角平分线专项练习30题(有答案)ok
- 格式:doc
- 大小:367.00 KB
- 文档页数:20
TQ PN MOED CBA1.4 角平分线 第1课时 角平分线一、选择题1.在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,AB=4,那么D到BC 的距离是〔 〕 A .3 B .4 C .5 D .6〔第1题〕 〔第2题〕2.如图,MP ⊥NP ,MQ 为△NMP 的角平分线,MT =MP ,连结TQ ,那么以下结论不正确的选项是〔 〕〔A 〕TQ =PQ . 〔B 〕∠MQT =∠MQP .〔C 〕∠QTN =90o. 〔D 〕∠NQT =∠MQT . 3.如图,AB =AC ,AE =AD ,那么①△ABD ≌△ACE ;②△BOE ≌△COD ;③O 在∠BAC 的平分线上,以上结论〔 〕〔A 〕都正确. 〔B 〕都不正确. 〔C 〕只有一个正确. 〔D 〕只有一个不正确.〔第3题〕 〔第4题〕4.:如图,△ABC 中,AB =AC ,BD 为∠ABC 的平分线,∠BDC =60o,那么∠A 的度数是〔 〕 〔A 〕10o. 〔B 〕20o. 〔C 〕30o. 〔D 〕40o. 5.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是〔 〕 〔A 〕直角三角形. 〔B 〕等腰三角形. 〔C 〕等边三角形. 〔D 〕等腰直角三角形. 6.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,M 为AD 上任意一点,那么以下结论错误的选项是〔 〕〔A 〕DE =DF . 〔B 〕ME =MF . 〔C 〕AE =AF . 〔D 〕BD =DC .DCBAMF ED CB AFEDCBAFEAFE DCBA7.:如图,BE 、CF 是△ABC 的角平分线,BE 、CF 相交于D ,∠A =50o ,那么∠BDC 的度数是〔 〕 〔第6题〕〔A 〕70o. 〔B 〕120o. 〔C 〕115o. 〔D 〕130o.二、填空题 8.到一个角的两边距离相等的点在 .9.直角三角形中,两锐角的角平分线所成的锐角等于 .10.如以下图,AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC 于E ,且OE=2,那么两平行线间AB 、CD 的距离等于 .11.△ABC 中,AD 是角平分线,AB=5,AC=3,且S △ADC =6,那么S △ABD = .三、解答题12.如图,BD =CD ,BF ⊥AC ,CE ⊥AB .求证:D 在∠BAC 的角平分线上.13.如图,在△ABC 中,∠B =∠C ,点D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E ,F 为垂足,求证:D 在∠BAC 的角平分线上.ONM PC BA ABCDENM E DC BA14.:如图,Rt △ABC 中,∠C =90o,AC =BC ,AD 为∠BAC 的平分线,AE =BC ,DE ⊥AB 垂足为E ,求证△DBE 的周长等于AB .15.如图,PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB .∠MON =50o,∠OPC =30o,求∠PCA 的大小.16.如图,AE 平分∠BAC ,BD =DC ,DE ⊥BC ,EM ⊥AB ,EN ⊥AC .求证:BM =CN .AB C DF NPM17.:如图,PA 、PC 分别是△ABC 外角∠MAC 与∠NCA 的平分线,它们交于P ,PD ⊥BM 于M ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.第1课时 三角形的全等和等腰三角形的性质 一.选择题〔共8小题〕 1.如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,连接AD 、AE ,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A . BD=CEB . AD=AEC . DA=DED . BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A . 80°B . 80°或20°C . 80°或50°D . 20°3.实数x ,y 满足,那么以x ,y 的值为两边长的等腰三角形的周长是〔 〕A . 20或16B . 20C . 16D . 以上答案均不对 4.如图,在△ABC 中,AB=AC ,∠A=40°,BD 为∠ABC 的平分线,那么∠BDC 的度数是〔 〕 A . 60° B . 70° C . 75° D . 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕 A . 8 B . 9 C . 10或12 D . 11或13 6.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.△≌△的条件共有〔〕其中,能使ABC DEFA.1组 B.2组C.3组 D.4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部,那么这个等腰三角形的底边长为〔〕A. 7 B.11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔〕A.60°B.120° C.60°或150° D.60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是_________ .10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD=_________ .第10题第11题第12题第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B=_________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________°.第14题第15题第16题第17题第18题15.如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,那么∠EPF=_________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE 和AB的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。
《12.3 角的平分线的性质》一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)根据角平分线性质推出即可;(2)根据角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】首先根据△ABD的面积计算出DE的长,再根据角平分线上的点到角两边的距离相等可得DE=DF,然后计算出DF的长,再利用三角形的面积公式计算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,根据角平分线性质得出DM=DN ,根据三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再根据BC=BD+DE代入数据进行计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】根据三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的角平分线相交于一点作辅助线并判断出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后根据全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S=AB•DE+BC•DF=90,△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.良好的学习态度能够更好的提高学习能力。
《角平分线》单元测试题(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《角平分线》单元测试题(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《角平分线》单元测试题(带答案)的全部内容。
基本定义从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线(bisectorof angle)。
三角形三个角平分线的交点叫做三角形的内心(中心)。
三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
相关性质1.角平分线上的点,到这个角的两边的距离相等。
2.角平分线分得的两个角相等,都等于该角的一半.3。
三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心,即以此点为圆心可以在三角形内部画一个内切圆。
基本作法在角AOB中,画角平分线方法一:1。
以点O为圆心,以任意长为半径画弧,两弧交角AOB 两边于点M,N。
2。
分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3.作射线OP.则射线OP为角AOB的角平分线.角平分线试题一、填空题(每小题3分,共30分)1.已知:△ABC中,∠B=90°,∠A、∠C的平分线交于点O,则∠AOC的度数为 .2.角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.3.∠AOB的平分线上一点M,M到OA的距离为1。
5 cm,则M到OB的距离为_________。
4.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________. 5.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm。
角平分线模型对应练习1.如图,在ABC 中,ABC ∠的平分线与ACB ∠的外角平分线相交于D 点,50A ∠=,则(D ∠= ) A .1?5B . 25C . 30D . 302.如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是△A 1BD 的角平分线CA 2是△A 1CD 的角平分线,BA 3是A 2BD△的角平分线,CA 3是△A 2CD 的角平分线,若△A 1=α,则△A 2013为( ) A .B .C .D .3.如图,在∆ABC 中,∠A=80︒,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……;∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为() A .54B .58C .516D .5324.如图,已知BD ,CD 分别是ABC ∠和ACE ∠的角平分线,若45A ∠=︒,则D ∠的度数是( ) A .20 B .22.5 C .25 D .305.已知,如图△ABC 中,△A=50°,BE 、CD 分别是△ABC 、△BCE 的角平分线,则△CDE=__°.6.如图,在△ABC 中,△ABC ,△ACB 的角平分线相交于O 点. 如果△A=α,那么△BOC 的度数为____________.7.如图,在△ABC 中,BO 、CO 分别平分△ABC 、△ACB .若△BOC=110°,则△A=_____.8.如图,在△ABC 中,AI 和CI 分别平分△BAC 和△BCA ,如果△B=58°,那么△AIC=____________.9.如图,在△ABC 中,△B =42°,△ABC 的外角△DAC 和△ACF 的平分线交于点E ,则△AEC =____________.10.如图,在ABC 中,B ∠,C ∠的外角平分线相交于点O ,若74A ∠=,则O ∠=________度.11.如图,ABC 中,100A ∠=,BI 、CI 分别平分ABC ∠,ACB ∠,则BIC ∠=________,若BM 、CM 分别平分ABC ∠,ACB ∠的外角平分线,则M ∠=________.12.如图,ABC 中,30B ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则AEC ∠的度数为________.13.已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”. 在图2中,△DAB 和△BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .若△DAO=50°,△OCB=40°,△P=35°,△D = _________参考答案1.B【解析】【分析】根据角平分线的定义和三角形的外角的性质即可得到△D=12△A.【详解】解:△△ABC的平分线与△ACB的外角平分线相交于D点,△1=12△ACE,△2=12△ABC,又△D=△1-△2,△A=△ACE-△ABC,△△D=12△A=25°.故选B【点睛】此题综合考查了三角形的外角的性质以及角平分线定义,熟练掌握这些知识是解答此题的关键.2.D【详解】试题分析:根据角平分线的定义可得△A1BC=△ABC,△A1CD=△ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得△ACD=△A+△ABC,△A1CD=△A1BC+△A1,整理即可得解,同理求出△A2,可以发现后一个角等于前一个角的,根据此规律即可得解.解:△A1B是△ABC的平分线,A1C是△ACD的平分线,△△A1BC=△ABC,△A1CD=△ACD,又△△ACD=△A+△ABC,△A1CD=△A1BC+△A1,△(△A+△ABC)=△ABC+△A1,△△A1=△A,△△A1=α.同理理可得△A2=△A1=α则△A 2013=.故选D .点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键. 3.C 【详解】△△ABC 与△ACD 的平分线交于点A 1, △△A 1BC=12△ABC ,△A 1CD=12△ACD , 由三角形的外角性质,△ACD=△A+△ABC , △A 1CD=△A 1+△A 1BC ,△12(△A+△ABC )=△A 1+△A 1BC=△A 1+12△ABC , 整理得,△A 1=12△A=12×80°=40°,同理可得△A 2=12△A 1=12×40°=20°;……其规律为:△A n =(12)n △A=(802n )o . 当n=8时,∠A 8=(12)3△A=(8802)o =(516)o .故选C. 【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定义并求出后一个角是前一个角的12是解题的关键. 4.B 【分析】由外角关系与角平分线定义得2321A ∠=∠+∠和31D ∠=∠+∠可推出2A D ∠=∠即可. 【详解】解:1∠,2∠,3∠,4∠如图所示,△BD 是ABC ∠的角平分线, △12∠=∠,△CD 是ACE ∠的角平分线, △ 34∠=∠,△ 3412A ∠+∠=∠+∠+∠,31D ∠=∠+∠, △ 2321A ∠=∠+∠,23212D ∠=∠+∠, △ 2A D ∠=∠, △ 45A ∠=, △ 14522.52D ∠=⨯=. 故选择:B . 【点睛】本题考查角平分线的定义,三角形的外角的性质,掌握角平分线的定义,三角形的外角的性质,会利用外角构造等式解决问题是关键. 5.65 【解析】试题分析:根据三角形内角和定理可得:△ABC+△ACB=180°-50°=130°,根据角平分线的性质可得:△DBC+△DCB=130°÷2=65°,则根据三角形的外角的性质可得:△CDE=△DBC+△DCB=65°. 6.90°+12α 【解析】△△ABC 、△ACB 的角平分线相交于点O ,△△OBC=12△ABC ,△OCB=12△ACB , △△OBC+△OCB=12(△ABC+△ACB)=12(180°-△A)=90°-12△A ,△在△OBC 中,△BOC=180°-△OBC -△OCB ,△△BOC=180°-(90°-12△A)=90°+12△A=90°+12.7.40°【分析】先根据角平分线的定义得到△OBC=12△ABC,△OCB=12△ACB,再根据三角形内角和定理得△BOC+△OBC+△OCB=180°,则△BOC=180°﹣12(△ABC+△ACB),由于△ABC+△ACB=180°﹣△A,所以△BOC=90°+12△A,然后把△BOC=110°代入计算可得到△A的度数.【详解】解:△BO、CO分别平分△ABC、△ACB,△△OBC=12△ABC,△OCB=12△ACB,而△BOC+△OBC+△OCB=180°,△△BOC=180°﹣(△OBC+△OCB)=180°﹣12(△ABC+△ACB),△△A+△ABC+△ACB=180°,△△ABC+△ACB=180°﹣△A,△△BOC=180°﹣12(180°﹣△A)=90°+12△A,而△BOC=110°,△90°+12△A=110°△△A=40°.故答案为40°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.8.119°【详解】试题分析:根据△B=58°以及△ABC的内角和定理可得△BAC+△BCA=180°-58°=122°,根据角平分线的性质可得:△IAC+△ICA=122°÷2=61°,则根据△IAC的内角和定理可得:△AIC=180°-61°=119°.考点:(1)、角平分线的性质;(2)、三角形内角和定理9.69°.【解析】试题分析:△AEC=180°-△EAC-△ECA,因为△ABC的外角△DAC和△ACF的平分线交于点E,所以△EAC=12△DAC,△ECA=12△ACF,所以△AEC=180°-12△DAC-12△ACF=12(360°-△DAC-△ACF)=12(180°-△DAC+180°-△ACF)=12(△BAC+△ACB)=12(180°-△B)=69°.10.53【解析】【分析】根据三角形的内角和定理,得△ACB+△ABC=180°-74°=106°;再根据邻补角的定义,得两个角的邻补角的和是360°-106°=254°;再根据角平分线的定义,得△OCB+△OBC=127°;最后根据三角形的内角和定理,得△O=53°.【详解】解:△△A=74°,△△ACB+△ABC=180°-74°=106°,△△BOC=180°-12(360°-106°)=180°-127°=53°.故答案为53【点睛】此题综合运用了三角形的内角和定理以及角平分线定义.注意此题中可以总结结论:三角形的相邻两个外角的角平分线所成的锐角等于90°减去第三个内角的一半,即△BOC=90°-1 2△A.11.14040【解析】【分析】首先根据三角形内角和求出△ABC+△ACB的度数,再根据角平分线的性质得到△IBC=1 2△ABC,△ICB=12△ACB,求出△IBC+△ICB的度数,再次根据三角形内角和求出△I的度数即可;根据△ABC +△ACB 的度数,算出△DBC +△ECB 的度数,然后再利用角平分线的性质得到△1=12△DBC ,△2=12ECB ,可得到△1+△2的度数,最后再利用三角形内角和定理计算出△M 的度数. 【详解】 △△A =100°.△△ABC +△ACB =180°﹣100°=80°. △BI 、CI 分别平分△ABC ,△ACB ,△△IBC =12△ABC ,△ICB =12△ACB ,△△IBC +△ICB =12△ABC +12△ACB =12(△ABC +△ACB )=12×80°=40°,△△I =180°﹣(△IBC +△ICB )=180°﹣40°=140°;△△ABC +△ACB =80°,△△DBC +△ECB =180°﹣△ABC +180°﹣△ACB =360°﹣(△ABC +△ACB )=360°﹣80°=280°.△BM 、CM 分别平分△ABC ,△ACB 的外角平分线,△△1=12△DBC ,△2=12ECB ,△△1+△2=12×280°=140°,△△M =180°﹣△1﹣△2=40°. 故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出△ABC +△ACB 的度数. 12.75︒ 【分析】本题先通过三角形内角和求解△BAC 与△BCA 的和,继而利用邻补角以及角分线定义求解△EAC 与△ECA 的和,最后利用三角形内角和求解此题. 【详解】 △30B ∠=︒,△+150BAC BCA ∠∠=︒,又△180BAC DAC ︒∠=-∠,=180BCA FCA ∠-∠︒, △210DAC FCA ∠+∠=︒.△三角形的外角DAC ∠和ACF ∠的平分线交于点E , △12EAC DAC ∠=∠,12ECA ACF ∠=∠, △+105EAC ECA ∠∠=︒, 即18010575AEC ∠=︒-︒=︒. 故填:75︒. 【点睛】本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可. 13.30° 【解析】△△DAB 和△BCD 的平分线AP 和CP 相交于点P ,△DAO=50°,△OCB=40°, △△DAP=△PAB=25°,△DCP=△PCB=20°,在△DAM 和△PCM 中,根据三角形的内角和定理可得△DAM+△D=△DCP+△P ,即可求得△D=30°.点睛:本题考查了三角形内角和定理,角平分线的定义,对顶角相等的性质,整体思想的利用是解题的关键.。
