课时46-随机事件概率和概率模型
- 格式:ppt
- 大小:21.76 MB
- 文档页数:24
随机事件的概率与古典概型1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).5.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.6.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中一个结果; (2)每一个试验结果出现的可能性相同.7.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=mn .8.古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.概念方法微思考1.随机事件A 发生的频率与概率有何区别与联系?提示 随机事件A 发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A 发生的频率稳定在事件A 发生的概率附近. 2.随机事件A ,B 互斥与对立有何区别与联系?提示 当随机事件A ,B 互斥时,不一定对立,当随机事件A ,B 对立时,一定互斥. 3.任何一个随机事件与基本事件有何关系?提示 任何一个随机事件都等于构成它的每一个基本事件的和. 4.如何判断一个试验是否为古典概型?提示 一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋测其重量,属于古典概型.( × ) 题组二 教材改编2.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( ) A.至多有一次中靶 B.两次都中靶 C.只有一次中靶 D.两次都不中靶答案 D解析 “至少有一次中靶”的对立事件是“两次都不中靶”.3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为( ) A.25 B.415 C.35 D.23 答案 A解析 从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P =615=25. 4.同时掷两个骰子,向上点数不相同的概率为________. 答案 56解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 易错自纠5.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A.必然事件 B.随机事件 C.不可能事件 D.无法确定答案 B解析 抛掷10次硬币,正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.6.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( ) A.115 B.15 C.14 D.12 答案 B解析 由题意可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P =4·A 33C 36·A 33=15.故选B.7.(2019·南昌模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为______. 答案 0.35解析 ∵事件A ={抽到一等品},且P (A )=0.65, ∴事件“抽到的产品不是一等品”的概率为 P =1-P (A )=1-0.65=0.35.题型一 随机事件命题点1 随机事件的关系例1 (1)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案 A解析 “至多有一张移动卡”包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.(2)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A =“取出的两个球同色”,B =“取出的两个球中至少有一个黄球”,C =“取出的两个球中至少有一个白球”,D =“取出的两个球不同色”,E =“取出的两个球中至多有一个白球”.下列判断中正确的序号为____________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C +E )=1;⑤P (B )=P (C ). 答案 ①④解析 当取出的两个球为一黄一白时,B 与C 都发生,②不正确;当取出的两个球中恰有一个白球时,事件C 与E 都发生,③不正确;显然A 与D 是对立事件,①正确;C +E 为必然事件,P (C +E )=1,④正确;P (B )=45,P (C )=35,⑤不正确.命题点2 随机事件的频率与概率例2 (2017·全国Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100, 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8.命题点3 互斥事件与对立事件例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) 记事件A 1={任取1球为红球}, A 2={任取1球为黑球}, A 3={任取1球为白球}, A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥, 由互斥事件的概率公式,得 (1)取出1球是红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=512+13=34.(2)取出1球是红球或黑球或白球的概率为 P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =512+13+16=1112. 方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1+A 2的对立事件为A 3+A 4,所以取出1球为红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4)=1-16-112=34.(2)因为A 1+A 2+A 3的对立事件为A 4, 所以P (A 1+A 2+A 3)=1-P (A 4)=1-112=1112.思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. (2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件. (3)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (4)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率. (5)求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法 ①将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.