铁氧体
- 格式:doc
- 大小:154.50 KB
- 文档页数:12
铁氧体材料的制备和性能研究铁氧体是一种重要的功能材料,具有良好的磁性、电性、光学性和机械性能等多种特性,广泛应用于信息存储、传感器、磁性材料、电子器件等领域。
本文将探讨铁氧体材料的制备和性能研究。
一、铁氧体材料的制备1. 化学法制备铁氧体材料化学法制备铁氧体材料具有工艺简单、成本低、制备精度高等优点,常用的方法包括溶胶凝胶法、共沉淀法、水热法、燃烧合成法等。
其中,溶胶凝胶法是一种制备高纯度、高均匀性的铁氧体材料的有效方法。
该方法通过控制溶液中各种离子的浓度和pH值,使得铁离子和氧离子在水相中聚合生成具有一定的结晶度和尺寸的氧化铁凝胶,然后通过热处理使得凝胶形成铁氧体晶体。
2. 热处理法制备铁氧体材料热处理法是制备铁氧体材料的传统方法,其主要原理是通过高温热处理氧化铁类化合物,使其晶粒长大并形成稳定的铁氧体晶体。
该方法操作简单,但制备的铁氧体材料质量易受热处理参数影响,同时,晶粒长大也会导致铁氧体材料的磁性差异增大。
3. 氧化还原法制备铁氧体材料氧化还原法是一种制备高纯度、高均匀性铁氧体材料的有效方法。
该方法通过对铁物质进行高温还原,使其形成纳米级铁氧体颗粒。
该方法具有制备过程简单、能够控制颗粒尺寸和分散度等优点,因此在电子器件和高密度磁存储等领域具有广泛的应用。
二、铁氧体材料的性能研究1. 磁性能铁氧体材料的磁性能是其最重要的性能之一。
磁性能的好坏直接影响着铁氧体材料在信息存储、磁性材料等领域的应用。
铁氧体材料的磁性能受到晶体结构、晶体尺寸、磁各向异性、配位离子等多种因素的影响。
其中,磁各向异性是影响铁氧体材料磁性的关键因素,其主要包括单轴各向异性、双轴各向异性和四轴各向异性等。
通过控制铁氧体材料的制备条件和添加适当的稀土元素等,能够有效调控铁氧体材料的磁各向异性,提高其磁场输出和磁场稳定性。
2. 光学性能铁氧体材料具有良好的光学性能,其吸收系数和透明度受晶体结构和晶格缺陷等因素影响。
通过改变铁氧体材料的晶体结构和控制其晶格缺陷,能够有效提高其光学性能。
铁氧体的烧结原理铁氧体是一种重要的磁性材料,具有广泛的应用领域,如电磁设备、电子元器件、电力工业等。
其中,烧结是铁氧体的主要制造工艺之一。
烧结是指将形状成型的粉末材料,在一定的温度和压力条件下加热处理,使其颗粒之间发生结合,形成致密的块状材料的过程。
铁氧体的烧结原理是通过粉末颗粒之间的扩散与固相反应使颗粒之间结合。
在烧结过程中,粉末颗粒之间的扩散是烧结结合的基础。
一般来说,烧结粉末颗粒表面产生活性溶胶,溶胶中的矿物质成分通过扩散逐渐从所制成的颗粒表面向内部扩散,形成晶体晶界。
当接触到其他表面的颗粒时,这些晶界之间的矿物质再次扩散,并与其他颗粒表面上的矿物质形成新的连接。
这种扩散和结合过程在整个烧结过程中不断进行,最终形成一个致密的块状材料。
在烧结过程中,粉末颗粒之间的结合还涉及到固相反应的过程。
固相反应是指当矿物质在烧结过程中达到一定温度时,发生化学反应,产生新的矿物质。
这些新的矿物质能够填充粉末颗粒之间的空隙,增强颗粒之间的结合,提高材料的致密度。
常见的固相反应有矿物质的相互转化、矿物质和添加剂的反应等。
烧结过程中的温度和压力是影响烧结效果的重要因素。
温度是促使颗粒扩散和固相反应发生的主要驱动力。
适当的温度能够提高颗粒之间的扩散速率,促进烧结过程的进行。
然而,过高的温度可能导致颗粒表面烧结过度,损坏颗粒原有的形态和特性。
压力则能够改善颗粒颗粒之间的接触性和结合力,降低颗粒扩散的活化能,促进颗粒之间的结合。
适当的压力能够提高材料的致密度,改善烧结效果。
此外,烧结过程中还存在一些其他因素对烧结效果的影响。
例如,材料粉末的粒径和分布对烧结效果具有重要影响。
通常,较小的粒径有利于提高烧结效果,因为较小的颗粒扩散速率更快。
另外,添加剂的选择和添加量也对烧结效果起到重要作用。
添加剂可调节烧结过程中的反应速率和固相反应产物的形成,进而影响材料的致密性和磁性能。
总的来说,铁氧体的烧结原理是通过粉末颗粒间扩散和固相反应来实现颗粒结合的过程。
铁氧体工艺流程
铁氧体是一种重要的磁性材料,广泛应用于电子、通信、汽车等领域。
下面是一份铁氧体的工艺流程,以供参考:1. 原料准备:选择高纯度的铁氧体原料,如氧化铁、碳酸钡、碳酸锌等。
根据所需的磁性能和成本要求,确定原料的配
比比例。
2. 粉末制备:将原料粉末按照配比比例混合,并
进行球磨或干燥处理,以获得均匀细小的粉末颗粒。
3. 压
制成型:将粉末放入模具中,并施加高压力进行压制成型。
常用的成型方法包括干压成型和注浆成型。
4. 烧结处理:
将成型后的零件放入高温炉中进行烧结处理。
在高温下,
粉末颗粒之间发生结合,形成致密的晶体结构。
5. 磨削加工:对烧结后的零件进行机械加工,以获得所需尺寸和表
面光洁度。
6. 磁化处理:将加工好的零件放入强磁场中进
行磁化处理。
通过磁化处理,使铁氧体材料具有良好的磁
性能。
7. 表面处理:根据需要,对铁氧体零件进行表面处理,如镀层、喷涂等,以提高其耐腐蚀性和外观质量。
8.
