Kappa一致性检验_3类型评估
- 格式:xls
- 大小:38.00 KB
- 文档页数:3
一、配对卡方检验把每一份样本平均分成两份,分别用两种方法进行化验,比较此两种化验方法的结果(两类计数资料)是否有本质的不同;或者分别采用甲、乙两种方法对同一批病人进行检查,比较此两种检查方法的结果(两类计数资料)是否有本质的不同,此时要用配对卡方检验。
操作方法:单击【Statistics钮】,在弹出的Statistics对话框中选择McNemanr复选框,进行McNemanr检验。
即配对卡方检验,只能针对方形表格进行。
不能给出卡方值,只能给出P值。
二、一致性检验(Kappa检验)诊断试验的一致性检验经常用在下列两种情况中:一种是评价待评价的诊断实验方法与金标准的一致性;另一种是评价两种化验方法对同一个样本(化验对象)的化验结果的一致性或两个医务工作者对同一组病人的诊断结论的一致性或同一医务工作者对同一组病人前后进行两次观察作出的诊断的一致性等等。
Kappa值即内部一致性系数(inter-rater,coefficient of internal consistency),是作为评价判断的一致性程度的重要指标。
取值在0~1之间。
Kappa≥两者一致性较好;>Kappa≥两者一致性一般;Kappa<两者一致性较差。
操作方法:单击【Statistics钮】,在弹出的Statistics对话框中选择Kappa 复选框。
计算Kappa值。
如果选择Risk复选框,则计算OR值(比数比)和RR值(相对危险度)。
病例对照研究(case control study)是主要用于探索病因的一种流行病学方法。
它是以某人群内一组患有某种病的人(称为病例)和同一人群内未患这种病但在与患病有关的某些已知因素方面和病例组相似的人(称为对照)作为研究对象;调查他们过去对某个或某些可疑病因(即研究因子)的暴露有无和(或)暴露程度(剂量);通过对两组暴露史的比较,推断研究因子作为病因的可能性:如果病例组有暴露史者或严重暴露者的比例在统计学上显著高于对照组,则可认为这种暴露与患病存在统计学联系,有可能是因果联系。
kappa检验标准Kappa检验标准。
Kappa检验是一种用于评估两个观察者或测试之间一致性的统计方法。
它通常用于评估医学诊断测试的一致性,也可以用于其他领域的研究中。
Kappa检验的结果可以帮助研究人员了解观察者之间的一致性程度,从而评估测试的可靠性和有效性。
本文将介绍Kappa检验的基本概念和标准,以及如何进行Kappa检验的步骤和解释结果。
Kappa检验的基本概念。
Kappa检验是一种用于评估两个观察者或测试之间一致性的统计方法。
它通过比较观察者或测试的结果,计算它们之间的一致性程度。
Kappa系数的取值范围为-1到1,其中-1表示完全不一致,0表示随机一致,1表示完全一致。
通常情况下,Kappa系数大于0.75被认为是很好的一致性,0.4到0.75之间被认为是一般的一致性,小于0.4则被认为是较差的一致性。
Kappa检验的标准。
在进行Kappa检验时,需要根据具体的研究目的和数据类型来选择适当的Kappa检验标准。
一般来说,可以根据以下几个方面来确定Kappa检验的标准:1. 确定观察者或测试的一致性指标,在进行Kappa检验之前,需要明确观察者或测试的一致性指标是什么,是分类变量还是顺序变量,这将决定选择适当的Kappa检验方法。
2. 确定Kappa系数的解释标准,根据具体的研究领域和研究目的,需要确定Kappa系数的解释标准,一般是根据Kappa系数的取值范围来判断一致性的程度。
3. 确定置信区间和显著性水平,在进行Kappa检验时,需要计算Kappa系数的置信区间和显著性水平,以确定观察者或测试之间的一致性是否达到统计学上的显著性。
如何进行Kappa检验。
进行Kappa检验的步骤如下:1. 收集观察者或测试的数据,首先需要收集观察者或测试的数据,包括两个观察者或测试的结果和样本数量。
2. 计算Kappa系数,根据收集的数据,可以利用统计软件或公式来计算Kappa系数,得出观察者或测试之间的一致性程度。
Kappa 分析摘要一般把Kappa值列为非参数统计(检验)方法参数统计:在统计推断中,如总体均数的区间估计、两个或多个均数的比较、相分析和回归系数的假设检验等,大都是假定样本所来自的总体分布为已知的函数形式,但其中有的参数为未知,统计推断的目的就是对这些未知参数进行估计或检验。
这类统计推断方法称为参数统计。
在许多实际问题中,总体分布函数形式往往不知道或者知道的很少,例如只知道总体分布是连续型的或离散型的,这时参数统计方法就不适用,此时需要借助另一种不依赖总体分布的具体形式的统计方法,也就是说不拘于总体分布,称为非参数统计或分布自由统计。
参数统计:样本来自的总体分布型是已知的(如正态分布),在这种假设基础上,对总体参数进行估计或检验。
若总体非正态,则样本例数必须充分多,或经过各种变换(对数、开方、角度……)非参数统计:未知研究总体的分布,或已知总体分布与检所要求的条件不符时,称非参数统计。
优点:①不受总体分布的限定,适用范围广,对数据的要求不像参数检验那样严格,不论研究的是何种类型的变量。
②包括那些难以测量,只能以严重程度优劣等级、次序先后等表示的资料,或有的数据一端或两端是不确定数值,例如“>50mg”,或“0.5mg以下”等。
③易于理解和掌握。
④缺点:①比起参数估计来显得比较粗。
②对适宜参数分析方法的资料若用非参数法处理,常损失部分信息、降低效率。
③虽然许多非参法计算简便,但不少方法计算仍繁杂。
非参数适用于:①检验假设中没有包括总体参数。
②资料不具备参数方法所需条件。
③计算简单实验未结束,急需知道初步结果。
④用于等级资料或某些计数资料。
非参数统计方法:一、Ridit分析 (relative to an indentified distribution)二、秩和检验: N-[Ri-(N+1)/2]2三一致性检验:Kappa临床试验研究中把重复观察的一致性分为:(1)(2) 两个及两个以上医务者对同一对象进行观察。