②若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.跟踪训练1 (1)某保险公司利用简单随机抽样的方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:①若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;②在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 ①设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.②设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.(2)(2016·北京改编)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):①试估计C 班的学生人数;②从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率. 解 ①由题意及分层抽样可知,C 班学生人数约为 100×85+7+8=100×820=40.②设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”, 由题意知,E =A 1C 1+A 1C 2+A 2C 1+A 2C 2+A 2C 3+A 3C 1+A 3C 2+A 3C 3+A 4C 1+A 4C 2+A 4C 3+A 5C 1+A 5C 2+A 5C 3+A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.题型二 古典概型例4 (1)(2017·全国Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110 B.15 C.310 D.25 答案 D解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25. (2)袋中有形状、大小都相同的4个球,其中1个白球,1个红球,2个黄球,从中一次随机摸出2个球,则这2个球颜色不同的概率为________. 答案 56解析 基本事件共有C 24=6(种), 设取出2个球颜色不同为事件A .A 包含的基本事件有C 12C 12+C 11C 11=5(种).故P (A )=56.(3)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木、木克土、土克水、水克火、火克金.”将这五种不同属性的物质任意排成一列,设事件A 表示“排列中属性相克的两种物质不相邻”,则事件A 发生的概率为________. 答案112解析 五种不同属性的物质任意排成一列的所有基本事件数为A 55=120,满足事件A =“排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑:从左至右,当第一个位置的属性确定后,例如:金,第二个位置(除去金本身)只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有C 15C 12=10(种)可能,所以事件A 出现的概率为10120=112.引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的4个小球,从中一次取2个球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种, 所以P (A )=46=23.2.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率.解 基本事件数为C 14C 14=16, 颜色相同的事件数为C 12C 11+C 12C 12=6,故所求概率P =616=38.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.跟踪训练2 (1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34 B.13 C.310 D.25答案 D解析 用(x ,y ,z )表示乙、丙、丁抢到的红包分别为x 元、y 元、z 元.乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P =410=25.(2)在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字4是取出的五个不同数的中位数的概率为( ) A.956 B.928 C.914 D.59 答案 B解析 设事件A 为“数字4是取出的五个不同数的中位数”.“从八个数字中取出五个数字”包含的基本事件的总数为n =C 58=56.对事件A ,先考虑数字4在五个数的中间位置,再考虑分别从数字1,2,3和5,6,7,8中各取两个数字,则事件A 包含的基本事件总数为m =C 23C 24=3×6=18.由古典概型的概率计算公式,得P (A )=m n =1856=928.题型三 古典概型与统计的综合应用例5 空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了某地2018年某月10天的AQI 的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数;(按这个月总共有30天计算) (2)若从样本中的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.解 (1)从茎叶图中发现该样本中空气质量优的天数为1,空气质量良的天数为3,故该样本中空气质量优良的频率为410=25,估计该月空气质量优良的概率为25,从而估计该月空气质量优良的天数为30×25=12.(2)该样本中为轻度污染的共4天,分别记为a 1,a 2,a 3,a 4; 为中度污染的共1天,记为b ;为重度污染的共1天,记为c .从中随机抽取两天的所有可能结果有:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,b ),(a 1,c ),(a 2,a 3),(a 2,a 4),(a 2,b ),(a 2,c ),(a 3,a 4),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共15个.其中空气质量等级恰好不同的结果有(a 1,b ),(a 1,c ),(a 2,b ),(a 2,c ),(a 3,b ),(a 3,c ),(a 4,b ),(a 4,c ),(b ,c ),共9个.所以该两天的空气质量等级恰好不同的概率为915=35.思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.跟踪训练3 从某学校高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195),如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.