1.4 角平分线同步培优练习题一.选择题(共10小题)1.如图,已知点O为△ABC的两条角平分线的交点,过点O作OD⊥BC,垂足为D,且OD=4.若△ABC的面积是34,则△ABC的周长为()A.8.5B.15C.17D.342.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2B.2.5C.3D.43.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P 到直线AC的距离为4,则点P到直线AB的距离为()A.4B.3C.2D.14.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,AB=20,CD=6,若∠C=90°,则△ABD面积是()A.120B.80C.60D.405.如图,BP为∠ABC的平分线,过点D作BC、BA的垂线,垂足分别为E、F,则下列结论中错误的是()A.∠DBE=∠DBF B.DE=DF C.2DF=DB D.∠BDE=∠BDF 6.如图,PM=PN,∠BOC=30°,则∠AOB的度数()A.30°B.45°C.60°D.50°7.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为()A.2B.3C.4D.无法确定8.在△ABC内部取一点P,使得点P到△ABC的三边距离相等,则点P是△ABC的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三边的垂直平分线的交点9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC 的面积是()A.3B.4C.5D.610.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共5小题)11.如图,点O在△ABC内部,且到三边的距离相等.若∠BOC=130°,则∠A=.12.如图,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,若△ABC的面积是30,则OD=.13.如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为.14.如图,AB∥CD,点P到AB,BC,CD距离都相等,则∠P=度.15.如图,在△ABC中,∠C=90°,AB=10,AC=6,角平分线AE与BF相交于点O,则点O到斜边AB的距离为.三.解答题(共7小题)16.在△ABC中,已知∠A=90°,AB=AC,BD平分∠ABC,DE⊥BC于E,请解答下列问题:(1)若AD=2cm,则D点到BC边的距离是.(2)若BC=7cm,则△CDE的周长为.(3)连接AE,试判断线段AE与BD的位置关系,并说明理由.17.已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.18.在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求点D到AB的距离.19.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.20.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.21.在四边形ABCD中,CE平分∠BCD交AD于点E,点F在线段CE上运动.(1)如图1,已知∠A=∠D=90°①若BF平分∠ABC,则∠BFC=°②若∠BFC=90°,试说明∠DEC=∠ABC;(2)如图2,已知∠A=∠D=∠BFC,试说明BF平分∠ABC.22.证明命题“角平分线上的点到角两边的距离相等”,要根据题意,画出图形,并用符号表示已知求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.(1)已知:如图,OC是∠AOB的角平分线,点P在OC上,,.求证:.(请你补全已知和求证)(2)写出证明过程.参考答案一.选择题(共10小题)1.【分析】根据角平分线的性质得到点O到△ABC各边的距离为4,利用三角形面积公式得到×AB×4+×AC×4+×BC×4=34,然后计算出AB+AC+BC即可.【解答】解:∵点O为△ABC的两条角平分线的交点,∴点O到△ABC各边的距离相等,而OD⊥BC,OD=4,∴点O到△ABC各边的距离为4,∵S△ABC=S△AOB+S△BOC+S△AOC,∴×AB×4+×AC×4+×BC×4=34,∴AB+AC+BC=17,即△ABC的周长为17.故选:C.2.【分析】作DE⊥AB于E,如图,先根据勾股定理计算出BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用面积法得到10x=6(8﹣x),然后解方程即可.【解答】解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故选:C.3.【分析】过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,然后根据角平分线上的点到角的两边的距离相等即可得解.【解答】解:如图,过点P作PF⊥AC于F,作PG⊥BC于G,PH⊥AB于H,∵BD、CE是△ABC的外角平分线,∴PF=PG,PG=PH,∴PF=PG=PH,∵点P到AC的距离为4,∴PH=4,即点P到AB的距离为4.故选:A.4.【分析】根据角平分线的性质得出DE=CD=6,进而利用三角形的面积公式解答即可.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=6,∴△ABD面积=,故选:C.5.【分析】根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【解答】解:∵BP为∠ABC的平分线,DE⊥AC,DF⊥AB,∴DE=DF,B正确,不符合题意;在Rt△DBE和Rt△DBF中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D正确,不符合题意,2DF不一定等于DB,C错误,符合题意,故选:C.6.【分析】由角平分线性质定理的逆定理和角的和差直接求出∠AOB的度数为60°.【解答】解:如图所示:∵点P在∠AOB的内部,PM⊥AO,PN⊥OB,PM=PN,∴点P在∠AOB的角平分线上,∴OC平分∠AOB,∵∠BOC=30°,∴∠AOB=60°,故选:C.7.【分析】当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.再根据角平分线的性质定理可得DP=CD解决问题;【解答】解:当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.由作图可知:AE平分∠BAC,∵DC⊥AC,DP⊥AB,∴DP=CD=2,∴PD的最小值为2,故选:A.8.【分析】根据角平分线的性质解答.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴点P到△ABC的三边距离相等,则点P是△ABC的三条角平分线的交点,故选:B.9.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.∴S△ACD=AC•DF=×3×2=3,故选:A.10.【分析】如图作,PM⊥BC于M,PN⊥BA于N.利用角平分线的判定定理和性质定理可得PB是∠ABC的平分线,由△P AN≌△P AH,△PCM≌△PCH,推出∠APN=∠APH,∠CPM=∠CPH,由∠MPN=180°﹣∠ABC=120°,推出∠APC=∠MPN=60°,由∠BPN=∠CP A=60°,推出∠CPB=∠APN=∠APH即可一一判断.【解答】解:如图作,PM⊥BC于M,PN⊥BA于N.∵∠P AH=∠P AN,PN⊥AD,PH⊥AC,∴PN=PH,同理PM=PH,∴PN=PM,∴PB平分∠ABC,∴∠ABP=∠ABC=30°,故①正确,∵在Rt△P AH和Rt△P AN中,,∴△P AN≌△P AH,同理可证,△PCM≌△PCH,∴∠APN=∠APH,∠CPM=∠CPH,∵∠MPN=180°﹣∠ABC=120°,∴∠APC=∠MPN=60°,故②正确,在Rt△PBN中,∵∠PBN=30°,∴PB=2PN=2PH,故③正确,∵∠BPN=∠CP A=60°,∴∠CPB=∠APN=∠APH,故④正确.二.填空题(共5小题)11.【分析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A.【解答】解:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×(180°﹣∠BOC)=180°﹣2×(180°﹣130°)=80°,故答案为:80°.12.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD,∵△ABC的周长是20,OD⊥BC于D,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×OD=×20×OD=30,解得:OD=3,故答案为:313.【分析】过P作PE⊥OB,根据角平分线的定义和平行线的性质易证得△PCE是等腰直角三角形,得出PE=3,根据角平分线的性质即可证得PD=PE=3.【解答】解:过P作PE⊥OB,∵∠AOP=∠BOP,∠AOB=45°,∴∠AOP=∠BOP=22.5°,∵PC∥OA,∴∠OPC=∠AOP=22.5°,∴∠PCE=45°,∴△PCE是等腰直角三角形,∴PE=PC=×6=3,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE=3,故答案为3.14.【分析】根据到角的两边距离相等的点在角的平分线上可得BP、CP分别是∠ABC和∠BCD的平分线,再根据两直线平行,同旁内角互补和角平分线的定义解答即可.【解答】解:∵点P到AB、BC、CD距离都相等,∴BP、CP分别是∠ABC和∠BCD的平分线,∴∠CBP=∠ABC,∠BCP=∠BCD,∴∠CBP+∠BCP=(∠ABC+∠BCD),∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠CBP+∠BCP=×180°=90°,∴∠P=180°﹣(∠CBP+∠BCP)=180°﹣90°=90°.故答案为:9015.【分析】利用勾股定理列式求出BC,根据角平分线上的点到角的两边距离相等可得点O 到△ABC三边的距离相等,设为h,再利用△ABC的面积列出方程求解即可.【解答】解:∵∠C=90°,AB=10,AC=6,∴BC===8,∵角平分线AE与BF相交于点O,∴点O到△ABC三边的距离相等,设为h,则S△ABC=(10+6+8)h=×6×8,解得h=2,即点O到斜边AB的距离为2.故答案为:2.三.解答题(共7小题)16.【分析】(1)根据角平分线的性质定理解答;(2)证明△ABD≌△EBD,得到BA=BE,根据三角形的周长公式计算即可;(3)根据线段垂直平分线的判定定理解答.【解答】解:(1)∵BD平分∠ABC,DE⊥BC,∠A=90°,∴DE=AD=2cm,故答案为:2cm;(2)在△ABD和△EBD中,,∴△ABD≌△EBD,∴BA=BE,△CDE的周长=CD+CE+DE=CD+AD+CE=AC+CE=AB+CE=BE+CE=BC=7cm,故答案为:7cm;(3)∵DA=DE,BA=BE,∴BD⊥AE.17.【分析】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.18.【分析】先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.【解答】解:过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.19.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.20.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.21.【分析】(1)①先根据∠A+∠D=180°得AB∥CD,可得∠ABC+∠BCD=180°,根据角平分线和三角形的内角和可得结论;②先根据同角的余角可得:∠CBF=∠DEC,由①知:AB∥CD,可得结论;(2)如图2,延长BF交于点M,根据四边形的内角和定理和邻补角的性质可得∠DCF =∠EMF,根据三角形的内角和定理得∠FEM=∠CBF,同理得∠FEM=∠ABF,从而得结论.【解答】解:(1)①∵∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CE平分∠BCD,BF平分∠ABC,∴∠CBF=,∠BCF=,∴∠CBF+∠BCF==90°,∴∠BFC=90°;故答案为:90②∵∠BFC=90°,∴∠CBF+∠BCF=90°,∵∠D=90°,∴∠DCE+∠DEC=90°,∵CE平分∠BCD,∴∠DCE=∠BCF,∴∠CBF=∠DEC,由①知:AB∥CD,∴∠ABC+∠BCD=180°,∴∠CBF=∠ABC,∴∠DEC=∠ABC;(2)如图2,延长BF交于点M,∵∠BFC=∠D,∠BFC+∠CFM=180°,∴∠CFM+∠D=180°,∴∠FMD+∠DCF=180°,∵∠FMD+∠EMF=180°,∴∠DCF=∠EMF,∵CE平分∠BCD,∴∠DCF=∠BCF,∴∠BCF=∠EMF,∵∠EFM=∠BFC,∴∠FEM=∠CBF,∵∠CFB=∠A,同理得∠FEM=∠ABF,∴∠ABF=∠CBF∴BF平分∠ABC.22.【分析】(1)根据题意、结合图形写出已知和求证;(2)证明△OPD≌△OPE,根据全等三角形的性质证明结论.【解答】解:(1)已知:如图,OC是∠AOB的角平分线,点P在OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE,故答案为:PD⊥OA于D;PE⊥OB于E;PD=PE;(2)证明:在△OPD和△OPE中,,∴△OPD≌△OPE(AAS)∴PD=PE.。
角的平分线问题专项训练(30道)【题型1 单角平分线型】1.如图,已知∠AOB=90°,∠BOC=60°,OD平分∠AOC.求∠BOD的度数.2.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=17°,求∠AOC 的度数.∠EOC,若∠DOE=3.如图,OB,OE是∠AOC内的两条射线,OD平分∠AOB,∠BOE=1255°,∠AOC=140°,求∠EOC的度数.4.如图,O是直线AB上的一点,∠AOE=∠FOD=90°,OB平分∠COD,且∠BOC=28°.(1)求∠DOE和∠BOF的度数;(2)求∠COE+∠DOE的度数.5.如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数;∠DOB,求∠AOC的度数.(2)如图2,若∠COE=136.如图,已知∠AOB﹣∠COD=60°,OB是∠DOE的平分线.设∠AOC的度数为x,(1)用含x的式子表示∠BOD的度数;(2)若∠DOE+∠AOC=97°16',求∠AOC的度数.7.如图,点A、O、C在一直线上,OE是∠BOC的平分线,∠EOF=90°,∠1比∠2大75°.(1)求∠2的度数.(2)求∠COF的度数.8.如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC;(填“互余”“相等”“互补”或“没有特殊关系”)(2)OF是∠BOC的平分线吗?为什么?(3)反向延长射线OA至G,∠COG与∠FOG的度数比为2:5,求∠AOD的度数.9.已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=10°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数;(3)试猜想∠AOM与∠NOC之间的数量关系,并说明理由.10.如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON 的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.【题型2 双角平分线(不交叉型)】11.如图,∠AOC:∠COD:∠DOB=3:4:5,OM平分∠AOC,ON平分∠DOB,且∠MON =96°,求∠AOB的度数.12.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=70°,求∠COD和∠EOC的度数;(2)写出∠COD与∠EOC具有的数量关系并说明理由.13.如图,已知∠AOD=156°,∠DON=48°,射线OB,OM,ON在∠AOD内部,OM平分∠AOB,ON平分∠BOD.(1)求∠MON的度数;(2)若射线OC在∠AOD内部,∠NOC=23°,求∠COM的度数.14.已知:OC,OD是∠AOB内部的射线,OE平分∠AOC,OF平分∠BOD.(1)若∠AOB=120°,∠COD=30°,如图∠,求∠EOF的度数;(2)若∠AOB=α,∠COD=β,如图∠,如图∠,请直接用含α、β的式子表示∠EOF的大小;图∠结论:;图∠结论:.15.已知OD、OE分别是∠AOB、∠AOC的角平分线.(1)如图1,OC是∠AOB外部的一条射线.∠若∠AOC=32°,∠BOC=126°,则∠DOE=°;∠若∠BOC=164°,求∠DOE的度数;(2)如图2,OC是∠AOB内部的一条射线,∠BOC=n°,用n的代数式表示∠DOE的度数.16.如图,已知∠AOB内部有三条射线,若OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=100°,求∠EOC的度数;(2)若∠AOB=70°,如果将题中“平分”的条件改为∠EOA=14∠AOD,∠DOC=23∠DOB且∠DOE:∠DOC=3:2,求∠EOC的度数.17.已知:OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON 的度数为.(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM 的度数(用m的式子表示);(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.18.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.19.将一副三角尺OAB与OCD进行如下按摆放,其中两三角尺的一顶点重合于点O,∠AOB =60°,∠COD=45°,OM平分∠AOD,ON平分∠COB.(1)当点D在OB边上时(如图1),求∠MON的度数;(2)当点D不在OB边上时(如图2或3),其中∠BOD=a,求∠MON的度数.20.已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【题型3 双角平分线(交叉型)】21.如图,O为直线AB上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,若∠BOC=54°,求∠COE和∠DOF的度数.22.如图,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)若∠AOB=100°,∠BOC=60°,求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).23.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,求∠MON的度数.(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=°.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?请说明理由.24.如图,∠AOC=5∠BOC,OD平分∠AOB,OE平分∠AOD,且∠COE=70°.(1)求∠AOB的度数;(2)若∠BOD+∠BOF=90°,求∠BOF的度数.25.如图,已知∠AOB是直角,∠BOC在∠AOB的外部,且OF平分∠BOC,OE平分∠AOC.(1)当∠BOC=60°时,求∠EOF的度数;(2)当∠BOE=20°,求∠BOC的度数.26.已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE.(1)如图1,若OC平分∠AOD,且∠BOE=3∠DOE,∠COE=70°,求∠BOE的度数.(2)如图2,若∠BOD:∠COD=3:2,过点O引射线OF平分∠COD,OE是∠BOC的平分线,且∠DOE=12°,求∠EOF的度数.27.已知:如图∠所示,OC是∠AOB内部一条射线,且OE平分∠AOC,OF平分∠BOC.(1)若∠AOC=80°,∠BOC=50°,则∠EOF的度数是.(2)若∠AOC=α,∠BOC=β,求∠EOF的度数,并根据计算结果直接写出∠EOF与∠AOB 之间的数量关系.(写出计算过程)(3)如图∠所示,射线OC在∠AOB的外部,且OE平分∠AOC,OF平分∠BOC.试着探究∠EOF与∠AOB之间的数量关系.(写出详细推理过程)28.如图,已知O为直线AD上一点,OB是∠AOC内部的一条射线且满足∠AOB与∠AOC 互补,OM,ON分别为∠AOC,∠AOB的平分线.(1)∠COD与∠AOB相等吗?请说明理由;(2)∠AOB=30°,试求∠MON的度数;(3)若∠MON=α,请直接写出∠AOC的度数.(用含α的式子表示)29.如图,已知∠AOB=58°,∠AOC在∠AOB外部,ON、OM分别平分∠AOC、∠BOC.(1)若∠AOC=32°,则∠MON=;(2)若∠AOC=n°(0<n<90°),ON、OM依旧分别平分∠AOC、∠BOC,∠MON的大小是否改变?;(3)试说明(2)的结论的理由.30.已知∠AOD=160°,OB为∠AOD内部的一条射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,∠MON的度数为;(2)如图2,∠BOC在∠AOD内部(∠AOC>∠AOB),且∠BOC=20°,OF平分∠AOC,OG平分∠BOD(射线OG在射线OC左侧),求∠FOG的度数;(3)在(2)的条件下,∠BOC绕点O运动过程中,若∠BOF=8°,求∠GOC的度数.。
角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
