转α度)900(?<≤α得图2,此时AGH ?的面积是10,AHF ?的面积是8,分别求F 、H 、B 三点的坐标; (2)如图3,设AHF ∠的平分线和AGH ∠的平分线交于点M,EFH ∠的平分线和FOC ∠的平分线交于点N,当改变α的大小时,M N ∠+∠的值是否会改变?若改变,请说明理由;若不改变,请求出其值. 检测1、如图,已知点A 是y 轴上一动点,B 是x 轴上一动点,点C 在线段OB 上,连接AC ,AC 正好是OAB ∠的角平分线,DBx ABD ∠=∠,问动点A ,B 在运动的过程中,AC 与BD 所在直线的夹角是否发生变化,请说明理由;若不变,请直接写出具体值。 x y

检测2、如图探究与发现: 探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢? 已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系. 探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系? 已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢? 已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P 与∠A+∠B的数量关系. 探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢? 请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:.

七年级三角形的内角与外角角平分线培优练习题

三角形的内角与外角角平分线 1、如图1,点D是△ABC两个内角平分线的交点。 (1)∠ABC=50°,∠ACB=80°则∠D= . (2)∠A=100°,则∠D= . (3)∠D=150°,则∠A= . (4)写出∠D和∠A的关系 2、如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, (1)∠ABC=50°,∠A=80°则∠D= . (2)∠A=100°,则∠D= . (3)∠D=50°,则∠A= . (4)写出∠D和∠A的关系 3、如图所示,在△ABC中,∠ABC和∠ACB的外角平分线交于点O, (1)∠1=80°,∠2=50°则∠O= . (2)∠A=100°,则∠O= . (3)∠D=50°,则∠A= . (4)设∠BOC=a,则∠A等于 . 4、如图已知△ABC中,∠A=39°,∠B和∠C的三等分线分别 交于D、E两点,则∠BDC度数是() A.133°B.86°C.°D.88°

5、如图所示,已知△ABC中,∠A=84°,点B、C、M在一条直线上,∠ABC和∠ACM 两角的平分线交于点P1,∠P1BC和∠P1CB两角的平分线交于点P2,∠P2BC和∠P2CB两角的平分线交于点P3,则∠P3的度数是 . 6、如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依次类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为() 7、如图所示,已知△ABC中,∠A=84°,点B、C、M在一条直线上,∠ABC和∠ACM两角的平分线交于点P1,∠P1BC和∠P1CM 两角的平分线交于点P2,∠P2BC和∠P2CM两角的平分线交于点P3,则∠P3的度数 是 . 8、如图所示,∠ABC,∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点D,∠ABC 与∠ACB的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=_______. A P3 P2 P1 C B

初一角平分线的性质专题一

D C A E B 角平分线的性质及判定专题 填空题: 1. 已知:△ABC 中,∠B =90°, ∠A 、∠C 的平分线交于点O ,则∠AOC 的度数为 . 2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________. 3.∠AOB 的平分线上一点M ,M 到 OA 的距离为1.5 cm ,则M 到OB 的距离为_________. 4.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________. 5.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm . 6.如图,CD 为Rt △ABC 斜边上的高,∠BAC 的平分线分别交CD 、CB 于点E 、F ,FG ⊥AB ,垂足为G ,则CF ______FG ,CE ________CF . 7.三角形的三条角平分线相交于一点,并且这一点到________________相等. 8.点O 是△ABC 内一点,且点O 到三边的距离相等,∠A =60°,则∠BOC 的度数为_____________. 选择题: 9.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( ) A 、4㎝ B 、6㎝ C 、10㎝ D 、不能确定 10.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD 11.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) 第4题 第5题 第6题

一遇角平分线常用辅助线

邦德点拨:过点 D 作 DEL AB 」DE=CD AE=AC 再利用方程思想、勾股定理解 AC. 练习1:已知如图,P ABC 两外角/ DBC 和/ ECB 平分线的交点,求证: ?角边相等,可造全等 在角的两边取相等线段,可得全等三角形. 如图,若 0P 为/ AOB 角平分线,可在 0B 上取OF=OE 则可用结论有:(1)证得△ 0卩瞪厶OPE 第一章 遇角平分线常用辅助线 【添法透析】 角相等时,添线段可构造线段相等、三角形全等或相似,常用有如下四大添法: ?点在平分线,可作垂两边 ?角边相等,可造全等 ?平分加平行,可得等腰形 四?平分加垂线,补得等腰现 ?点在平分线,可作垂两边 例1 ?已知如图, O 在厶 ABC 中,/ C=90 °,AD 平分/ CAB ,CD=1.5,BD=2.5,求 AC . AP 平 C . BA D A A B D E C C