(1)求第六组、第七组的频率并补充完整频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x,y,求|x-y|≤5的概率.解(1)由频率分布直方图知,前五组的频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,所以后三组的频率为1-0.82=0.18,人数为0.18×50=9,由频率分布直方图得第八组的频率为0.008×5=0.04,人数为0.04×50=2,设第六组人数为m,则第七组人数为m-1,又m+m-1+2=9,所以m=4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示:(2)由(1)知身高在[180,185)内的男生有四名,设为a,b,c,d,身高在[190,195)的男生有两名,设为A,B.若x,y∈[180,185),有ab,ac,ad,bc,bd,cd共6种情况;若x,y∈[190,195),只有AB 1种情况;若x,y分别在[180,185),[190,195)内,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况,所以基本事件的总数为6+8+1=15,事件|x-y|≤5包含的基本事件的个数为6+1=7,故所求概率为715.1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A.至少有一个黑球与都是黑球 B.至少有一个黑球与都是红球 C.至少有一个黑球与至少有一个红球 D.恰有一个黑球与恰有两个黑球 答案 D解析 对于A ,事件“至少有一个黑球”与事件“都是黑球”可以同时发生,∴A 不正确;对于B ,事件“至少有一个黑球”与事件“都是红球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴B 不正确;对于C ,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,如:一个红球,一个黑球,∴C 不正确;对于D ,事件“恰有一个黑球”与事件“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,∴D 正确.2.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13 答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A.0.09B.0.20C.0.25D.0.45 答案 D解析 设[25,30)上的频率为x ,由所有矩形面积之和为1,即x +(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.4.根据某医疗研究所的调查,某地区居民血型的分布为:O 型50%,A 型15%,B 型30%,AB 型5%.现有一血液为A 型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )A.15%B.20%C.45%D.65% 答案 D解析 因为某地区居民血型的分布为:O 型50%,A 型15%,B 型30%,AB 型5%,现在能为A 型病人输血的有O 型和A 型,故为病人输血的概率为50%+15%=65%,故选D. 5.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.从以上五张卡片中任取两张,则这两张卡片颜色不同且标号之和小于4的概率为( ) A.13 B.110 C.310 D.23 答案 C解析 从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2,其中两张卡片的颜色不同且标号之和小于4的有3种情况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为P =310,故选C.6.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( ) A.310 B.35 C.25 D.15 答案 C解析 函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率P =2×25×2=25,故选C.7.从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为________. 答案112解析 从集合{1,2,3,4,5,6,7,8,9}中任取两个不同的数,有n =9×82=36(种)情形,其中一个数是另一个数的3倍的事件有{1,3},{2,6},{3,9},共3种情形,所以由古典概型的概率计算公式可得其概率是P =336=112.8.无重复数字的五位数a 1a 2a 3a 4a 5,当a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5时称为波形数,则由1,2,3,4,5任意组成的一个没有重复数字的五位数是波形数的概率是________. 答案215解析 ∵a 2>a 1,a 2>a 3,a 4>a 3,a 4>a 5, ∴a 2只能是3,4,5中的一个.①若a 2=3,则a 4=5,a 5=4,a 1与a 3是1或2,这时共有A 22=2(个)符合条件的五位数; ②若a 2=4,则a 4=5,a 1,a 3,a 5可以是1,2,3,共有A 33=6(个)符合条件的五位数; ③若a 2=5,则a 4=3或4,此时分别与①②中的个数相同.∴满足条件的五位数有2(A 22+A 33)=16(个).又由1,2,3,4,5任意组成的一个没有重复数字的五位数有A 55=120(个),故所求概率为16120=215. 9.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,则所取的2个球中恰有1个白球、1个红球的概率为________. 答案1021解析 从袋中任取2个球共有C 215=105(种)取法,其中恰有1个白球、1个红球共有C 110C 15=50(种)取法,所以所取的球恰有1个白球、1个红球的概率为50105=1021.10.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 答案 12解析 从10件产品中取4件,共有C 410种取法,恰好取到1件次品的取法有C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.11.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)A ,B ,C 三个地区商品的总数量为50+150+100=300,抽样比为6300=150,所以样本中包含三个地区的个体数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2. (2)方法一 设6件来自A ,B ,C 三个地区的样品分别为: A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415,即这2件商品来自相同地区的概率为415.