角平分线练习题一.选择题(共22 小题)1.如图,已知BG 是∠ABC 的平分线,DE⊥AB于点E,DF⊥BC 于点F,DE=6 ,A.2 B.3 C. 4 D.62.如图,∠B=∠C=90 °,M是BC的中点,DM 平分∠ADC ,且∠ADC=110 °,则∠MAB= ()A.30° B .35° C.45° D.60°3.观察图中尺规作图痕迹,下列说法错误的是()A.OE 是∠AOB 的平分线B.OC=ODC.点C、D 到OE 的距离不相等D.∠AOE= ∠BOE A.OE 是∠AOB 的平分线B.OC=OD4.如图,OP 是∠AOC 的平分线,点 B 在OP 上,BD ⊥OC 于D,∠A=45 °,若BD=2 ,则AB 长为()A.2 B.2 C. 2 D.35.如图,在△ABC 中,∠C=90 °,AD是∠BAC 的角平分线,若CD=2 ,AB=8 ,则△ABD 的面积是()A.6 B.8 C.10 D.126.如图,Rt△ABC 中,∠C=90°,AD 是∠BAC 的平分线,CD=3,AB=10 ,则△ABD 的面积等于()A.30 B.24 C.15 D.107.如图,Rt△ABC 中,∠C=90 °,AD 平分∠BAC,交BC 于点D,AB=10 ,S△ABD=15 ,则CD 的长为()A .3B .4C . 5D .6 8.如图,BP 为∠ABC 的平分线,过点 D 作 BC 、BA 的垂线,垂足分别为E 、F ,则下列结论中错误的是( )A .∠DBE= ∠DBFB .DE=DFC .2DF=DBD .∠BDE= ∠BDF9.如图,OA 是∠BAC 的平分线,OM ⊥AC 于点 M ,ON ⊥AB 于点 N ,若 ON=8cm ,则 OM 长为( )10 .在正方形网格中, ∠AOB 的位置如图所示, 到∠AOB 两边距离相等的点应是A .M 点B .N 点C .P 点D .Q 点11 .如图,直线 l 、 l ′、l ″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(A . 4cmB .5cmC .8cmD .20cmA.一处B.二处C.三处D.四处12.如图,在Rt△ABC 中,∠C=90 °,AD 平分∠BAC,交BC 于D,若CD= BD,点 D 到边AB 的距离为 6 ,则BC 的长是()A.6 B.12 C.18 D.24 13.如图,在△ABC 中,∠C=90 °,AD 平分∠BAC ,DE ⊥AB 于E,有下列结论:① CD=ED ;② AC+BE=AB ;③∠BDE= ∠BAC ;④ AD 平分∠CDE ;其中正确的是()个.A.1 B.2 C. 3 D.414 .三条公路将A、B、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点15.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE ,则△APD 与△APE 全等的理由是(A.SAS B.AAA C.SSS D.HL 16.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm ,CD=3cm ,则点D到AB 的距离是()A.2cm B.3cm C.4cm D.5cm17.如图,OC 是∠AOB 的平分线,PD⊥DA 于点D,PD=2 ,则P 点到OB 的距A.1 B.2 C. 3 D.418.如图,点E是BC 的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90 °②∠ADE= ∠CDE ③DE=BE ④AD=AB+CD ,四个结论中成立的是A.①②④ B.①②③ C.②③④ D.①③ 19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三条角平分线的交点C.△ABC 三条高所在直线的交点D.△ABC 三边的中垂线的交点20.如图,在△ABC 中,∠C=90 °,AD 平分∠BAC ,DE ⊥AB 于E,则下列结论:①AD 平分∠CDE;②∠BAC=∠BDE;③DE 平分∠ADB ;④BE+AC=AB ,其中正A.2个B.3个C.4个D.1 个21.如图,Rt△ABC 中,∠C=90 °,BD平分∠ABC 交AC 于点D,AB=12 ,CD=3 ,则△DAB 的面积为()A.12 B.18 C.20 D.24 22.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E,S△ABC =10,DE=2 ,AB=4 ,则AC 长是()A.9 B.8 C.7 D.6.填空题(共13 小题)23 .如图,BD 平分∠ABC 交AC 于点D,DE⊥BC 于点E,若AB=5,BC=6 ,S△ABC=9,则DE 的长为.24.如图,OC 为∠AOB 的平分线,CM⊥OB,OC=5 ,OM=4 ,则点 C 到射线25.如图,已知△ABC 的周长是32 ,OB ,OC 分别平分∠ABC 和∠ACB ,OD⊥BC 于D,且OD=6 ,△ABC 的面积是.26.如图,已知△ABC 的周长是21 ,OB ,OC 分别平分∠ABC 和∠ACB ,OD⊥BC 于D,且OD=4 ,△ABC 的面积是27.如图,在△ABC 中,∠ACB=90 °,AD 是△ABC 的角平分线,BC=10cm ,BD:DC=3 :2,则点D到AB的距∠C=90 °,AD 是∠BAC 的平分线,CD=16 ,则 D 到AB 边的距离29.如图,在△ABC 中,∠BAC=60 °,AD 平分∠BAC ,若AD=6,DE⊥AB,则DE 的长为30 .如图,直线a、b、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.31.如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60 °,则∠BOC=∠B=90 °,CD是∠ACD 的平分线,若BD=2 ,AC=8 ,则△ACD 的面积33.如图,已知BD⊥AE 于点B,DC⊥AF 于点C,且DB=DC ,∠BAC=40 °,∠ADG=130 °,则∠DGF= .34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果⋯,那么⋯、的形式:如果,那么.35.已知Rt△ABC 中,∠C=90 °,AD 平分∠BAC 交BC 于点D,若BC=32 ,且BD:CD=9:7,则D到AB的距离为.三.解答题(共 5 小题)36.如图,DE⊥AB于E,DF⊥AC 于F,若BD=CD 、BE=CF .(1)求证:AD 平分∠BAC ;(2)直接写出AB+AC 与AE 之间的等量关系.37 .如图已知:E 是∠AOB 的平分线上一点,EC ⊥OA,ED⊥OB ,垂足分别为C、D.求证:(1)∠ECD= ∠EDC;(2)OE 是CD 的垂直平分线.38.如图,四边形ABCD 中,AC 为∠BAD 的角平分线,AB=AD,E、F 两点分别在AB、AD 上,且AE=DF .请完整说明为何四边形AECF 的面积为四边形ABCD 的一半.39.△ABC 中,∠ABC 与∠ACB 的平分线交于点O,过点O 作一直线交AB、AC 于E、F.且BE=EO .(1)说明OF 与CF 的大小关系;(2)若BC=12cm ,点O 到AB 的距离为4cm ,求△OBC 的面积.40.如图,在△ABC 中,∠C=90 °,AD 平分∠CAB ,交CB 于点D,过点 D 作DE ⊥AB 于点E.(1)求证:AC=AE ;(2)若点E为AB 的中点,CD=4 ,求BE的长.2018 年 09 月 23 日 tcq372 的初中数学组卷参考答案与试题解析一.选择题(共22 小题)1.如图,已知BG 是∠ABC 的平分线,DE⊥AB于点E,DF⊥BC 于点F,DE=6 ,A.2 B.3 C.4 D.6【解答】解:∵BG 是∠ABC 的平分线,DE ⊥AB ,DF⊥BC ,∴DE=DF=6 ,故选:D.2.如图,∠B=∠C=90 °,M是BC的中点,DM 平分∠ADC,且∠ADC=110 °,则∠A.30° B .35° C.45° D.60【解答】解:作MN ⊥AD 于N,∵∠B=∠C=90 °,∴AB∥CD,∴∠DAB=180 °﹣A∠DC=70 °,∵DM 平分∠ADC ,MN⊥AD,MC⊥CD,∴MN=MC ,∵M 是BC 的中点,∴MC=MB ,∴MN=MB ,又MN ⊥AD,MB⊥AB,∴∠MAB= ∠DAB=35 °,故选: B .3.观察图中尺规作图痕迹,下列说法错误的是()A.OE 是∠AOB 的平分线B.OC=ODC.点C、D 到OE 的距离不相等D.∠AOE= ∠BOE解答】解:根据尺规作图的画法可知:OE 是∠AOB 的角平分线.A、OE 是∠AOB 的平分线, A 正确;B、OC=OD ,B 正确;C、点C、D 到OE 的距离相等, C 不正确;D、∠AOE= ∠BOE,D 正确.故选:C.4.如图,OP 是∠AOC 的平分线,点 B 在OP 上,BD ⊥OC 于D,∠A=45 °,若BD=2 ,则AB 长为()A.2 B.2 C. 2 D.3【解答】解:如图,过 B 点作BE⊥OA 于E,∵OP 是∠AOC 的平分线,点 B 在OP 上,BD⊥OC 于D,BD=2 ,∴BE=BD=2 ,在直角△ABE 中,∵∠AEB=90 °,∠A=45 °,∴AB= BE=2 .故选:C.5.如图,在△ABC 中,∠C=90 °,AD是∠BAC 的角平分线,若CD=2 ,AB=8 ,则△ABD 的面积是()A.6 B.8 C.10 D.12【解答】解:如图,过点 D 作DE⊥AB 于E,∵AB=8 ,CD=2 ,∵AD 是∠BAC 的角平分线,∠C=90 °,∴DE=CD=2 ,∴△ABD 的面积= AB?DE= ×8×2=8.故选: B .6.如图,Rt△ABC 中,∠C=90°,AD 是∠BAC 的平分线,CD=3,AB=10 ,则△ABD 的面积等于()A.30 B.24 C.15 D.10【解答】解:如图,过 D 作DE⊥AB 于E,∵AD 平分∠BAC,∠C=90 °,∴DE=DC=3 ,∵AB=10 ,∴△ABD 的面积= AB?DE= ×10 ×3=15 .故选:C.7.如图,Rt△ABC 中,∠C=90 °,AD 平分∠BAC,交BC 于点D,AB=10 ,S△ABD=15 ,则CD 的长为()A.3 B.4 C. 5 D.6【解答】解:如图,过点 D 作DE⊥AB 于E,∵∠C=90 °,AD 平分∠BAC ,∴DE=CD ,∴S△ABD = AB?DE= ×10?DE=15 ,解得DE=3 .故选: A .8.如图,BP 为∠ABC 的平分线,过点 D 作BC、BA 的垂线,垂足分别为E、F,则下列结论中错误的是()A.∠DBE= ∠DBF B.DE=DF C .2DF=DB D.∠BDE= ∠BDF 【解答】解:∵BP 为∠ABC 的平分线,DE⊥AC ,DF⊥AB,∴DE=DF , B 正确,不符合题意;在Rt △DBE 和Rt △DBF 中,,∴Rt△DBE≌Rt△DBF,∴∠DBE=∠DBF,∠BDE=∠BDF,A、D 正确,不符合题意,2DF 不一定等于DB,C 错误,符合题意,故选:C.9.如图,OA 是∠BAC 的平分线,OM⊥AC 于点M,ON⊥AB 于点N,若ON=8cm ,则OM 长为()A.4cm B.5cm C.8cm D.20cm解答】解:∵OA 是∠BAC 的平分线,OM⊥AC,ON ⊥AB ,∴OM=ON=8cm ,故选:C.10 .在正方形网格中,∠AOB 的位置如图所示,到∠AOB 两边距离相等的点应是()A.M点B.N 点C.P点D.Q 点【解答】解:从图上可以看出点M 在∠AOB 的平分线上,其它三点不在∠ AOB的平分线上.所以点M到∠AOB 两边的距离相等.故选A.11 .如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(解答】解:如图所示,加油站站的地址有四处.C.三处D.四处12.如图,在Rt △ABC 中,∠C=90 °,AD 平分∠BAC ,交BC 于D ,若CD= BD ,点 D 到边 AB 的距离为 6 ,则 BC 的长是(【解答】 解:过D 作 DE ⊥AB 于E ,∵点D 到边 AB 的距离为 6,∴DE=6,∵∠C=90 °, AD 平分∠BAC ,DE ⊥AB ,∴CD=DE=6 ,∵CD= DB ,∴DB=12 ,∴BC=6+12=18 , 故选: C.D .2413.如图,在△ABC 中,∠C=90 °,AD 平分∠BAC ,DE ⊥AB 于E,有下列结论:① CD=ED ;② AC+BE=AB ;③∠BDE= ∠BAC ;④ AD 平分∠CDE ;A.1 B.2 C. 3 D.4【解答】解:∵∠C=90 °,AD 平分∠BAC ,DE ⊥AB,∴CD=DE ,故①正确;在Rt △ACD 和Rt △AED 中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE ,∠ADC= ∠ADE,∴AC+BE=AE+BE=AB ,故②正确;AD 平分∠CDE ,故④正确;∵∠B+ ∠BAC=90 °,∠B+ ∠BDE=90 °,∴∠BDE= ∠BAC ,故③正确;综上所述,结论正确的是①②③④共4 个.解答】 解:∵PD ⊥AB ,PE ⊥AC , 故选: D .14 .三条公路将 A 、B 、C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场, 要使集贸市场到三条公路的距离相等, 那么这个集贸市场应建的位置是( )A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点【解答】 解:在这个区域内修建一个集贸市场, 要使集贸市场到三条公路的距离 相等,根据角平分线的性质,集贸市场应建在∠ A 、∠B 、∠C 的角平分线的交点处. 故选: C .15.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为 D 、E ,且 PD=PE ,则△APD 与△APE全等的理由是( )A . SASB .AAAC .SSSD .HL∴∠ADP= ∠AEP=90 °,解答】 解:∵PD ⊥AB ,PE ⊥AC ,在 Rt △ADP 和△AEP 中 ,∴Rt △ADP ≌△AEP (HL ),故选: D .16.如图,在Rt △ABC 中,∠C=90°,∠ABC 的平分线 BD 交AC 于点D .若BC=4cm ,CD=3cm ,则点 D 到AB 的距离是过D 作 DE ⊥AB 于E , ∵在Rt △ABC 中,∠C=90 °,∠ABC 的平分线 BD 交AC 于点 D , ∴DE=DC=3cm , 故选: B .17.如图,OC 是∠AOB 的平分线, PD ⊥DA 于点 D ,PD=2 ,则 P 点到 OB 的距 离是()A . 2cmB .3cmC .4cmD .5cm解答】解解答】 解:过 E 作 EF ⊥AD 于 F ,如图,A .1B .2C . 3D .4【解答】 解:如图,过点 P 作 PE ⊥OB ,∵OC 是∠AOB 的平分线,点 P 在 OC 上,且 PD ⊥OA ,PE ⊥OB , ∴PE=PD ,又 PD=2 ,∴PE=PD=2 .18.如图,点 E 是BC 的中点,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,下列结论:①∠AED=90 °②∠ADE= ∠CDE ③DE=BE ④AD=AB+CD ,四个结论中成立的是( )A .①②④B .①②③C .②③④D .①③∵AB⊥BC,AE 平分∠BAD ,解答】解:过 E 作EF⊥AD 于F,如图,【解答】 解:∵凉亭到草坪三条边的距离相等,∴Rt △AEF ≌Rt △AEB ∴BE=EF , AB=AF ,∠AEF= ∠AEB ; 而点 E 是 BC 的中点, ∴EC=EF=BE ,所以③错误;∴Rt △EFD ≌Rt △ECD ,∴DC=DF ,∠FDE=∠CDE ,所以②正确; ∴AD=AF+FD=AB+DC ,所以④正确;∴∠AED= ∠AEF+ ∠FED= ∠BEC=90 °,所以①正确. 故选: A .19.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .△ABC 的三条中线的交点B .△ABC 三条角平分线的交点 C .△ABC 三条高所在直线的交点D .△ABC 三边的中垂线的交点 ∴凉亭选择△ABC三条角平分线的交点.故选: B .20.如图,在△ABC 中,∠C=90 °,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论: ①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB ,其中正解答】 解:∵AD 平分∠BAC ∴∠DAC=∠DAE ∵∠C=90 °,DE ⊥AB ∴∠C= ∠E=90 ° ∵AD=AD∴△DAC ≌△DAE∴∠CDA= ∠EDA∴①AD 平分∠CDE 正确; 无法证明∠BDE=60 °, ∴③DE 平分∠ADB 错误; ∵BE+AE=AB ,AE=AC ∴BE+AC=AB ∴④BE+AC=AB 正确; ∵∠BDE=90 °﹣B ∠,∠BAC=90 °﹣B ∠确的有( ) D . 1∴∠BDE= ∠BAC ∴②∠BAC= ∠BDE 正确.故选: B .21.如图,Rt△ABC 中,∠C=90 °,BD平分∠ABC 交AC 于点D,AB=12 ,CD=3 ,则△DAB 的面积为()A.12 B.18 C.20 D.24解答】解:过 D 作DE ⊥AB ,∵Rt△ABC 中,∠C=90 °,BD 平分∠ABC 交AC 于点D,∴DE=DC=3 ,∴△DAB 的面积= ,故选: B .22.如图,AD 是△ABC 的角平分线,DE ⊥AB 于点E,S△ABC =10,DE=2 ,AB=4 ,则AC 长是()A.9 B.8 C.7 D.6【解答】解:过 D 作DF⊥AC 于F,∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DE=DF=2 ,∵S△ADB = AB ×DE= ×4×2=4 ,∵△ABC 的面积为10 ,∴△ADC 的面积为10 ﹣4=6,∴ AC×DF=6 ,∴ AC ×2=6,∴AC=6故选:D.二.填空题(共13 小题)23 .如图,BD 平分∠ABC 交AC 于点D,DE⊥BC 于点E,若AB=5,BC=6 ,S△ABC=9,则DE 的长为.解答】解:作DF ⊥AB 于F,∵BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DE=DF ,∴ ×AB ×DF+ ×BC ×DE=S △ABC ,即 ×5×DE+ ×6×DE=9 , 解得, DE= ,24.如图, OC 为∠AOB 的平分线,CM ⊥OB ,OC=5 ,OM=4 ,则点 C 到射线OA 的距离为 3 .【解答】 解:过 C 作 CF ⊥AO ,∵OC 为∠AOB 的平分线, CM ⊥OB ,∴CM=CF ,∵OC=5 , OM=4 ,∴CM=3 ,∴CF=3 , 故答案为: 3.故答案为:25.如图,已知△ABC 的周长是32 ,OB ,OC 分别平分∠ABC 和∠ACB ,OD⊥解答】解:过O 作OM ⊥AB,ON⊥AC,连接AO,∵OB ,OC 分别平分∠ABC 和∠ACB,∴OM=ON=OD=6 ,∴△ABC 的面积为:×AB×OM+ BC ×DO+ NO= (AB+BC+AC )×DO= 32×6=96 .故答案为:96.26.如图,已知△ABC 的周长是21 ,OB ,OC 分别平分∠ABC 和∠ACB ,OD⊥BC 于D,且OD=4 ,△ABC 的面积是42解答】解:过O作OE⊥AB 于E,OF⊥AC于F,连接OA,∵OB ,OC 分别平分∠ABC 和∠ACB,OD⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4 ,∴△ABC 的面积是:S△AOB +S△AOC +S △OBC= ×AB ×OE+ ×AC×OF+ ×BC×OD= ×4 ×(AB+AC+BC )= ×4×21=42 ,故答案为:42.27.如图,在△ABC 中,∠ACB=90 °,AD 是△ABC 的角平分线,BC=10cm ,BD:DC=3 :2,则点D到AB的距离为4cm .【解答】解:∵BC=10cm ,BD:DC=3 :2,∴DC=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90 °,∴点D 到AB 的距离等于DC,即点 D 到AB 的距离等于4cm .故答案为4cm .28.如图,在Rt△ABC 中,∠C=90 °,AD 是∠BAC 的平分线,CD=16 ,则 D 到AB 边的距离是16 .【解答】解:过D作DE⊥AB 于E,则DE的长度就是D到AB边的距离.∵AD 平分∠CAB ,∠ACD=90 °,DE ⊥AB,∴DC=DE=16 (角平分线性质),故答案为:16.29.如图,在△ABC 中,∠BAC=60 °,AD 平分∠BAC ,若AD=6,DE⊥AB,则DE 的长为 3 .【解答】解:∵∠BAC=60 °,AD 平分∠BAC ,∴∠DAE=∠BAC=30 °.在Rt△ADE 中,DE⊥AB ,∠DAE=30 °,∴DE= AD=3 .故答案为:3.30 .如图,直线a、b、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 4 处.【解答】解:∵△ABC 内角平分线的交点到三角形三边的距离相等,∴△ABC 内角平分线的交点满足条件;如图:点P 是△ABC 两条外角平分线的交点,过点P 作PE ⊥AB,PD⊥BC ,PF⊥AC,∴PE=PF ,PF=PD ,∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有 3 个;综上,到三条公路的距离相等的点有 4 个,∴可供选择的地址有 4 个.故答案为:4.31 .如图,点O 在△ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC= 120°【解答】解:∵点O 在△ABC 内,且到三边的距离相等,∴点O 是三个角的平分线的交点,∴∠OBC+ ∠OCB= (∠ABC+ ∠ACB )= (180°﹣A∠)= (180°﹣60°)=60 °,在△BCO 中,∠BOC=180 °﹣(O∠BC+ ∠OCB )=180 °﹣60°=120°.故答案为:120 °.32.如图,在Rt△ABC 中,∠B=90 °,CD是∠ACD 的平分线,若BD=2 ,AC=8 ,则△ACD 的面积为8 .解答】解:作DH ⊥AC 于H,∵CD 是∠ACD 的平分线,∠B=90 °,DH⊥AC,∴DH=DB=2 ,∴△ACD 的面积= ×AC×DH= ×8×2=8,故答案为:8.33.