(2) 证得PF=PE OF=OE (3)证得/ PFO=Z PEO / OPF=/ OPE 例2.已知如图,AB//CD , BE平分/ ABC, CE平分/ BCD,点E在AD上,求证:BC=AB+CD 邦德点拨:在BC上截取BF=BA问题转化为证CF=CD 练习2.已知如图,AD是厶ABC的内角平分线,P是AD上异于点与AC- AB的大小,并说明理由. 三?平分加平行,可得等腰形 1?过角平分线上一点,作角的一边平行线,可构造得等腰三角形或相 似; 则可用结论有:(1)证得△ OEF是等腰三角形; 1 (2)证得/ E=^ / AOB A B F C P A 的任意一点,E,试 如图,若OP为/ AOB平分线,过直线OB上一点E,作OP平行线交OA于点F,

角平分线模型的构造

第二讲角平分线模型的构造3月 角平分线 (I)定义:如图2-1,如果/ AOB = / BOC,那么/ A0C=2 / AOB=2 / BOC,像OB 这样,从一个角的 顶点出发,把这个角分成相等的两个角的射线,叫 作这个角的角平分线. ⑷若过P点作PQ// ON交OM于点Q,如图2-2(d), 可以构造厶POQ是等腰三角形,可记为“角平分线 十平行线,等腰三角形必呈现” ? 例1 (1)如图2-3(a),在厶ABC 中,/ C=90。,AD 平分 / CAB,BC=6cm,BD=4cm,那么点D 到直线AB的距离是( )cm. (2)角平分线的性质定理 ①如果一条射线是一个角的平分线,那么它把这个 角分成两个相等的角, ②在角的平分线上的点到这个角的两边的距离相 等. (3)角平分线的判定定理 ①在角的内部,如果一条射线的端点与角的顶点重 合,且把一个角分成两个等角,那么这条射线是这 个角的平分线, ②在角的内部,到一个角两边距离相等的点在这个 角的平分线上, 与角平分线有关的常用辅助线作法,即角平分线的 四大基本模型, 已知P是/ MON平分线上一点, (I)若PA丄OM于点A,如图2-2(a),可以过P点作 PB丄ON于点B,贝U PB=PA.可记为“图中有角平 分线,可向两边作垂线” 图2-3 (a) ⑵如图2-3(b),已知:/仁/2,Z 3=Z4, 求 证:AP平分/ BAC . ⑵若点A是射线OM上任意一点,如图2-2(b),可以在ON上截取OB=OA,连接PB,构造△ OPB OPA.可记为“图中有角平分线,可以将图对折看,对称以后关系现”. ⑶若AP丄OP于点P,如图2-2(c),可以延长AP 交ON于点B,构造△ AOB是等腰三角形,P是底边AB的中点,可记为“角平分线加垂线,三线合 、亠、亠K ” (b)

1.4 角平分线同步培优练习题(含答案解析)

1.4 角平分线同步培优练习题 一.选择题(共10小题) 1.如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为() A.8.5B.15C.17D.34 2.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为() A.2B.2.5C.3D.4 3.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P 到直线AC的距离为4,则点P到直线AB的距离为() A.4B.3C.2D.1 4.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,AB=20,CD=6,若∠C=90°,则△ABD面积是() A.120B.80C.60D.40 5.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则下列结

论中错误的是() A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF 6.如图,PM=PN,∠BOC=30°,则∠AOB的度数() A.30°B.45°C.60°D.50° 7.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为() A.2B.3C.4D.无法确定 8.在△ABC内部取一点P,使得点P到△ABC的三边距离相等,则点P是△ABC的()A.三条高的交点 B.三条角平分线的交点 C.三条中线的交点 D.三边的垂直平分线的交点 9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC 的面积是() A.3B.4C.5D.6 10.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:

角平分线定理专题

角平分线定理专题(基础题) 1. 如图,AD 是 的角平分线, ,垂足为F , , 和 的面积分别为60和35,则 的面积为 A. 25 B. C. D. 2.如图,P 是∠AOB 平分线OC 上一点,PD ⊥OB ,垂足为D ,若PD=2,则点P 到边OA 的距离是 A.1 B.2 C. D.4 3.如图,△ABC 的三边AB,BC,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BCO ∶S △CAO 等于________. 4.(2016·怀化)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是( ) A .PC =PD B .∠CPD =∠DOP C .∠CPO =∠DPO D .OC =OD 5.(2016·淮安)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于1 2MN 的长为半径画弧,两弧 交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 6.如图,△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D.已知BD ∶CD =3∶2,点D 到AB 的距离是6,则BC 的长是______ 7.如图所示,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,则△ABC 的面积是. ______

三角形中做辅助线的技巧及典型例题

三 角 形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△ OED ≌△OFD ,从而为我们证明线段、角相等创造了条 件。 例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分 ∠BCD ,点E 在AD 上,求证:BC=AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,D A =D B ,求证D C ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B, AD 平 分∠BAC ,求证:AB-AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的 是截取法 图1-2 D B C 图1-4 A B C

相关主题
文本预览
相关文档 最新文档