方法二 这2件商品来自相同地区的概率为C 23+C 22C 26=3+115=415. 12.一个盒子里装有三张卡片,分别标记为数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . (1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. (1)设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.13.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A.19B.110C.15D.18答案 B解析 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的情况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P =110,故选B.14.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________. 答案 35 1315。
高中概率知识点总结概率是高中数学中的重要内容,它在现实生活中的应用非常广泛,如抽奖活动、保险行业、数据分析等。
下面就来对高中概率的知识点进行一个全面的总结。
一、随机事件和概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如抛掷一枚硬币,正面朝上或者反面朝上就是随机事件。
2、概率概率是用来描述随机事件发生可能性大小的数值。
对于一个随机事件 A,它的概率记为 P(A),取值范围在 0 到 1 之间。
如果 P(A) = 0,表示事件 A 不可能发生;如果 P(A) = 1,表示事件 A 必然发生;如果0 < P(A) < 1,则表示事件 A 有可能发生。
二、事件的关系与运算1、包含关系如果事件 A 发生必然导致事件 B 发生,那么称事件 B 包含事件 A,记作 A⊆B。
2、相等关系如果 A⊆B 且 B⊆A,那么称事件 A 与事件 B 相等,记作 A = B。
3、和事件事件 A 或事件 B 至少有一个发生的事件称为事件 A 与事件 B 的和事件,记作 A∪B。
4、积事件事件 A 和事件 B 同时发生的事件称为事件 A 与事件 B 的积事件,记作A∩B。
5、互斥事件如果事件 A 与事件 B 不能同时发生,那么称事件 A 与事件 B 互斥,即A∩B =∅。
6、对立事件如果事件 A 和事件 B 满足 A∪B 为必然事件,A∩B 为不可能事件,那么称事件 A 与事件 B 互为对立事件,此时 P(B) = 1 P(A) 。
三、古典概型1、定义具有以下两个特征的随机试验的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2、古典概型的概率公式如果一次试验中可能出现的结果有 n 个,而事件 A 包含的结果有 m 个,那么事件 A 的概率 P(A) = m / n 。
四、几何概型1、定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型。
概率论与数理统计第1章随机事件与概率第4讲条件概率与乘法公式01 条件概率02 乘法公式本 讲 内容在解决许多概率问题时,往往需要在某些附加条件下世界万物都是互相联系、互相影响的,随机事件也不例?条件概率外.通事故发生的可能性明显比天气状况优良情况下要大得定程度的相互影响.多.在同一个试验中的不同事件之间,通常会存在着一例如,在天气状况恶劣的情况下交求事件的概率.概率,将此概率记作P(B|A).如在事件A 发生的条件下求事件B 发生的在100件产品中有72件为一等品,从中取两件产品,记A表示“第一件为一等品”,B表示“第二件为一等品”. 求P(B),P(B|A).Ὅ例1解由前例可知无论有放回抽样和无放回抽样都有(1)有放回抽样(2)无放回抽样独立性如何定义?.设A 、B 为两事件, P ( A ) > 0 , 则称为事件 A 发生的条件下事件 B 发生的条件概率.称为在事件B 发生的条件下事件A 的条件概率.同理Ὅ 定义Ὅ性质条件概率也是概率, 故概率的重要性质都适用于条件概率.例如:在100件产品中有72件为一等品,从中取两件产品,记A 表示“第一件为一等品”,B 表示“第二件为一等品”. Ὅ例2 2) 可用缩减样本空间法1) 用定义计算:P (A )>0A 发生后的缩减样本空间所含样本点总数在缩减样本空间中B 所含样本点个数无放回抽样Ὅ 计算.在全部产品中有4%是废品,有72%为一等品. 现从其中任取一件,发现是合格品,求它是一等品的概率.Ὅ例3解设A=依题意,P(A)=所求概率为P(B|A) .{任取一件为合格品},B={任取一件为一等品}0.96,0.72.P(B)=利用事件的关系及概率性质公式求条件概率Ὅ例4设A,B,C 是随机事件,A与C互不相容,则.由条件概率的定义:若已知P(A), P(B|A)时, 可以反过来求P(AB).注乘法公式.某工厂有职工400名,其中男女职工各占一半,Ὅ例5男女职工中技术优秀的分别为20人和40人,从中任选一名职工,计算(1)该职工技术优秀的概率;(2)已知选出的是男职工,他技术优秀的概率.解设A表示“选出的职工技术优秀”,B表示“选出的职工为男性”,则:(1)利用古典概率有.(2)通过缩减样本空间,有.Ὅ例6某杂志包含三个栏目“艺术”(记为事件A)、“图书”(记为事件B)、“电影”(记为事件C),调查读者的阅读习惯有如下结果:试求解01 条件概率02 乘法公式本 讲 内容乘法公式推广ab -1ab O F (x )xb a 1xf (x )O盒中装有100个产品, 其中3个次品,从中不放回Ὅ例7地取产品, 每次1个, 求(1)取两次,两次都取得正品的概率;(2)取三次,第三次才取得正品的概率.解令A i为第 i 次取到正品(波利亚罐子--传染病模型)一个罐子中包含b 个白球和r 个红球. b 个白球, r 个红球Ὅ 乘法公式应用举例8随机地抽取一个球,观看颜色后放进行四次,试求第一、二次取到白 球且第三、四次取到红球的概率.回罐中,并且再加进c 个与所抽出 的球具有相同颜色的球.这种手续于是W 1W 2R 3R 4表示事件“连续取四个球,第一、二个是白球,第三、四个是红球. ”设W i =R j ==P (W 1)P (W 2|W 1)P (R 3|W 1W 2)P (R 4|W 1W 2R 3)P (W 1W 2R 3R 4)解1,2,3,4{第i 次取出是白球},i =j ={第j 次取出是红球},1,2,3,4记A=为了防止意外,在矿内同时装有两种报警系统(Ⅰ)和(Ⅱ),每种系统单独使用时,系统(Ⅰ)和系统(Ⅱ)的有效概率分别为0.92和0.93,在系统(Ⅰ)失灵的情况下,系统(Ⅱ)仍有效的概率为0.85,求两个报警系统至少有一个有效的概率.Ὅ例9解报警系统至少一个有效”可表示为A ∪B ,由于“两个“系统(Ⅰ) 有效”,B=“系统(Ⅱ)有效”,且A 和 互斥,因此:学海无涯,祝你成功!概率论与数理统计。