如图,已知BD⊥AE 于点B,DC⊥AF 于点C,且DB=DC ,∠BAC=40 °,∠ADG=130 °,则∠DGF= 150 ° .【解答】解:∵BD⊥AE 于B,DC⊥AF 于C,且DB=DC ,∴AD 是∠BAC 的平分线,∵∠BAC=40 °,∴∠CAD= ∠BAC=20 °,∴∠DGF= ∠CAD+ ∠ADG=20 °+130 °=150 °.故答案为:150 °34.把命题“角平分线上的点到这个角两边的距离相等”改写成“如果⋯,那么⋯、的形式:如果一个点在角的平分线上,那么它到这个角两边的距离相等解答】解:如果一个点在角平分线上,那么它到角两边的距离相等.35.已知Rt△ABC 中,∠C=90 °,AD 平分∠BAC 交BC 于点D,若BC=32 ,且BD:CD=9:7,则D到AB的距离为14 .【解答】解:如图,过点 D 作DE⊥AB 于E,∵BC=32 ,BD:CD=9 :7,∴CD=32 × =14,∵∠C=90 °,AD 平分∠BAC ,∴DE=CD=14 ,即D到AB 的距离为14.故答案为:14.三.解答题(共 5 小题)36.如图,DE⊥AB于E,DF⊥AC 于F,若BD=CD 、BE=CF .(1)求证:AD 平分∠BAC ;(2)直接写出AB+AC 与AE 之间的等量关系.解答】(1)证明:∵DE ⊥AB 于E,DF⊥AC 于F,∴∠E= ∠DFC=90 °,∴△BDE 与△CDE 均为直角三角形,∵∵∴△BDE ≌△CDF ,∴DE=DF ,即AD 平分∠BAC ;(2)AB+AC=2AE .证明:∵BE=CF ,AD 平分∠BAC ,∴∠EAD= ∠CAD,∵∠E= ∠AFD=90 °,∴∠ADE= ∠ADF,在△AED 与△AFD 中,∵,∴△AED ≌△AFD ,∴AE=AF ,∴AB+AC=AE ﹣BE+AF+CF=AE+AE=2AE37 .如图已知:E 是∠AOB 的平分线上一点,EC ⊥OA,ED⊥OB ,垂足分别为C、D.求证:1)∠ECD= ∠EDC;2) OE 是CD 的垂直平分线.解答】 解:分别作 CG ⊥AB 与 G ,CH ⊥AD 与 H ,解答】 证明:(1)∵E 是∠AOB 的平分线上一点, EC ⊥OA ,ED ⊥OB , ∴EC=DE , ∴∠ECD= ∠EDC ;(2)在 Rt △OCE 和 Rt △ODE 中, ,∴Rt △OCE ≌Rt △ODE (HL ),∴OC=OD ,又∵OE 是∠AOB 的平分线,∴OE 是 CD 的垂直平分线.38.如图,四边形 ABCD 中,AC 为∠BAD 的角平分线, AB=AD ,E 、F 两点分 别在 AB 、AD 上,且 AE=DF .请完整说明为何四边形 AECF 的面积为四边形 ABCD 的一半.∵AC 为∠BAD的角平分线,∴CG=CH , ∵AB=AD ,∴△ABC 面积 =△ACD 面积,又∵AE=DF ,∴△AEC 面积 =△CDF 面积,∴△BCE 面积 =△ABC 面积﹣A △EC 面积,△BCE 面积 =△ACD 面积﹣C △DF 面积,∴△BCE 面积 =△ACF 面积,∵四边形AECF 面积=△AEC 面积 +△ACF 面积, 四边形 AECF 面积 =△AEC 面积+△BCE 面积,∴四边形AECF 面积 =△ABC 面积,又∵四边形 ABCD 面积=△ABC 面积+△ACD 面积,又∵四边形 ABCD 面积=2△ABC 面积,∴四边形AECF 面积为四边形 ABCD 面积的一半.39.△ABC 中,∠ABC 与∠ACB 的平分线交于点 O ,过点 O 作一直线交 AB 、AC 于 E 、F .且 BE=EO .(1)说明 OF 与CF 的大小关系;2)若 BC=12cm ,点 O 到 AB 的距离为 4cm ,求△OBC的面积.解答】解:(1)OF=CF .理由:∵BE=EO ,∴∠EBO= ∠EOB,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点O,∴∠EBO= ∠OBC,∴∠EOB= ∠OBC,∴EF∥BC,∴∠FOC=∠OCB= ∠OCF,∴OF=CF ;(2)过点O 作OM⊥BC 于M,作ON ⊥AB 于N,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点O,点O 到AB 的距离为4cm ,∴ON=OM=4cm ,∴S△OBC= BC?OM= ×12×4=24 (cm2).40.如图,在△ABC 中,∠C=90 °,AD 平分∠CAB ,交CB 于点D,过点 D 作DE ⊥AB 于点E.(1)求证:AC=AE ;(2)若点E为AB 的中点,CD=4 ,求BE的长.【解答】(1)证明:∵在△ABC 中,∠C=90 °,AD 平分∠CAB,DE⊥AB,∴CD=DE ,∠AED= ∠C=90 °,∠CAD= ∠EAD ,在△ACD 和△AED 中∴△ACD ≌△AED ,∴AC=AE ;(2)解:∵DE ⊥AB,点 E 为AB 的中点,∴AD=BD ,∴∠B=∠DAB= ∠CAD,∵∠C=90 °,∴3∠B=90 °,∴∠B=30 °,∵CD=DE=4 ,∠DEB=90 °,∴BD=2DE=8 ,由勾股定理得:BE= =4 .。
2021-2022学年八年级数学上册尖子生同步培优题典【苏科版】专题2.9有关角平分线的证明大题专练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共24题,解答24道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题(本大题共24小题,解答时应写出文字说明、证明过程或演算步骤)1.(2020·苏州新草桥中学八年级月考)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB CB =,AD CD =.对角线AC ,BD 相交于点O ,OE AB ⊥,OF CB ⊥,垂足分别是E ,F .求证OE OF =.【答案】证明见解析【分析】欲证明OE =OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD =∠CBD ,问题就迎刃而解了.【详解】证明:∵在△ABD 和△CBD 中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),∴∠ABD =∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE =OF .2.(2019·苏州市八年级月考)已知,如图,AB AD =,AC AE =,50DAB CAE ∠=∠=︒.(1)求证:ABE ADC △≌△.(2)连接AO ,求证点A 在DOE ∠的平分线上.【答案】(1)见详解;(2)见详解.【分析】(1)由题意易得DAC BAE ∠=∠,然后由AB AD =,AC AE =可求证;(2)过点A 分别作AF ⊥CD ,AH ⊥BE ,垂足分别为F 、H ,则有90AFD AHB ∠=∠=︒,由(1)可得:ADC ABE ∠=∠,进而可证AFD AHB ≌,然后可得AF AH =,则问题得证.【详解】证明:(1)∵50DAB CAE ∠=∠=︒,∴DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,∵AB AD =,AC AE =,∴ABE ADC △≌△(SAS );(2)过点A 分别作AF ⊥CD ,AH ⊥BE ,垂足分别为F 、H ,如图所示:∴90AFD AHB ∠=∠=︒,由(1)可得:ABE ADC △≌△,∴ADC ABE ∠=∠,∵AB AD =,∴AFD AHB ≌(AAS ),∴AF AH =,∴AO 平分∠DOE ,∴点A 在DOE ∠的平分线上.3.(2021·江苏南通市·八年级期末)如图,在ABC 中,AD 是它的角平分线.(1)求证:::ABD ACD S S AB AC =;(2)若8,6,9AB AC BC ===,求BD 的长.【答案】(1)见解析;(2)367BD =. 【分析】(1)过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,根据角平分线的性质得到DE =DF ,根据三角形的面积公式即可得到结论;(2)过点A 作AE ⊥BC 于E ,由三角形面积公式可得ABD ACD S BD S CD=,再与(1)所得结论建立等式,即可求出BD 的长.【详解】(1)证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵AD 平分∠BAC ,∴DE =DF .∵12ABD S AB DE =⋅,12ACD S AC DF =⋅, ∴1212ABDACD AB DE SAB S AC AC DF ⋅==⋅. 即S △ABD :S △ACD =AB :AC .(2)解:如图,过点A 作AE ⊥BC 于E ,∵12ABD S BD AE =⋅,12ACD S CD AE =⋅, ∴1212ABD ACD BD AE S BD S CD CD AE ⋅==⋅. ∴AB BD AC CD=. ∵8,6,9AB AC BC ===,∴869BD BD=-. ∴367BD =. 4.(2020·江苏泰州市·昭阳湖初中八年级期中)如图,在ABC 中,D 是BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别是E ,F ,BE=CF .(1)求证:AD 是ABC 的角平分线;(2)若AB=8,ABC S 36=,求DE 的长.【答案】(1)证明见解析;(2)92. 【分析】()1根据HL 可证Rt BED ≌Rt CFD ,根据全等三角形的性质可得DE DF =,再根据角平分线的判定即可求解;()2根据全等三角形的性质可得B C ∠=∠,根据等角对等边可得AB AC =,再根据线段的和差求解即可. 【详解】证明:()1D 是BC 的中点,BD CD ∴=,DE AB ⊥,DF AC ⊥,BED ∴和CFD △都是直角三角形,在Rt BED 与Rt CFD 中,BD CD BE CF =⎧⎨=⎩, Rt BED ∴≌()Rt CFD HL ,DE DF ∴=,AD ∴是ABC 的角平分线;()2如图,连接AD ,Rt BED ≌Rt CFD ,B C ∴∠=∠,AB AC ∴=,在Rt ABD 和Rt ACD 中,AB AC AD AD =⎧⎨=⎩, Rt ABD ∴≌Rt ACD ,ABD ACD ABC 1S S S 182∴===, 1AB DE 182∴⨯⋅=, 4DE 18∴=,9DE 2∴=.5.(2018·苏州市吴江区青云中学八年级月考)已知:如图,在ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F .(1)求证:BE =CF ;(2)连结EF ,则直线AD 与线段EF 有何位置关系?为什么?【答案】(1)证明见解析;(2)AD ⊥EF ,理由见解析.【分析】(1)先根据角平分线的性质得到DE=DF 、∠DEA=∠DFA=90°,再运用HL 证明Rt △DEA ≌Rt △DFA 得到AE=AF ,最后根据线段的和差即可证明;(2)连EF 交AD 于O ,由角平分线的定义可得∠EAO=∠FAO ,再运用SAS 证明 △EAO ≌△FAO 得到∠EOA=∠FOA ,最后再根据平角的性质得到∠EOA=90°即可证明.【详解】(1)证明:∵ AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC∴DE=DF ,∠DEA=∠DFA=90°在Rt △DEA 和Rt △DFA 中DE DF AD AD=⎧⎨=⎩ ∴Rt △DEA ≌Rt △DFA (HL)∴AE=AF ,又∵AB=AC∴BE=CF ;(2)AD ⊥EF ,理由如下:如图:连接EF 交AD 于O∵ AD 平分∠BAC∴∠EAO=∠FAO在△EAO 和△FAO 中AE AF EAO FAO AO AO =⎧⎪∠∠⎨⎪=⎩=∴△EAO ≌△FAO (SAS )∴∠EOA=∠FOA ,又∵∠EOA+∠FOA=180°∴∠EOA=90°,即AD ⊥EF .6.(2020·江苏镇江市·)如图,△ABC 中,AB =AC ,∠B 的平分线交AC 于D ,E 是BD 延长线上的一点,且AE=AC .(1)求证:AE//BC;(2)若AD=DC=2,求BC的长.【答案】(1)详见解析;(2)4【分析】(1)由已知AB=AC ,AE=AC,传递性得AE=AB等边对等角得∠ABE=∠AEB 结合BD平分∠ABC,∠AEB=∠EBC即可,(2)由AE∥BC得∠E=∠EBC,可证△ADE≌△CDB知AE=BC=AC,AD=DC=2AC=2AD=4即可.【详解】证明:(1)∵AB=AC AE=AC,∴AE=AB,∴∠ABE=∠AEB,∵BD平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠EBC,∴AE∥BC;(2)∵AE∥BC,∴∠E=∠EBC,在△ADE和△CDB中,∵AD=CD ∠E=∠EBC ∠ADE=∠BDC,∴△ADE≌△CDB,∴AE=BC=AC,∵AE=AC,AD=DC=2,∴BC=AE=4.7.(2020·江苏扬州市·八年级月考)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB 交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.【答案】(1)见解析;(2)见解析.【分析】(1)由AD 为角平分线,利用角平分线定理得到DE=DC ,再由BD=DF ,利用HL 得到三角形FCD 与三角形BDF 全等,利用全等三角形对应边相等即可得证;(2)利用AAS 得到三角形ACD 与三角形AED 全等,利用全等三角形对应边相等得到AC=AE ,由AB=AE+EB ,等量代换即可得证.【详解】证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE=DC ,在Rt △CFD 和Rt △EBD 中,,DF BD CD ED =⎧⎨=⎩, ∴Rt △CFD ≌Rt △EBD (HL ),∴CF=EB ;(2)在△ACD 和△AED 中,90,,CAD EAD ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴AC=AE ,∴AB=AE+EB=AC+EB=AF+FC+EB=AF+2EB .8.(2020·扬州中学教育集团树人学校八年级期中)如图,∠AOP=∠BOP=15°,PC//OA ,PD ⊥OA ,若PC=4,求PD 是多少?【答案】2【分析】过点P作PE⊥OB于E,根据两直线平行,内错角相等可得∠AOP=∠CPO,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=30°,再根据直角三角形30°角所对的直角边等于斜边的一半得出PE,再由∠AOP=∠BOP,PD垂直于OA,PE⊥OB利用角平分线定理得到PE=PD即可.【详解】解:过P作PE⊥OB,交OB与点E,则∠CEP=90°∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,∵∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴114222PE PC==⨯=∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE=29.(2020·江苏南通市·八年级月考)如图,在△ABC中,D为BC的的中点,DE⊥BC交∠BAC的平分线于点E,EF⊥AB交于点F,EG⊥AC交AC的延长线于点G.(1) 求证:BF=CG(2) 若AB=13,AC=9,求CG 的长.【答案】(1)见解析;(2)2【分析】(1)连接BE ,CE ,根据中垂线的性质可得BE=CE ,根据角平分线的性质可得EF=EG ,再根据HL 证明EFB EGC ∆≅∆,继而根据全等三角形的性质即可得结论;(2)利用HL 证明Rt AEF Rt AEG ∆≅∆,从而可得AF AG =,继而根据线段的和差可得2AB AC CG =+,代入相关数值进行计算即可得解.【详解】(1)连接BE ,CE ,BD CD =.DE BC ⊥,BE CE ∴=,AE ∵分BAC ∠,EF AB ⊥,EG AC ⊥,EF EG ∴=,又90EFB EGC ∠=∠=︒,()Rt EFB Rt EGC HL ∴∆≅∆,BF CG ∴=;(2)EF EG =,AE AE =,Rt AEF Rt AEG ∴∆≅∆(HL ),AF AG ∴=,2AB AF BF AG CG AC CG ∴=+=+=+,13AB =,9AC =,24CG ∴=,2CG ∴=.10.(2019·江苏盐城市·东台市实验中学八年级期中)等腰△ABC 中,AB =AC ,∠ACB =72°, (1)如图1,若BD ⊥AC 于D ,求∠ABD 的度数;(2)如图2,若CE 平分∠ACB ,求证:AE =BC .【答案】(1)∠ABD =54°;(2)见解析【分析】(1)根据等腰三角形的性质和三角形内角和解答即可.(2)根据角平分线的性质、等腰三角形的性质和判定以及三角形内角和解答即可.【详解】解:∵等腰ABC ∆中,AB AC =,72ACB ∠=︒,∴72ABC ACB ∠=∠=︒,36A ∠=︒.(1)∵BD AC ⊥于D ,∴90ADB ∠=︒,∴90903654ABD A ∠=︒-∠=︒-︒=︒;(2)∵CE 平分∠ACB ,72ACB ∠=︒,∴36ACE ECB ∠=∠=︒,∴36A ACE ∠=∠=︒,∴AE EC =,∵72ABC ∠=︒,∴180180723672BEC ABC ECB ∠=︒-∠-∠=︒-︒-︒=︒,∴ABC BEC ∠=∠ ,∴BC CE =,∴AE BC =.11.(2020·江苏省灌云高级中学城西分校八年级月考)如图,△ABC 中,D 为BC 的中点,DE ⊥BC 交∠BAC 的平分线于E ,EF ⊥AB ,交AB 于F ,EG ⊥AC ,交AC 的延长线于G ,试问:BF 与CG 的大小如何?证明你的结论.【答案】相等,详见解析【分析】连EB 、EC ,根据角平分线和垂线的性质可得EF=EG ,再根据中线的性质得到EB=EC ,即可证明Rt △EFB ≌Rt △EGC ,即可得到结果;【详解】解答:相等.证明如下:连EB 、EC ,∵AE 是∠BAC 的平分线,且EF ⊥AB 于F ,EG ⊥AC 于G ,∴EF=EG ,∵ED ⊥BC 于D ,D 是BC 的中点,∴EB=EC ,∴Rt △EFB ≌Rt △EGC ,∴BF=CG .12.(2019·常熟市外国语初级中学八年级月考)如图,ABC 中,AD 是BAC ∠的平分线,,,,DE AB DF AC E F ⊥⊥为垂足,连接EF 交AD 于G ,试判断AD 与EF 垂直吗?并说明理由【答案】垂直,理由见解析【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF ,然后利用“HL”证明Rt △AED 和Rt △AFD 全等,根据全等三角形对应边相等可得AE=AF ,再利用等腰三角形三线合一的性质证明即可.【详解】解:AD ⊥EF .理由如下:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE=DF ,在Rt △AED 和Rt △AFD 中,AD AD DE DF=⎧⎨=⎩, ∴Rt △AED ≌Rt △AFD (HL ),∴AE=AF ,∵AD 平分∠EAF ,∴AD ⊥EF (等腰三角形三线合一).13.(2020·江阴市长寿中学八年级月考)如图,BD 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,若△ABC 的面积为36cm 2,AB =18cm ,BC =12cm ,求DE 的长.【答案】125cm【分析】由角平分线的性质得出DE=DF,再根据三角形的面积公式求解.【详解】∵BD是∠ABC的平分线,DE⊥AB,垂足为点E,DF⊥BC,垂足为F,∴DE=DF.∵S△ABC=30,AB=18,BC=12,∴S△ABD+S△BCD=12AB•DE+12BC•DF=36cm2,∴12×18DE+12×12DE=36cm2,∴DE=125cm.14.(2020·江苏泰州市·泰州中学附属初中八年级月考)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD 于F,且BC=CD.(1)证明:Rt△BCE≌Rt△DCF;(2)若AB=21,AD=9,求AE的长.【答案】(1)见解析;(2)AE的长为15.【分析】(1)直接利用“HL”即可证明Rt△BCE≌Rt△DCF;(2)利用“HL”证明Rt△AFC≌Rt△AEC,再根据(1)中的结论和角平分线的性质可以求得AE的长.【详解】(1)∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴CF=CE,∠DFC=∠BEC=90°,在Rt△BCE和Rt△DCF中,CE CF BC CD=⎧⎨=⎩,∴Rt△BCE≌Rt△DCF(HL);(2)∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴CF=CE,∠CFA=∠CEA=90°,在Rt△AFC和Rt△AEC中,CF CE AC AC=⎧⎨=⎩,∴Rt△AFC≌Rt△AEC(HL),∴AF=AE,由(1)知Rt△BCE≌Rt△DCF,则BE=DF,∵AB=21,AD=9,∴AB=AE+EB=AF+EB=AD+DF+ DF =AD+2DF=9+2DF=21,解得,DF=6,∴AE=AF=AD+DF=9+6=15,即AE的长是15.15.(2020·江阴市夏港中学八年级月考)如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.【答案】证明见解析;【分析】过点P作AO、BO的垂线,利用直角三角形全等的判定可证出结论.【详解】过P做PM垂直OA于M PN垂直OB于N因为OC平分∠AOB所以PM=PN (角平分线上的点到2边的距离相等)因为PD=PE所以△PDM全等于△PEN(HL)所以∠PDO=∠PEB考点:1.角平分线的性质;2.直角三角形全等的判定与性质.16.(2020·浙江杭州市·八年级期末)如图,在ABC 中,BAD DAC ∠=∠,DF AB ⊥,DM AC ⊥,10AF cm =,14AC cm =,动点E 以2/cm s 的速度从A 点向F 点运动,动点G 以1/cm s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)CM = ,:AE CG = ;(2)当t 取何值时,DFE △和DMG △全等;(3)在(2)的前提下,若:119:126BD DC =,228cm AED S =△,求BFD S .【答案】(1)4,2;(2)143;(3)293cm 2. 【分析】(1)根据角平分线的性质可证Rt △AFD ≌Rt △AMD ,得AF=AM ,从而求出即可;(2)分两种情况进行讨论:①当0<t <4时,②当4≤t <5时,分别根据△DFE ≌△DMG ,得出EF=GM ,据此列出关于t 的方程,进行求解即可.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.【详解】(1)∵∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,∴DF =DM ,在R t △AFD 和R t △AMD 中,DF DM AD AD =⎧⎨=⎩,∴R t △AFD ≌R t △AMD (HL );∴10AF AM cm ==,14104CM AC AM cm ∴=-=-=,2AE t =,CG t =,:2AE CG ∴=(2)①当0<t <4时,点G 在线段CM 上,点E 在线段AF 上.EF =10﹣2t ,MG =4﹣t∴10﹣2t =4﹣t ,∴t =6(不合题意,舍去);②当4<t <5时,点G 在线段AM 上,点E 在线段AF 上.EF =10﹣2t ,MG =t ﹣4,∴10﹣2t =t ﹣4,∴t =143; 综上所述当t =143时,△DFE 与△DMG 全等; (3)∵t =143, ∴AE =2t =283, ∵DF =DM ,∴S △ABD :S △ACD =AB :AC =BD :CD =119:126,∵AC =14,∴AB =1199, ∴BF =AB ﹣AF =1199﹣10=299, ∵S △ADE :S △BDF =AE :BF =283:299,S △AED =28cm 2, ∴S △BDF =293cm 2. 17.(2020·浙江杭州市·杭州英特外国语学校八年级期中)如图,已知AC 平分BAD ∠,CE AB ⊥于E ,CF AD ⊥于F ,且BC CD =.(1)求证:BCE DCF ≅;(2)若2AE =,求+AB AD 的值.【答案】(1)证明见解析;(2)4.【分析】(1)先根据角平分线的性质可得CE CF =,再根据直角三角形全等的判定定理即可得证; (2)先根据全等三角形的性质可得BE DF =,再根据直角三角形全等的判定定理与性质可得2AF AE ==,然后根据线段的和差即可得.【详解】(1)AC 平分BAD ∠,CE AB ⊥,CF AD ⊥, CE CF ∴=,BCE 和DCF 都是直角三角形,在BCE 和DCF 中,BC DC CE CF =⎧⎨=⎩, ()BCE DCF HL ∴≅;(2)由(1)已证:BCE DCF ≅,BE DF ∴=,在ACF 和ACE △中,AC AC CF CE =⎧⎨=⎩, ()ACF ACE HL ∴≅,2AF AE ∴==,AB AD AE BE AD ∴+=++,AE DF AD =++,AE AF =+,22=+,4=,即+AB AD 的值为4.18.(2020·浙江杭州市·八年级期中)如图,在Rt ABC 中,90BAC ︒∠=,AD BC ⊥于点D ,BF 平分ABC ∠交AD 点E ,交AC 于点F .(1)求证:AE AF;EG DC,交AC于点G,试比较AF与GC的大小关系,并说明理由.(2)过点E作//【答案】(1)见解析;(2)AF=GC,理由见解析【分析】(1)根据角平分线的定义和余角的性质得出∠AFE=∠AEF,即可得到结论;(2)过点F作FH⊥BC,垂足为H,证明△AEG≌△FHC即可得到结论.【详解】解:(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF;(2)过点F作FH⊥BC,垂足为H,∵BF平分∠ABC,AF⊥AB,FH⊥BC,∴AF=FH,∵AE=AF,∴AE=FH,∵EG∥BC,∴∠C=∠AGE,∵AD⊥BC,∴EG⊥AE,在△AEG和△FHC中,AGE C AEG FHC AE FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEG ≌△FHC (AAS ),∴AG=FC ,∴AF=GC .19.(2020·浙江杭州市·八年级期中)已知:如图,等腰ABC 中,AB AC =,AD 是BC 边上的中线,DM AB ⊥,DN AC ⊥,M 、N 分别为垂足.求证:DM DN =.【答案】见解析【分析】根据三线合一的性质得到AD 平分∠BAC ,再利用角平分线的判定定理可得DM=DN .【详解】解:∵在△ABC 中,AB=AC ,AD 是BC 边上的中线,∴AD 平分∠BAC ,∵DM ⊥AB ,DN ⊥AC ,∴DM=DN .20.(2020·浙江杭州市·八年级期中)(1)如图1,ABC 中,作ABC ∠、ACB ∠的角平分线相交于点O ,过点O 作//EF BC 分别交AB 、AC 于E 、F .①求证:OE BE =;②若ABC 的周长是25,9BC =,试求出AEF 的周长;(2)如图2,若ABC ∠的平分线与ACB ∠外角ACD ∠的平分线相交于点P ,连接AP ,试探求BAC ∠与PAC ∠的数量关系式.【答案】(1)①见解析;②16;(2)2∠PAC+∠BAC=180°【分析】(1)①由等腰三角形的性质和平行线的性质即可得到结论;②根据三角形的周长公式即可得到结论;(2)根据角平分线的性质即可得出答案.【详解】解:(1)①∵BO 平分∠ABC ,∴∠EBO=∠OBC ,∵EF ∥BC ,∴∠EOB=∠OBC ,∴∠EOB=∠EBO ,∴OE=BE ;②同①可证OF=CF∴△AEF 的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25-9=16;(2)延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,∵CP 平分∠ACD ,∴∠ACP=∠PCD ,PM=PN ,∵BP 平分∠ABC ,∴∠ABP=∠PBC ,PF=PN ,∴PF=PM ,∴∠FAP=∠PAC ,∴∠FAC=2∠PAC ,∵∠FAC+∠BAC=180°,∴2∠PAC+∠BAC=180°.21.(2020·浙江杭州市·八年级期中)已知:如图,D 为ABC 外角ACP ∠平分线上一点,且DA DB =,DM BP ⊥于点M .(1)若6AC =,2DM =,求ACD △的面积;(2)求证:AC BM CM =+.【答案】(1)6;(2)见解析【分析】(1)过点D 作DN AC ⊥于点N ,利用角平分线的性质得到DM DN =,再算出ACD △的面积;(2)证明()Rt CDM Rt CDN HL ≅和()Rt ADN Rt BDM HL ≅,利用全等三角形的性质证得AC AN CN BM CM =+=+.【详解】解:(1)如图,过点D 作DN AC ⊥于点N ,∵DC 平分ACP ∠,DM CP ⊥,DN CA ⊥,∴2DM DN ==, ∴1162622ADC S AC DN =⋅=⨯⨯=;(2)在Rt CDM 和Rt CDN 中,CD CD DM DN =⎧⎨=⎩, ∴()Rt CDM Rt CDN HL ≅,∴CM CN =,在Rt ADN △和Rt BDM 中,AD BD DN DM=⎧⎨=⎩, ∴()Rt ADN Rt BDM HL ≅,∴AN BM =,∴AC AN CN BM CM =+=+.22.(2020·浙江金华市·八年级期末)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为.(1)求证:在运动过程中,不管取何值,都有S △AED =2S △DGC ;(2)当取何值时,△DFE 与△DMG 全等;(3)在(2)的前提下,若119126BD DC =,228AED S cm ∆=,求S △BFD .【答案】(1)见解析;(2)当t =143时,△DFE 与△DMG 全等;(3)293. 【分析】(1)由角平分线的性质可知DF =DM ,所以△AED 和△DEG 的面积转化为底AE 和CG 的比值,根据路程=速度×时间求出AE 和CG 的长度即可证明在运动过程中,不管取何值,都有S △AED =2S △DGC . (2)分两种情况进行讨论:①当0<t <4时,②当4<t <5时,分别根据△DFE ≌△DMG ,得出EF =GM ,据此列出关于t 的方程,进行求解即可.(3)利用等高三角形的面积比等于对应底的比,即可求得答案.【详解】(1)证明:∵∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,∴DF =DM ,∵S △AED =12AE •DF ,S △DGC =12CG •DM , ∴ADE DGC S S ∆∆=AE CG, ∵点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,∴AE =2tcm ,CG =tcm , ∴AE CG=2, 即ADE DGCS S ∆∆=2, ∴在运动过程中,不管取何值,都有S △AED =2S △DGC .(2)解:①当0<t <4时,点G 在线段CM 上,点E 在线段AF 上.EF =10﹣2t ,MG =4﹣t∴10﹣2t =4﹣t ,∴t =6(不合题意,舍去);②当4<t <5时,点G 在线段AM 上,点E 在线段AF 上.EF =10﹣2t ,MG =t ﹣4,∴10﹣2t=t﹣4,∴t=143;综上,t=143.综上所述当t=143时,△DFE与△DMG全等.(3)解:∵t=143,∴AE=2t=283(cm),∵DF=DM,∴S△ABD:S△ACD=AB:AC=BD:CD=119:126,∵AC=14cm,∴AB=1199(cm),∴BF=AB﹣AF=1199﹣10=299(cm),∵S△ADE:S△BDF=AE:BF=283:299,S△AED=28cm2,∴S△BDF=293(cm2).23.(2020·浙江金华市·八年级期中)如图,△ABC中,BE平分∠ABC,E在AC垂直平分线上,EF⊥BC于F,EG⊥AB于G,求证:(1)AG=CF;(2)BC﹣AB=2FC.【答案】见详解.【分析】(1)连接AE、EC,证明RT△AGE≌RT△CFE,即可证明AG=CF.(2)先证BG=BF,现由(1)的结论得BC-AB=BF+FC-AB=BG-AB+FC=AG+CF=2CF.【详解】证明:(1)如图1连接AE 、EC∵E 在AC 的垂直平分线上∴AE=CE∵BE 平分∠ABC ,EF ⊥BC 于F ,EG ⊥AB 于G ,∴GE=FE在RT △AGE 和RT △CFE 中∵{GE FEAE CE ==∴RT △AGE ≌RT △CFE (斜边直角边对应相等的直角三角形全等)∴AG =CF .(2)由(1)知GE=EF在RT △BGE 和RT △BFE 中∵{GE EFBE BE ==∴RT △BGE ≌RT △BFE (斜边直角边对应相等的直角三角形全等)∴BG=BF∴BC -AB=BF+FC -AB=BG -AB+FC=GA+FC由(1)知GA=FC 代入得BC ﹣AB =2FC .24.(2020·浙江湖州市·八年级月考)如图,已知://AB CD .PB 和PC 分别平分ABC ∠和DCB ∠,AD 过点P 且AD AB ⊥.(1)求证:PA PD =;(2)如果1AB =,3CD =,求BC 的长.【答案】(1)见解析;(2)4【分析】(1)根据平行线的性质得到AD ⊥AB ,AD ⊥CD ,过点P 作PE ⊥BC 于点E .则由“角的平分线上的点到角的两边的距离相等”得到AP=EP ,EP=DP ,所以AP=DP ,即点P 是AD 的中点.(2)在BC 上取点F ,使BF=BA ,连接PF ,由角平分线的性质可以得出∠ABP=∠FBP ,从而可以得出△ABP ≌△FBP ,可以得出∠A=∠BFP ,进而可以得出△CFP ≌△CDP ,就可以得出CD=CF ,即可得出结论.【详解】解:(1)证明:如图,过点P 作PE ⊥BC 于点E .∵如图,AB ∥CD ,AD 过点P 与AB 垂直,∴AD ⊥AB ,AD ⊥CD .∵PB 和PC 分别平分∠ABC 和∠DCB ,∴AP=EP ,EP=DP ,∴PA=PD ;(2)在BC 上取点F ,使得BF=BA ,连接PF ,如图, BP 、CP 分别是∠ABC 和∠BCD 的平分线, ∴∠ABP=∠FBP ,∠DCP=∠FCP .在△ABP 和△FBP 中,AB FB ABP FBP BP BP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△FBP (SAS ),∴∠BAP=∠BFP .∵AB ∥CD ,∴∠BAP+∠PDC=180°,∴∠BFP+∠PDC=180.∵∠BFP+∠CFP=180°,∴∠CFP=∠PDC .在△CFP 和△CDP 中,CFP PDC FCP DCP CP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CFP ≌△CDP (AAS ),∴CF=CD .∵BC=BF+CF ,∴BC=AB+CD .∴BC=CF+FB=CD+AB=3+1=4.。
》角平分线练习一、选择题1.已知:如图1,B E,C F是△ABC的角平分线,B E,CF相交于D,若∠A=50°,则∠BDC=()°°°°2.已知:如图2,△ABC中,AB = AC,BD为∠ABC的平分线,∠BDC = 60°,则∠A =()A. 10°B. 20°C. 30°D. 40°3.三角形中,到三边距离相等的点是()?A.三条高线交点B.三条中线交点C.三条角平分线的交点D.三边的垂直平分线的交点4.已知P点在∠AOB的平分线上,∠AOB = 60°,OP = 10 cm,那么P点到边OA、OB的距离分别是()A. 5cm、cmB. 4cm、5cmC. 5cm、5cmD. 5cm、10cm5.下列四个命题的逆命题是假命题的是()A.直角三角形的两个锐角互余B.等腰三角形的两个底角相等(C.全等三角形的对应角相等D.相等的两个角是对顶角6.已知:如图3,△ABC中,∠C = 90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB = 10cm,BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于()cmA. 2、2、2 、3、3C. 4、4、4D. 2、3、5二、填空题1.命题:“两直线平行,同旁内角互补”的逆命题是,它是命题。
2.角平分线可以看作是的点的集合。
3.已知:△ABC中,∠C = 90°,角平分线AD分对边BD:DC = 3:2,且BC = 20cm,则点到AB的距离是cm。
!4.命题“如果a = b,那么| a| = | b |”的命题是,它是命题。
三、简答题1.已知:如图4,△ABC的外角∠FAC的平分线为AE,∠1=∠2,AD = AC求证:DC∥AE#2.已知:如图5,△ABC中,∠C= 90°,点D是斜边AB 的中点,AB = 2BC, DE⊥AB交AC于E求证:BE平分∠ABC3.已知线段AB,求线段AB的四等分点。
正方体中线高角平分线的30题(有答案)1. 我们按图先在正方体ABCD-A1B1C1D1中线AC上求出点E 的坐标,由于AE/AB=1/2,所以E点其坐标为(0.5,0.5,0)。
2. 以E点为始点作E D⃗垂直于A C⃗,易得A D⃗和C B⃗均为E D⃗的平分线(这里使用了一个结论:一个平面的两个交错的交线的中垂线仍是同一个平面的两个交线的公共中垂线,详见附图)。
3. 于是,由于ABC和A1B1C1D1为正方体的相对面,所以ABC和A1B1C1的两线段所在的平面垂直于A D⃗,而此平面又包含了D1E⃗,故D1E⃗与A B⃗在同一平面内,于是D1E⃗是A B⃗的垂线。
4. 同理,E1D1与A D⃗垂直。
5. 设AD=2a,则AB=√2a,AE=√2a/2=√2a/√8=√0.5a,则EE1=√a-0.5a=√0.5a。
6. 同样的,AE1=√2a,E1C=√2a/2=√2a/√8=√0.5a,EE1=√a-0.5a=√0.5a。
7. 连E1D交BC于点F,由于E1D垂直于BC,故∠FBE1=45°。
8. 对三角形E1FE和E1DA,易知∠E1FE=∠E1AD=45°,故三角形E1FE与E1DA相似,由此得EF=√2EE1=√a。
9. 通过使用向量法,我们可计算出F点的坐标为(0.5,a,a)。
10. 连AB1交CD1于G点,则可知G点的坐标为(0,0.5,a)。
11. 由于A1G平行于BC且位于B1C1所在平面内,故A1G=2CD1/3。
12. 意即(0,0.5,a)-(0,0,0.5)=2(a,a,0)-3(0.5,0.5,0),化简得到(a-1,2a-1,2a-1)。
13. 设BE1=x,则FE1=√3/2a-√0.5a=√3/2a-(√2/2)√2a=√6/4a=√6x,BE=(AB1)/2-EB1=(√2a)/2-√(2a-x),BD1=√2a/2=√2x。
14. 对三角形BED1,易得∠BED1=∠B1D1E,∠EBD1=∠EB1D1=45°,故这两个三角形相似。
八年级数学上册角平分线历年真题练习题(含答案)一.选择题(共10小题)1.(2015?茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA 于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.3选A【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.2.(2015?天台县模拟)△ABC是一个任意三角形,用直尺和圆规作出∠A、∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.∠C的平分线一定经过点OC.点O到△ABC的三边距离一定相等D.点O到△ABC三顶点的距离一定相等【考点】角平分线的性质.【分析】根据角平分线的定义与性质即可判断.【解答】解:∵三角形角平分线的性质为:三角形的三条角平分线在三角形内部且相交于一点,到三角形三条边的距离相等,∴A、B、C三个选项均正确,D选项错误.故选D.【点评】此题考查了角平分线的性质,熟记性质是解题的关键.3.(2015?茂名校级一模)如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.7【考点】角平分线的性质.【专题】常规题型.【分析】由角平分线的性质可得点D到AB的距离等于CD,根据已知求得CD即可.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离等于CD,∵BC=10,BD=6,∴CD=BC﹣BD=10﹣6=4,∴点D到AB的距离是4.故选A.【点评】此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.4.(2015?泰安样卷)如图,Rt△ABC中,∠C=90°,∠B=45°,AD 是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A.2m B.a﹣m C.a D.a+m【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,再判断出△BDE是等腰直角三角形,根据等腰直角三角形的性质可得BE=DE,然后根据AE=AB﹣BE计算即可得解.【解答】解:∵AD是∠CAB的平分线,DE⊥AB,∠C=90°,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵∠B=45°,DE⊥AB,∴△BDE是等腰直角三角形,∴BE=DE=m,∵AE=AB﹣BE=a﹣m,∴AC=a﹣m.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等腰直角三角形的判定与性质,熟记性质是解题的关键.5.(2015?河北模拟)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.【解答】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=BC?DE=×5×3=7.5.故选:A.【点评】本题考查了角平分线的性质.角的平分线上的点到角的两边的距离相等.6.(2015?芜湖三模)△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:2【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得点P到△ABC 三边的距离相等,然后根据等高的三角形的面积的比等于底边的比解答.【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等高的三角形的面积的比等于底边的比,熟记性质并判断出点P到△ABC三边的距离相等是解题的关键.7.(2015?江西校级模拟)如图,在△ABC中,∠C=90°,AD平分∠CAB,已知CD=3,BD=5,则下列结论中错误的是()A.AC=6 B.AD=7 C.BC=8 D.AB=10【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,由角平分线的性质可知CD=DE=3,由勾股定理求出BE的长,再由相似三角形的判定定理得出△BED∽△BCA,故可得出AC及AB的长,在Rt△ACD中,根据勾股定理求出AD的长即可.【解答】解:∵CD=3,BD=5,∴BC=CD+BD=3+5=8,故C正确;过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE=3.在Rt△BDE中,∵BD=5,DE=3,∴BE===4.∵∠B=∠B,∠DEB=∠C,∴△BED∽△BCA,∴==,即==,解得AB=10,AC=6,故A,D正确;在Rt△ACD中,∵AC=6,CD=3,∴AD===3,故B错误.故选B.【点评】本题考查的是角平分线的性质,根据题意构造出直角三角形,利用勾股定理求解是解答此题的关键.8.(2015春?成都校级期末)如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点 D.△ABC三条角平分线的交点【考点】角平分线的性质;作图—应用与设计作图.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选D.【点评】本题主要考查的是角的平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.9.(2015秋?平南县月考)如图,Rt△ABC,∠C=90°,AD平分∠CAB,DE⊥AB于E,则下列结论中不正确的是()A.BD+ED=BC B.DE平分∠ADBC.AD平分∠EDC D.ED+AC>AD【考点】角平分线的性质.【分析】根据已知条件由角平分线的性质可得结论CD=DE,由此又可得出很多结论,对各选项逐个验证,证明.【解答】解:CD=DE,∴BD+DE=BD+CD=BC;又有AD=AD,可证△AED≌△ACD∴∠ADE=∠ADC即DE平分∠ADB;在△ACD中,CD+AC>AD所以ED+AC>AD.故选B.【点评】本题主要考查平分线的性质,由已知证明△AED≌△ACD是解决的关键.10.(2015春?吉州区期末)在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点 B.N点 C.P点 D.Q点【考点】角平分线的性质.【专题】网格型.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.【点评】本题主要考查平分线的性质,根据正方形网格看出∠AOB平分线上的点是解答问题的关键.二.填空题(共10小题)11.(2015?连云港)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.【考点】角平分线的性质.【分析】估计角平分线的性质,可得出△ABD的边AB上的高与△ACD 的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.12.(2015?聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.【考点】角平分线的性质.【分析】求出∠ABC,求出∠DBC,根据含30度角的直角三角形性质求出BC,CD,问题即可求出.【解答】解:∵∠C=90°,∠A=30°,∴∠ABC=180°﹣30°﹣90°=60°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=30°,∴BC=AB=3,∴CD=BC?tan30°=3×=,∵BD是∠ABC的平分线,又∵角平线上点到角两边距离相等,∴点D到AB的距离=CD=,故答案为:.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.13.(2015?萝岗区一模)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,若AB=4,且点D到BC的距离为3,则BD= .【考点】角平分线的性质.【分析】根据角平分线的性质得到AD=3,由勾股定理求得BD.【解答】解:∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,点D到BC的距离为3,∴AD=3,∵AB=4,∴BD==5.【点评】本题主要考查了角平分线的性质,由已知能够注意到D到BC 的距离即为DE长是解决的关键.14.(2015?绿园区一模)如图,在四边形ABCD中,∠A=90°,AD=8.对角线BD⊥CD,P是BC边上一动点,连结PD.若∠ADB=∠C,则PD长的最小值为.【考点】角平分线的性质;垂线段最短.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小.结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小.∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=8,∴DP=8.故答案为:8.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并判断出DP最小时的位置是解题的关键.21·*教育网15.(2015春?苏州校级期末)如图,△ABC中,∠C=90°,CA=CB,AD平分∠CAB.交BC于D,DE⊥AB于E,且AB=6,△DEB的周长为.【考点】角平分线的性质;全等三角形的判定与性质;勾股定理.【分析】分析已知条件,根据勾股定理可求得CA的长,△CAD≌△EAD,则DE=DC,在△BED中,BE=AB﹣AE,DE=DC,△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB.【解答】解:△ABC中,∠C=90°,CA=CB,AB=6根据勾股定理得2CB2=AB2,∴CB=3,∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB∴∠DEA=90°=∠C∴△CAD≌△EAD(AAS)∴AC=AE=3,DE=CD∴EB=AB﹣AE=6﹣3故△DEB的周长为:BE+DE+DB=BE+CD+DB=BE+CB=6﹣3+3=6.【点评】此题考查了全等三角形的判定及性质,应用了勾股定理,三角形周长的求法,范围较广.16.(2015春?晋江市期末)如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,若∠DBC=50°,则∠ABC= (度).【考点】角平分线的性质.【分析】根据到角的两边的距离相等的点在角平分线上可得BD平分∠ABC,再根据∠DBC=50°可得答案.【解答】解:∵DE⊥AB于点E,DF⊥BC于点F,且DE=DF,∴BD平分∠ABC,∴∠ABC=2∠DBC,∵∠DBC=50°,∴∠ABC=100°,故答案为:100.【点评】此题主要考查了角平分线的性质,关键是掌握到角的两边的距离相等的点在角平分线上.17.(2015秋?蓟县期中)如图,在Rt△ABC中,已知∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若△BDE的周长为8,则AB的长为8 .18.(2015秋?镇海区校级月考)如图,BD是△ABC的角平分线,DE ⊥BC于E,若S△ABC=60cm2,AB=12cm,BC=18cm,则S△DBC= ,DE= .【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得点D到AB的距离等于点D到BC的距离,即DE的长度,再根据等高的三角形的面积的比等于底边的比求出S△ABD:S△DBC,然后求解即可,再利用三角形的面积公式列式计算即可求出DE.【解答】解:∵BD是△ABC的角平分线,DE⊥BC,∴点D到AB的距离等于点D到BC的距离,即DE的长度,∵AB=12cm,BC=18cm,∴S△ABD:S△DBC=AB:BC=12:18=2:3,∵S△ABC=60cm2,∴S△DBC=60×=36cm2,∵DE⊥BC,∴BC?DE=36,即×18?DE=36,解得DE=4cm.故答案为:36cm2;4cm.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,等高的三角形的面积的比等于底边的比,熟记各性质是解题的关键.19.(2014秋?定兴县期末)如图,点P是∠BAC的平分线上一点,PE ⊥AB,PF⊥AC,E,F分别为垂足,①PE=PF,②AE=AF,③∠APE=∠APF,上述结论中正确的是(只填序号).20.(2013秋?石家庄期末)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.【考点】角平分线的性质.【分析】先根据角平分线的性质求得PE=PF,再利用全等即可判定.【解答】解:∵点P是∠BAC的平分线上一点,PE⊥AB,PF⊥AC∴PE=PF∴Rt△APE≌RT△APF(HL)∴AE=AF,∠APE=∠APF故填①②③.【点评】本题主要考查平分线的性质及三角形全等的判定及性质;由已知求得Rt△APE≌RT△APF是解决的关键.三.解答题(共10小题)21.(2015?路南区二模)在学完全等三角形后,李老师给出了下列题目:求证:角的内部到角的两边距离相等的点在角的平分线上.已知:求证:证明:【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.2-1-c-n-j-y 【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.22.(2015春?泰山区期末)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:AC=AE;(2)若点E为AB的中点,CD=4,求BE的长.【考点】角平分线的性质;全等三角形的判定与性质.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质证明结论.【解答】已知:PE=PF,PE⊥OA于E,PF⊥OB于F,求证:点P在∠AOB的平分线上.证明:在Rt△POE和Rt△POF中,,∴Rt△POE≌△RtPOF,∴∠EOP=∠FOP,∴点P在∠AOB的平分线上.【点评】本题考查的是角平分线的判定的证明,灵活运用直角三角形全等的判定定理是解题的关键.23.(2015?黄岛区校级模拟)现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.【考点】角平分线的性质;线段垂直平分线的性质;作图—应用与设计作图.【分析】根据线段垂直平分线性质作出AB的垂直平分线,根据角平分线性质作出∠BAC的角平分线,即可得出答案.【解答】解:作AB的垂直平分线EF,作∠BAC的角平分线AM,两线交于P,则P为这个中心医院的位置.【点评】本题考查了线段垂直平分线性质,角平分线性质的应用,主要考查学生的理解能力和动手操作能力24.(2015春?澧县期末)如图:在△ABC中,∠C=90° AD是∠BAC 的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点评】本题主要考查平分线的性质,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.25.(2015秋?泰兴市校级月考)如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF相交于点D,若BD=CD.求证:AD平分∠BAC.【考点】角平分线的性质;全等三角形的性质;直角三角形全等的判定.【专题】证明题.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE (AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴△BDF≌△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.26.(2014秋?芜湖校级期末)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,垂足为E、F,求证:EB=FC.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】首先由角平分线的性质可得DE=DF,又有BD=CD,可证Rt△BED≌Rt△DFC(HL),即可得出EB=FC.21·cn·jy·com【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.【点评】此题主要考查角平分线的性质和全等三角形的判定和性质,难度不大.27.(2014秋?陇西县期末)如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足为C,D.求证:(1)OC=OD;(2)DF=CF.【考点】角平分线的性质;全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】(1)首先根据角平分线的性质可得EC=DE,∠ECO=∠EDO=90°,然后证明Rt△COE≌Rt△DOE可得CO=DO;(2)证明COF≌△DOF可根据全等三角形的性质可得FC=FD.【解答】证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴EC=DE,∠ECO=∠EDO=90°,在Rt△COE和Rt△DOE中,,∴Rt△COE≌Rt△DOE(HL),∴CO=DO;(2)∵EO平分∠AOB,∴∠AOE=∠BOE,在△COF和△DOF中,,∴△COF≌△DOF(SAS),∴FC=FD.【点评】此题主要考查了角平分线的性质,以及全等三角形的判定与性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.28.(2014秋?南昌期末)如图,AD是△ABC中∠BAC的角平分线,DE ⊥AB于点E,S△ABC=7,DE=2,AB=4,求:(1)S△ACD;(2)AC的长.【考点】角平分线的性质.网【分析】(1)根据S△ACD=S△ABC﹣S△ABD,利用三角形的面积公式可求解;(2)过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:(1)S△ACD=S△ABC﹣S△ABD=7﹣×4×2=3;(2)如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.∵S△ACD=3,∴×AC×2=3,解得AC=3.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.29.(2014秋?苏州期末)一天,数学老师布置一个思考题,要求每个学习小组课后去讨论.你能和他们一起思考吗?题目是这样的:如图,P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,垂足分别为D,E.(1)比较PD与PE的长短,得;(2)在OC上另取一点Q,画QF⊥OA,QG⊥OB,垂足分别为F,G.再比较QF、QG的长短,得;(3)你可以在角平分线OC上再取其它一些点试试,从中你发现了什么?【考点】角平分线的性质.【分析】(1)通过实际操作能得到P点到角的两边距离相等;(2)通过实际操作能得到P点到角的两边距离相等;(3)可以通过证明三角形全等来得到正确的结论;【解答】解:(1)用直尺量得PD=PE;(2)用直尺量得QF=QG;(3)证明:∵P是∠AOB的角平分线OC上一点,∴∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴∠ODP=∠OEP,∴△DOO≌△EPO,∴PD=PE,∴角平分线上的点到角的两边的距离相等.【点评】本题考查了角平分线的性质,通过学生的动手、动脑使得学生更加牢固的掌握了新知识.30.(2014秋?赣州期末)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【考点】角平分线的性质;全等三角形的判定与性质.【专题】几何综合题.【分析】(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,21根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.【解答】(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.22。
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)知识点总结1.角平分线的定义:角的内部把角平均分成两个相等的角的射线叫做角的平分线。
2.角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
3.角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
4.角平分线的尺规作图:具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
5.线段的垂直平分线的定义:过线段的中点且与线段垂直的直线是这条线段的垂直平分线。
6.垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
7.垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
8.垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②练习题1、(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为()A.2 B.2C.4 D.4+2【分析】过点E作EH⊥OA于点H,根据角平分线的性质可得EH=EC,再根据平行线的性质可得∠ADE的度数,再根据含30°角的直角三角形的性质可得DE的长度,再证明OD=DE,即可求出OD的长.【解答】解:过点E作EH⊥OA于点H,如图所示:∵OE平分∠AOB,EC⊥OB,∴EH=EC,∵∠AOE=15°,OE平分∠AOB,∴∠AOC=2∠AOE=30°,∵DE∥OB,∴∠ADE=30°,∴DE=2HE=2EC,∵EC=2,∴DE=4,∵∠ADE=30°,∠AOE=15°,∴∠DEO=15°,∴∠AOE=∠DEO,∴OD=DE=4,故选:C.2、(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S △ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.3、(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.4、(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25 B.22 C.19 D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选:C.5、(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF垂直平分AC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴AE=AF=CF=CE,即四边形AECF是菱形,故①结论正确;∵∠AFB=∠FAO+∠ACB,AF=FC,∴∠FAO=∠ACB,∴∠AFB=2∠ACB,故②结论正确;∵S四边形AECF=CF•CD=AC•OE×2=AC•EF,故③结论不正确;若AF平分∠BAC,则∠BAF=∠FAC=∠CAD=90°=30°,∴AF=2BF,∵CF=AF,∴CF=2BF,故④结论正确;故选:B.33.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.【解答】解:∵边BC的垂直平分线DE交AB于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC的周长为AD+CD+AC=AB+AC=6,故答案为:6.34.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=10°,则∠C的度数是.【分析】根据线段垂直平分线的性质可得AE=EC,从而可得∠EAC=∠C,然后利用三角形内角和定理可得∠EAC+∠C=80°,进行计算即可解答.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.。
北京市西城区2019届初三数学中考复习 角的平分线的性质 专题复习检测题1.作∠AOB 的平分线时,以点O 为圆心,某一长度为半径作弧,与OA ,OB 分别相交于点C ,D ,然后分别以点C ,D 为圆心,适当的长度为半径作弧,使两弧相交于一点,则这个适当的长度应( ) A .大于12CD B .等于12CD C .小于12CD D .以上答案都不对2. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等3. 如图,OP 平分∠MON,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA =3,则PQ 的最小值为( )A. 3 B .2 C .3 D .2 34. 如图,AD 是△ABC 中∠BAC 的角平分线,DE⊥AB 于点E ,DE =2,AC =3,则△ADC 的面积是( )A .3B .4C .5D .65. 如图,OP 平分∠AOB ,PC⊥OA,PD⊥OB,垂足分别是C ,D ,下列结论中错误的是( )A .PC =PDB .OC =OD C .∠CPO=∠DPO D .OC =PC6. 如图,在△ABC 中,∠B,∠C 的平分线交于点O ,OD⊥AB 于点D ,OE⊥AC 于点E ,则OD 与OE 的大小关系是( )A .OD>OEB .OD =OEC .OD<OED .不能确定A.4 cm B.6 cm C.8 cm D.10 cm8. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P且与AB垂直.若AD=8,则点P到BC的距离是( )A.8 B.6 C.4 D.29. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为 .10. 命题“全等三角形对应边上的高线相等”的已知是,结论是.11. 如图,在△ABC中,AD是∠BAC的角平分线,AB=6 cm,AC=8 cm,则S△ABD∶S△ACD=,BD∶CD= .12. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,S△ABC=7,DE=2,AB=4,则AC的长是 .13. 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.14. 证明:全等三角形对应边上的中线相等.15. 如图,已知OD平分∠AOB,P是OD上一点,在OA,OB边上取OA=OB,PM⊥BD,PN⊥AD,垂足分别为16. 如图,在四边形ABCD 中,AC 平分∠BAD,过点C 作CE⊥AB 于点E ,且CD =CB ,∠ABC +∠ADC =180°.求证:AE =12(AB +AD).答案:1---8 AACAD BBC 9. 310. 两个三角形是全等三角形 它们对应边上的高相等 11. 3∶4 3∶4 12. 313. 证明:∵AD 平分∠BAC ,DE⊥AB,DF⊥AC, ∴DE=DF ,∠BED=∠CFD =90°,∵D 是BC 的中点,∴BD=CD ,在Rt △BDE 和Rt △CDF 中, ∵DE=DF ,DB =DC ,∴Rt △BDE ≌Rt △CDF(HL),∴∠B=∠C 14. 证明:△ABC≌△A′B′C′,∴AB=A′B′, ∠B=∠B′,BC =B′C′.又∵AD ,A′D′分别是BC ,B′C′边上的中线,∴BD=B′D′.∴△ABD≌△A′B′D′,∴AD=A′D′ 15. 证明:∵OD 平分∠AOB ,∴∠1=∠2, 又∵OA =OB ,OD =OD ,∴△AOD≌△BOD, ∴∠3=∠4,又∵PM⊥DB,PN⊥DA,∴PM=PN16. 证明:过点C 作CF⊥AD,交AD 延长线于点F ,易证△CEB≌△CFD,△AEC ≌△AFC ,∴DF =BE ,AF =AE ,又DF =AF -AD =AE -AD ,BE =AB -AE ,∴AB -AE =AE -AD ,即AE =12(AB +AD)2019-2020学年数学中考模拟试卷一、选择题1.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60米到达C点,测得点B在点C的北偏东60°方向,则这段河的宽度为( )A.米B.+1)米C.(90﹣米D.1)米2.如图,一次函数y=-x与二次函数y=ax2+bx+c的图象相交于点M、N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上结论都正确3.如图,直径为单位1 的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2 B C.πD.44.如图,AB∥CD,直线L交AB于点E,交CD于点F,若∠2=75°,则∠1等于()A.105°B.115°C.125°D.75°5.已知圆锥的底面半径为5cm,侧面积为60πcm2,设圆锥的母线与高的夹角为θ,则sinθ的值为()A.313B.513C.512D.12136.(2008•衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( ) A .289(1﹣x )2="256" B .256(1﹣x )2=289 C .289(1﹣2x )2="256" D .256(1﹣2x )2=2897.如图,直线AB :y =12x +1分别与x 轴、y 轴交于点A 、B ,直线CD : y =x +b 分别与x 轴、y 轴交于点C 、D .直线AB 与CD 相交于点P ,已知S △ABD =4,则点P 的坐标是 ( )A .(3,4)B .(8,5)C .(4,3)D .(12,54) 8.一个直角三角形两边长分别为3和4,则它的面积为( )A .6B .12C .6或10D .6 9.先化简,再求值: 2212111x x x x -+⎛⎫-÷ ⎪-⎝⎭,小明的解题步骤如下:原式= 21(1)(1)(1)x x x x x --÷+-第一步 = 21(1)(1)(1)x x x x x --⋅+-第二步 =21(1)(1)(1)x x x x x -+-⋅-第三步 =1x x+第四步 请你判断一下小明的解题过程从第几步开始出错( )A .第一步B .第二步C .第三步D .第四步 10.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°11.在平面直角坐标系中,点A 的坐标是(2,1),将点A 绕原点O 旋转180°得到点A′,则点A′的坐标是( ) A .(-1,-2)B .(1,-2)C .(-2,-1)D .(2,-1)12.如图,在△ABC 中,BC >AB >AC ,D 是边BC 上的一个动点(点D 不与点B 、C 重合),将△ABC 沿AD 折叠,点B 落在点B'处,连接BB',B'C ,若△BCB'是等腰三角形,则符合条件的点D 的个数是A .0个B .1个C .2个D .3个二、填空题13.如图4,AD BC ,AC 、BD 相交于点O ,且:1:4AODBOCS S=.设=AD a ,=DC b ,那么向量=AO _____.(用向量a 、12,x x R ∈表示)14.若()2m2y m 2x mx 1-=+++是关于自变量x 的二次函数,则m =______.15.把多项式a 3b-ab 分解因式的结果为______.16.已知△ABC 的三边长分别为5,7,8,△DEF 的三边分别为5,2x ,3x ﹣5,若两个三角形全等,则x=__. 17.若(x+2)(x ﹣1)=x 2+mx ﹣2,则m =_____.18.如图,过圆外一点P 作⊙O 的切线PC ,切点为B ,连结OP 交圆于点A .若AP =0A =1,则该切线长为_____.三、解答题19.计算:﹣12+(π0﹣2|. 20.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)21.如图,在△ABC中,AD是△ABC的中线,点E是AD的中点,连接BE并延长,交AC于点F.(1)根据题意补全图形.(2)如果AF=1,求CF的长.22.为了了解全校3000名学生对学校设置的足球、篮球、乒乓球、羽毛球、排球共五项球类活动的喜爱情况,在全校范围内随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种)进行了问卷调查,将统计数据绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)m=,n=.并补全图中的条形统计图.(2)请你估计该校约有多少名学生喜爱打乒乓球.(3)在抽查的m名学生中,有A、B、C、D等10名学生喜欢羽毛球活动,学校打算从A、B、C、D这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中B、C的概率.23.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为32千米/分,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的部分函数图象如图.(1)A、B两地相距____千米,甲的速度为____千米/分;(2)求线段EF所表示的y与x之间的函数表达式;(3)当乙到达终点A时,甲还需多少分钟到达终点B?24.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,∠OAB=90°且OA=AB,OB=8,OC =5.(1)求点A的坐标;(2)点P是从O点出发,沿X轴正半轴方向以每秒1单位长度的速度运动至点B的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,交四边形ABCD的边AO或AB于点Q,交OC或BC于点R.设运动时间为t(s),已知t=3时,直线l恰好经过点 C.求①点P出发时同时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求当0<t<3时S与t的函数关系式;并直接写出S的最大值.②是否存在某一时刻t,使得△ORE为直角三角形?若存在,请求出相应t的值;若不存在,请说明理由.25.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有4% 的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?【参考答案】***二、填空题13.11 33a b14.215.ab(a+1)(a-1)16.417.118.三、解答题19.﹣【解析】【分析】根据负整数指数幂的性质、乘方的定义、零指数幂的性质、二次根式的性质及绝对值的性质依次计算后,,再合并即可求解.【详解】3+1﹣.【点睛】本题考查了实数的混合运算,熟知实数的运算法则及运算顺序是解决问题的关键.20.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC中,由ME=EC•tan ∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.21.(1)如图所示,见解析;(2)CF =2. 【解析】 【分析】(1)根据线段垂直平分线的作法画出图形即可;(2)过点D 作DG ∥BF ,交AC 于点G ,根据三角形中位线定理即可得出结论. 【详解】 (1)如图,(2)作DH ∥AC 交BF 于H ,如图, ∵DH ∥AF ,∴∠EDH =∠EAF ,∠EHD =∠EFA , ∴△EDH ≌△EAF , ∴DH =AF =1,∵点D 为BC 的中点,DH ∥CF , ∴DH 为△BCF 的中位线, ∴CF =2DH =2. 【点睛】本题考查的是作图-复杂作图,熟知线段垂直平分线的作法是解答此题的关键. 22.(1)100,5;(2)600;(3)16. 【解析】 【分析】(1)篮球30人占30%,可得总人数,由此可以计算出n ,求出足球人数=100-30-20-10-5=35人,即可解决问题;(2)用样本估计总体的思想即可解决问题. (3)画出树状图即可解决问题. 【详解】(1)由题意m =30÷30%=100,排球占(13)(57)[(25)23](21)n S n n n n=-++-+++--+-+--=-=5%,条形图如图所示,故答案为100,5.(2)若全校共有3000名学生,该校约有3000×20100=600名学生喜爱打乒乓球.(3)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴同时选中B、C的概率为16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.23.(1)24,13;(2)y=﹣116x+33;(3)当乙到达终点A时,甲还需50分钟到达终点B.【解析】【分析】(1)观察图象知A、B两地相距为24km,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,则甲的速度是26千米/分钟;(2)列方程求出相遇时的时间,求出点F的坐标,再运用待定系数法解答即可;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案【详解】解:(1)观察图象知A、B两地相距为24km,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,∴甲的速度是2163千米/分钟;故答案为:24,13;(2)设甲乙经过a 分钟相遇,根据题意得,31(6)2423a a -+=,解答a =18, ∴F(18,0),设线段EF 表示的y 与x 之间的函数表达式为y =kx+b ,根据题意得,018226x b k b =+⎧⎨=+⎩,解得11k 6b 33⎧=-⎪⎨⎪=⎩, ∴线段EF 表示的y 与x 之间的函数表达式为y =﹣116x+33; (3)相遇后乙到达A 地还需:(18×13)÷32=4(分钟), 相遇后甲到达B 站还需:(12×32)÷13=54(分钟)当乙到达终点A 时,甲还需54﹣4=50分钟到达终点B . 【点睛】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.24.(1)A (4,4);(2)①2728.S (t 2)33=-+,S 有最大值为283;②t 的值为4或3614. 【解析】 【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)①首先求出直线OA 、OB 、OC 、BC 的解析式.①求出P 、Q 的坐标即可解决问题;即可表示出QR 和PE 的长,即可得到三角形面积解析式利用配方法求出最值即可;②分三种情况讨论,即∠REO =90°或∠ORE =90°或∠ROE =90°分别求解即可. 【详解】解:(1)由题意△OAB 是等腰直角三角形, ∵OB =8,即B (8,0) ∴A (4,4),(2)∵A (4,4),B (8,0),∴直线OA 的解析式为y =x ,直线AB 的解析式y =﹣x+6, ∵t =3时,直线l 恰好过点C ,即OP =3,OC =5, ∴PR =4,C (3,﹣4),∴直线OC 的解析式为y =-43x ,直线BC 的解析式为y =43255x -, ①当0<t <3时,Q (t ,t ),R (t ,-43t ),∴QR=t-(-43t)=73t .PE =8﹣2t .∴S =2117728(82)(2)22333PE QR t t t =-=--+.∴t=2时,S有最大值为283.②要使△ORE为直角三角形,则有三种情况:Ⅰ.若∠REO=90°,如图1,则点P与E点重合,∴8﹣2t=0,解得t=4,Ⅱ.若∠ORE=90°,如图2.△ORP∽△REP,∴OP RPRP PE=,即RP2=OP•PE,∴24(82) 3tt t⎛⎫=-⎪⎝⎭,解之得:t=36 17,Ⅲ.当t>4时,△ORE不可能为直角三角形.故使得△ORE为直角三角形时,t的值为:4或36 17,【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.25.(1)水果店第一次购进水果800元,第二次购进水果1200元;(2)水果每千克售价为10元【解析】【分析】(1)设该水果店两次分别购买了x元和y元的水果.根据“购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,”、“两次购进水果共花去了2000元”列出方程组并解答;(2)设该水果每千克售价为m元,,则由“售完这些水果获利不低于3780元”列出不等式并解答.【详解】(1)设水果店第一次购进水果x 元,第二次购进水果y 元 由题意,得20002414x y y x +=⎧⎪⎨=⨯⎪⎩-解之,得8001200x y =⎧⎨=⎩故水果店第一次购进水果800元,第二次购进水果1200元.(2)设该水果每千克售价为m 元,第一次购进水果8004=200÷ 千克,第二次购进水果12003=400÷ 千克,由题意()2001-30+4001-420003780m ⨯⨯⋅-≥⎡⎤⎣⎦%(%)解之,得10m ≥故该水果每千克售价为10元. 【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于列出方程2019-2020学年数学中考模拟试卷一、选择题1.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有( )A .1个B .2个C .3个D .4个2.下面两幅图是由几个小正方形搭成的几何体的主视图与俯视图,则搭成这个几何体的小正方体的个数为( )A.3个B.4个C.5 个D.6个3.将抛物线y =2x 2﹣1沿直线y =2x 方向向右上方平移 )A.y =2(x+2)2+3 B.22(1y x =--C.221y x =+D.y =2(x ﹣2)2+34.港珠澳大桥东起香港国际机场附近的香港口岸人工导,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海港湾,全长55千米,设计时速100千米/小时,工程项目总投资额1269亿元,用科学记数法表示1269亿元为( ) A .1269×108B .1.269×108C .1.269×1010D .1.269×10115.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A +B .1C .1D .6.如图,点,DE 分别在ABC ∆的,AB AC 边上,下列条件:①AED B ∠=∠;②AE DE AB BC=;③,AD AEAC AB =其中能使ADE ∆与ACB ∆相似的是( )A .①②B .②C .①③D .②③7.3-的绝对值的倒数是( ) A .3-B .13-C .13D .38.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .29.下列运算正确的是( ) A .325()a a =B .325a a a +=C .32()a a a a -÷= D .331a a ÷=10.在实数范围内把二次三项式x 2+x ﹣1分解因式正确的是( )A .(x ﹣12-)(x ﹣12) B .(x ﹣12)(x+12+)C .()(x )D .()() 11.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A→C→B 运动,点Q 从点A 出发以vcm/s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sinB =13;③图象C 2段的函数表达式为y =﹣13x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )A .①②B .①②④C .①③④D .①②③④12.如图,∠AOB =45°,OC 是∠AOB 的角平分线,PM ⊥OB ,垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PMPN的值等于( )A .12B .2C D .二、填空题13.如图,四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则应添加的条件是______.(添加一个条件即可,不添加其它的点和线).14.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.15.某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是________(填序号).16.已知抛物线2=2(1)3y x -+-与直线2y kx m =+相交于A (-2,3)、B (3,-1)两点,则12y y ≥时x 的取值范围是___________.17.如图,在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,ABC ∠的平分线交线段DE 于点F ,若12AB =,18BC =,则线段EF 的长为_______.18.某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n 名,若男生小强参加是必然事件,则n=__________. 三、解答题19.如图,在△ABC 中,BD 平分∠ABC ,AE ⊥BD 于点O ,交BC 于点E ,AD ∥BC ,连接CD , (1)求证:AD=BE ;(2)当△ABC 满足什么条件时四边形ABED 是正方形?请说明理由.20.解方程组或不等式组:(1)2035x y x y -=⎧⎨+=⎩ (2)330-6-2x x x +≥⎧⎨≤⎩21.如图,一架无人机在点A 处悬停,从地面B 处观察无人机的仰角是α,从楼顶C 处观察无人机的仰角是β.已知B 、AE 、CD 在同一平面内,BD =115 m ,楼高CD =50 m ,求无人机的高度AE .(参考数据:2tan 2,sin 0.89,tan ,sin 0.553ααββ=≈=≈.)22.程大位,明代珠算发明家,被称为珠算之父,卷尺之父.六十岁时完成其杰作《算法统宗》,其中有这样一道题,其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差八两.请问:这一群人共有多少人?所分的银子共有多少两?23.荆州市精准扶贫工作进入攻坚阶段.某村在工作组长期的技术资金支持下,成立了果农合作社,大力发展经济作物,其中樱桃和枇杷两种果树的种植已初具规模,请阅读以下信息.信息1:该村小李今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍.信息2:小李今年樱桃销量比去年减少了m%,枇杷销量比去年增加了2m%.若樱桃售价与去年相同,枇杷售价比去年减少了m%,则今年两种水果销售总额与去年两种水果的销售总额相同. 樱桃销量(千克)信息3:该村果农合作社共收获樱桃2800千克,经市场调研,樱桃市场需求量y (千克)与售价x (元/千克)之间的关系为:y =﹣100x+4800(8≤x≤38),因保质期和储存条件方面的原因剩余水果将被无偿处理销毁. 请解决以下问题:(1)求小李今年收获樱桃至少多少千克? (2)请补全信息2中的表格,求m 的值.(3)若樱桃种植成本为8元/千克,不计其它费用.求今年该果农合作社出售樱桃所获得的最大利润? 24.如图,四边形ABCD 中,//CD AB ,= 90ABC ∠︒,AB BC =,将BCD ∆绕点B 逆时针旋转90︒得到BAE ∆,连接CE ,过点B 作BG CE ⊥于点F ,交AD 于点G . (1)如图,CD AB =.①求证:四边形ABCD 是正方形; ②求证:G 是AD 中点;(2)如图,若CD AB <,请判断G 是否仍然是AD 的中点?若是,请证明;若不是,请说明理由.25.如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AO 交BC 于点O ,以O 为圆心,OC 长为半径作⊙O ,⊙O 交AO 所在的直线于D 、E 两点(点D 在BC 左侧). (1)求证:AB 是⊙O 的切线; (2)连接CD ,若AC =23AD ,求tan ∠D 的值; (3)在(2)的条件下,若⊙O 的半径为5,求AB 的长.【参考答案】***一、选择题二、填空题13.AB=CD(答案不唯一)14.1015.①②③16.x≤-2或x≥317.318.1;三、解答题19.(1)详见解析;(2)当△ABC满足∠ABC=90°时,四边形ABED是正方形.理由见解析.【解析】【分析】(1)判定△AOD≌△EOB,即可得到结论;(2)先判定四边形ABED是菱形,可得当∠ABC=90°时,菱形ABED是正方形,据此可得结论.【详解】(1)证明:∵AD∥BC,∴∠CBD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,又∵AE⊥BD,∴BO=DO,又∵∠AOD=∠EOB,∴△AOD≌△EOB,∴AD=EB;(2)当△ABC满足∠ABC=90°时,四边形AECD是正方形.理由:∵△AOD≌△EOB,∴AD=BE,又∵AD∥BE,AE⊥BD,∴四边形ABED是菱形,∴当∠ABC=90°时,菱形ABED是正方形,即当△ABC满足∠ABC=90°时,四边形ABED是正方形.【点睛】本题主要考查了菱形的判定与性质,正方形的判定,全等三角形的判定与性质的运用,证得△AOD≌△EOB是解决问题的关键.20.(1)12x y =⎧⎨=⎩;(2)-12x ≤≤ 【解析】【分析】(1)运用加减消元法求解即可;(2)首先求出每个不等式的解集,再取它们解集的公共部分即可得出不等式组的解集.【详解】(1)2035x y x y ①②-=⎧⎨+=⎩ ①+②得,5x=5,解得,x=1,把x=1代入①得,y=2,所以,方程组的解为:12x y =⎧⎨=⎩; (2)330-6-2x x x +≥⎧⎨≤⎩①②解不等式①得,x≥-1;解不等式②得,x≤2;故不等式组的解集为:-12x ≤≤.【点睛】本题考查了二元一次方程组的解法,二元一次方程组的解法有:代入消元法和加减消元法;同时还考查了解一元一次不等式组,求不等式组解集的口诀是:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.m【解析】【分析】过点C 作CF ⊥AE ,垂足为F ,首先在Rt △ACF 中求出AF 和FC 的关系,进而设FC=3x ,则AF=2x ,BE=115-3x ,在Rt △ABE 中,求出AE 和BE 的关系,进而求出x 的值,即可求出AE 的长度.【详解】解:如图,过点C 作CF ⊥AE ,垂足为F ,根据题意可得FC=ED,EF=CD=50.在Rt△ACF中,∠AFC=90°,∠ACF=β,∵tanAFFC β=,∴ AF=FC·tanβ=23 FC.设FC=3x,则AF=2x,BE=115-3x.在Rt△ABE中,∠AEB=90°,∠ABE=α,∵tanAEBE α=,∴ AE=BE·tanα=2BE.∴ 50+2x=2(115-3x).解得 x=22.5.∴ AE=50+45=95.答:无人机的高度AE为95 m.【点睛】本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.22.这一群人共有6人,所分的银子共有46两【解析】【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【详解】设有x人,依题意有.7x+4=9x-8,.解得x=6,.7x+4=42+4=46.答:这一群人共有6人,所分的银子共有46两.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中所分的银子的总两数相等的等量关系列出方程,再求解.23.(1)小李今年收获樱桃至少50千克;(2)m的值为12.5;(3)今年该果农合作社出售樱桃可以获得的最大利润为35200元【解析】【分析】(1)设小李今年收获樱桃a千克,根据题意,列出不等式即可;(2)根据信息2可填空上表的数据,注意到等量关系“今年两种水果销售总额与去年两种水果的销售总额相同”即可列出方程;(3)根据市场的需求进行分情况讨论,①当y=2800;②当y≥2800时;③当y<2800时,三种情况根据x的取值范围,进行计算相应的w值.【详解】(1)设小李今年收获樱桃a千克,根据题意得:400﹣a<7a,解得:a≥50,答:小李今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=1,原方程可化为:3000(1﹣t)+4000(1+2t)(1﹣t)=7000,整理可得:8t2﹣t=0,解得t1=0,t2=0.125,∴m1=0(舍去),m2=12.5,∴m的值为12.5;(3)设利润为w元,①当y=2800,﹣100x+4800=2800,则x=20,此时w=33600元;②当y≥2800时,﹣100x+4800≥2800,则x≤20,此时,w=2800(x﹣8)=2800x﹣22400;∵2800>0,∴w随着x的增大而增大,∴x=20时,w的最大值为33600;③当y<2800时,﹣100x+4800<2800,则x>20,∵8≤x≤38,∴20<x≤38,此时,w=(﹣100x+4800)x﹣2800×8=﹣100x2+4800x﹣22400,整理得w=﹣100(x﹣24)2+35200,∵﹣100<0,20<x≤38,∴x=24时,w的最大值为35200.综上所述,今年该果农合作社出售樱桃可以获得的最大利利润为35200元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.24.(1)①详见解析;②详见解析;(2)点 G 仍然是 AD 的中点,证明详见解析.【解析】【分析】(1)①根据题意得出四边形 ABCD 是平行四边形,再由90ABC ∠=︒,AB BC =,得出矩形ABCD 是正方形.②由①得出BAE BCD ∆≅∆,从而得到ARE BRC ∆≅∆,再求出CBR BAG ∆≅∆,即可解答(2)延长CD ,BG 交于点M ,延长EA 交 CM 于点 N ,先求出矩形ABCN 是正方形在证明BMC CEN ∆≅∆,从而得出ABG DMG ∆≅∆,即可解答【详解】(1)证明:①//CD AB , CD AB =,∴四边形 ABCD 是平行四边形,90ABC ∠=︒,∴平行四边形ABCD 是矩形.AB BC =,∴矩形ABCD 是正方形.②由①得90BAD ∠=︒,AB AD =.由旋转得BAE BCD ∆≅∆,∴AE CD =,90BAE BCD ∠=∠=︒,∴AE BC =,90EAB CBA ∠=∠=︒.ARE BRC ∠=∠,∴ARE BRC ∆≅∆,∴AR BR =.BF CE ⊥,∴90CFG ∠=︒,∴90FCB FBC ∠+∠=︒.90FBC FBA ∠+∠=︒,∴FCB FBA ∠=∠,∴CBR BAG ∆≅∆,∴AG BR =, ∴1122AG AB AD ==, ∴G 是 AD 的中点. (2)点 G 仍然是 AD 的中点.证明如下:延长CD,BG交于点M,延长EA交CM于点N.//AB CD,90ABC∠=︒,∴90BCD∠=︒,BAG MDG∠=∠,ABG DMG∠=∠.由旋转得BAE BCD∆≅∆,∴90BAE BCD∠=∠=︒,CD AE=,∴90BAN∠=︒,∴四边形ABCN是矩形.AB BC=,∴矩形ABCN是正方形,BC CN AN==,90CNE∠=︒,∴90CEN ECN∠+∠=︒.90CFG∠=︒,∴90ECN BMC∠+∠=︒,∴BMC CEN∠=∠,∴BMC CEN∆≅∆,∴CM NE=,∴CM CD NE AE-=-,即DM AN=,∴AB DM=,∴ABG DMG∆≅∆,∴GA GD=,∴G是AD中点.【点睛】此题考查四边形综合题,解题关键在于利用全等三角形的判定与性质进行求证25.(1)证明见解析;(2)tan∠D=23;(3)AB=2028119.【解析】【分析】(1)如图,过点O作OF⊥AB,,求出OC=OF,证明OF为⊙O半径,且OF⊥AB,即可求解;(2)连接CE,根据∠ACE=∠D,且∠A=∠A,求出△ACE∽△ADC,可得23AC CEAD CD==,即可求解;(3)根据△ACE∽△ADC,得AC AEAD AC=,根据AO=AO,OC=OF,证明Rt△AOF≌Rt△AOC,求出AF=AC=12,根据∠B=∠B,∠OFB=∠ACB=90°,证明△OBF∽△ABC,可得OF OB BFAC AB BC==,求出BF,即可求解.【详解】证明:(1)如图,过点O作OF⊥AB,∵AO平分∠BAC,OF⊥AB,∠ACB=90°∴OC=OF,∴OF为⊙O半径,且OF⊥AB∴AB是⊙O切线.(2)连接CE∵DE是直径∴∠DCE=90°∵∠ACB=90°∴∠DCE=∠ACB∴∠DCO=∠ACE∵OC=OD∴∠D=∠DCO∴∠ACE=∠D,且∠A=∠A∴△ACE∽△ADC∴2233AD AC CEAD CD AD===∴tan∠D=CE CD=23(3)∵△ACE∽△ADC∴AC AE AD AC=∴AC2=AD(AD﹣10),且AC=23AD∴AD=18∴AC=12∵AO=AO,OC=OF∴Rt△AOF≌Rt△AOC(HL)∴AF=AC=12∵∠B=∠B,∠OFB=∠ACB=90°∴△OBF∽△ABC∴OF OB BF AC AB BC==即512125OB BFBF BO==++∴5+25=12 60512 BO BFBF OB ⎧⎨+=⎩∴BF=600 119∴AB=FA+BF=12+600119=2028119【点睛】本题考查的是圆的综合运用,熟练掌握相似三角形和全等三角形是解题的关键.。
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。
角平分线专项练习30题(有答案)1.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.2.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+∠BAC.3.如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.4.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.5.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.求证:BC=AB+AE.6.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.7.如图,CD是Rt△ABC斜边上的高,∠BAC的平分线分别交BC、CD于点E、F.(1)求证:△ACF∽△ABE;(2)若AC=6cm,AF=3cm,AB=10cm,求出AE的长度.8.如图,CD∥AB,∠ABC,∠BCD的角平分线交于E点,且E在AD上,CE交BA的延长线于F点.(1)BE与CF互相垂直吗?若垂直,请说明理由;(2)若CD=3,AB=4,求BC的长.9.如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,(1)求证:AB∥CD;(2)在(1)的条件下,求∠AEM的度数.10.如图,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分别为B、C,E为线段AB上一点,(1)用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹);(2)若BE=3,请写出此时线段AE与AF的数量关系,并说明理由.11.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,(1)分别作出D到BA、BC的距离DE、DF;(2)求证:∠A+∠C=180°.12.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F,求证:BE=FC.13.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.14.如图,点D、B分别在∠A的两边上,C是∠DAB内一点,AB=AD,BC=CD,CE⊥AD于E,CF⊥AF于F,求证:CE=CF.15.如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.16.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.18.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC于D,PH⊥BA于H,求证:AP平分∠HAD.19.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB、AC于E、F两点.求证:AD⊥EF.(2)若∠MON=80°,求∠PAB的度数.21.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.22.如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D 到PE的距离与D到PF的距离相等.23.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.证明:BE=CF;(提示:连接线段BD、CD)25.如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.(2)ED=BC+BD.29.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.30.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM与DM相等,试说明你的理由.参考答案:1.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.2.证明:连接AP,且延长至G,∵PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,∴点P是△ABC三角平分线的交点,∴AP平分∠BAC,∴∠CAG=∠BAG=∠BAC,∵CP平分∠ACB,BP平分∠ABC,∴∠ACP=∠ACB,∠ABP=∠ABC,∴∠CPG=∠BAG+∠ABP=(∠BAC+∠ACB),∠BPG=∠BAG+∠ABP=(∠BAC+∠BC),∴∠BPC=∠CPG+∠BPG=(∠BAC+∠ACB)+(∠BAC+∠ABC)=∠BAC+(180°﹣∠BAC)=90°+∠BAC.3.证明:∵BD⊥AC,CE⊥AB,∠CDF=∠BEF=90°,在△CDF与△BEF中,,∴DF=EF,又∵BD⊥AC,CE⊥AB,∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上)4.解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.5.解:∵∠BAC=90°,BE平分∠ABC,DE⊥BC于D,∴AE=DE,∵BE是公共边,∴△BDE≌△BAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE6.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.7.(1)证明:∵∠ACB=90°,∠CDB=90°,∴∠ACD=90°﹣∠DCB,∠B=90°﹣∠DCB,∴∠ACD=∠B,(2分)∵AE平分∠CAB,∴∠CAE=∠EAB,(3分)∴△ACF∽△ABE;(7分)(2)解:∵△ACF∽△ABE,∴,(9分)∴AE===5cm8.解:(1)垂直.∵CD∥AB,∴∠ABC+∠BCD=180°,∵∠ABC,∠BCD的角平分线交于E点,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠EBC+∠ECB=∠ABC+∠BCD=(∠ABC+∠BCD)=90°,∴∠CEB=90°,∴BE与CF互相垂直.(2)∵∠CEB=90°,∴∠FEB=90°,在△FBE和△CBE中,∵,∴△FBE≌△CBE(ASA),∴BF=BC,EF=EC,∵CD∥AB,∴∠DCE=∠AFE,∵∠FEA=∠CED,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB,∴BF=BC=7.9.(1)证明:∵∠1+∠2+∠FEG=180°,∵∠1=50°,∠2=65°,∴∠FEG=65°,∵EG平分∠BEF,∴∠BEF=2∠FEG=130°,∴∠BEF+∠1=180°,∴AB∥CD.(2)∵∠AEM=∠BEF,∵∠BEF=130°,∴∠AEM=130°,答:∠AEM的度数是130°10.解:(1)以D为圆心,DE为半径交AN于F1或F2,如图,∵AD平分∠MAN,BD⊥AM,CD⊥AN,∴DB=DC,∵DE=DF,∴Rt△CDF≌Rt△BDE(HL);(2)∵DB=DC,DA=DA,∴Rt△DBA≌Rt△DCA(HL);∴AB=AC,∵Rt△CDF≌Rt△BDE,∴BE=CF,∴当F点在F1时,AF=AE;当F点在F2时,AF2=AC+CF2=AB+CF2=AE+BE+BE,∴AF﹣AE=2BE=6.11.解:(1)如图所示:.(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,∴DE=DF,∠E=∠DFC=90°,∴在Rt△DEA和Rt△DFC中∴Rt△DEA≌Rt△DFC(HL),∴∠C=∠EAD,∵∠BAD+∠EAD=180°,∴∠BAD+∠C=180°12.证明:过点E作EG⊥AB于点G,过F点作FH⊥AC于点H,∵△ABC中,∠ABC=90°,∴∠C+∠BAC=90°,∵BD⊥AC于D,∴∠ADB=90°,∴∠BAC+∠ABD=90°,∴∠C=∠ABD,∵点E在∠BAC的平分线上,∴GE=DE,∵EF∥DC且BD⊥AC于D,FH⊥AC于D∴ED=FH,∴GE=FH,在△BEG与△CFH中,,∴△BEG≌△CFH(AAS),∴BE=CF.13.证:(1)作CE⊥OB于E,∵∠A+∠OBC=180°,∠OBC+∠CBE=180°∴∠A=∠CBE,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴CD=CE,∴OC平分∠AOB.(2)∵OD=3DA=6,∴AD=BE=2,在Rt△ODC和Rt△OEC中∵∴Rt△ODC≌Rt△OEC(HL),∴OE=OD=6,∴OB=OE﹣BE=4.14.证明:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∵CE⊥AD于E,CF⊥AF于F,∴CE=CF15.解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB..设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.16.证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和CEQ中,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.17.证明:连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,EM=EN,∠EMB=∠ENC=90°.在Rt△BME和Rt△CNE中,∵BE=EC,EM=EN,∴Rt△BME≌Rt△CNE(HL)∴BM=CN.18.证明:过P作PF⊥BE于F,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF(角平分线上的点到角的两边距离相等).又∵CP平分∠ACE,PD⊥AC于D,PF⊥BE于F,∴PF=PD(角平分线上的点到角的两边距离相等).∴PD=PH(等量代换).∴AP平分∠HAD(到角的两边距离相等的点在这个角的平分线上).19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA,∵DE=DF,∴AD⊥EF三线合一)20.(1)证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于A,PB⊥ON于B,∴OP平分∠MON(到角的两边距离相等的点在角的平分线上);(2)解:∵∠MON=80°,PA⊥OM于A,PB⊥ON于B,∴∠APB=360°﹣90°×2﹣80°=100°,∵∠PAB=∠PBA,∴∠PAB=(180°﹣100°)=40°21.证明:(1)如图,过点P作PE⊥AB于E,∵∠1=∠2,PF⊥BC,∴PE=PF,在△APE和△CPF中,,∴△APE≌△CPF(HL),∴∠PAE=∠PCB,∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°;(2)∵△APE≌△CPF,∴AE=FC,∵BC=12cm,AB=6cm,∴AE=×(12﹣6)=3cm,BE=AB+AE=6+3=9cm,在Rt△PAE中,PE==4cm,在Rt△PBE中,PB==cm.22.证明:∵PE∥AB,PF∥AC,∴∠EPD=∠BAD,∠DPF=∠CAD,∵△ABC中,AD是它的角平分线,∴∠BAD=∠CAD,∴∠EPD=∠DPF,即DP平分∠EPF,∴D到PE的距离与D到PF的距离相等23.证明:连接BD,CD,∵AD平分∠BAC,且DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDE是直角三角形,∵,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线25.解:∵∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=50°;∴∠BOC=180°﹣50°=130°26.证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.28.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2;(2)在△AED和△ACF中,,∴△AED≌△ACF(ASA),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.29.证明:如图,连接CM,设AB、CD相交于点E,则CM是斜边上的中线,MC=MB=AM,∴∠MCB=∠B,∵CD平分∠ACB,∠C=90°,∴∠BCD=×90°=45°,∴∠MCD=∠MCB﹣45°=∠B﹣45°,又∵∠DEM=∠BEC=180°﹣∠B﹣45°=135°﹣∠B,∴∠D=90°﹣∠DEM=∠B﹣45°,∴∠D=∠MCD,∴MD=MC,∴MD=AM.30.解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,∴PC=PD,∵OM是公共边,∴△POC≌△POD(HL),∴OC=OD,∴△COM≌△DOM(SAS),∴CM=DM。