检测和质量控制:对成品进行严格的检测和质量控制,确
保其符合规定的技术要求和标准。
以上是一份简要的铁氧
体工艺流程,实际生产中可能还涉及到其他细节和步骤。
在每个环节中,都需要严格控制工艺参数和质量要求,以
确保最终产品的性能和品质。
铁氧体永磁和稀土永磁铁氧体永磁和稀土永磁是目前最为常见和广泛应用的两种永磁材料。
它们具有不同的物理和化学特性,适用于不同的应用领域。
下面将分别介绍铁氧体永磁和稀土永磁的特性、制备工艺、应用以及优缺点。
1. 铁氧体永磁铁氧体永磁材料是由铁、镁、铁氧体等元素组成的材料。
它具有以下特点:a) 矫顽力高:铁氧体永磁具有高的矫顽力(约为300-400千安/米),能够产生强磁场。
b) 热稳定性好:铁氧体永磁的居里温度高,可达到七百度以上,能够在高温环境下保持较高的磁性能。
c) 价格便宜:相对于稀土永磁材料,铁氧体永磁的价格较低,成本相对较低。
d) 抗腐蚀性能好:铁氧体永磁材料具有良好的抗腐蚀性能,可在一些恶劣环境下使用。
铁氧体永磁的制备工艺包括:熔铸法、粉末冶金法和溶胶-凝胶法等。
其中,粉末冶金法是最常用的制备方法,它通过将铁氧体微粉与粘结剂混合,经压制、烧结和磁化等工序制备成终产品。
铁氧体永磁广泛应用于电机、发电机、传感器、扬声器等领域。
例如,在电机领域,铁氧体永磁被用于制造小型电机、风力发电机组等;在电子领域,铁氧体永磁被用于制造磁头和磁带等。
铁氧体永磁的优点包括价格低廉、磁性能稳定和抗腐蚀性能好。
然而,铁氧体永磁的矫顽力相对较低,且易受磁场温度和震动影响,因此在某些特殊应用环境下会有一定的局限性。
2. 稀土永磁稀土永磁材料是由稀土元素和过渡金属组成的材料。
稀土永磁具有以下特点:a) 高矫顽力:稀土永磁具有非常高的矫顽力(可超过1500千安/米),能产生更强的磁场。
b) 示磁性能好:稀土永磁材料在外加磁场下,具有较高的剩余磁感应强度和高的磁导率。
c) 温度稳定性好:稀土永磁的居里温度较高(通常在300-600摄氏度之间),能在较高温度下保持较高的磁性能。
稀土永磁的制备工艺主要有:粉末冶金法、溶液法、热磁法等。
其中,粉末冶金法是最常用的制备稀土永磁的方法,它通过将稀土金属与过渡金属置于真空和惰性气氛下进行合金化处理,再经过磨碎和形成等工艺制备成终产品。
铁氧体回复磁导率磁性材料是一类具有磁性的材料,其中铁氧体是一种重要的磁性材料。
铁氧体具有高磁导率、高磁饱和度、低磁阻、低磁化失真等优良的磁性能,因此在电子、通信、电力等领域得到了广泛的应用。
然而,铁氧体的磁性能受到多种因素的影响,如温度、磁场、晶粒尺寸等,这些因素会导致铁氧体的磁导率发生变化。
因此,研究铁氧体的磁导率回复机制对于提高其磁性能具有重要意义。
一、铁氧体的磁导率铁氧体是一种由氧化铁和一种或多种金属氧化物组成的复合材料。
其中,氧化铁是铁氧体的主要成分,其晶体结构为立方晶系。
铁氧体的磁性主要来源于氧化铁中的铁离子,其磁矩在外磁场作用下会发生取向,从而形成磁化强度。
铁氧体的磁导率是指在外磁场作用下,铁氧体的磁化强度与外磁场强度之比。
铁氧体的磁导率与其晶体结构、晶粒尺寸、温度、磁场等因素密切相关。
二、铁氧体磁导率的影响因素1.晶体结构铁氧体的晶体结构对其磁性能有着重要的影响。
不同的晶体结构会导致铁氧体的磁导率不同。
例如,立方晶系的铁氧体具有较高的磁导率,而六方晶系的铁氧体则具有较低的磁导率。
2.晶粒尺寸晶粒尺寸是指铁氧体晶体的大小。
晶粒尺寸越小,铁氧体的磁导率越高。
这是因为晶粒尺寸越小,晶体表面积越大,表面的磁性质更加明显,从而提高了铁氧体的磁导率。
3.温度温度是影响铁氧体磁导率的重要因素之一。
随着温度的升高,铁氧体的磁导率会逐渐降低。
这是因为温度升高会导致铁氧体中的磁矩发生热运动,从而减弱了铁氧体的磁性。
4.磁场磁场是影响铁氧体磁导率的另一个重要因素。
在外磁场作用下,铁氧体的磁导率会随着磁场的增加而增加。
当磁场达到一定值后,铁氧体的磁导率会趋于饱和。
三、铁氧体磁导率回复机制铁氧体的磁导率受到多种因素的影响,如温度、磁场、晶粒尺寸等。
当这些因素发生变化时,铁氧体的磁导率也会发生变化。
然而,铁氧体具有一定的磁导率回复能力。
当外界因素发生变化后,铁氧体会通过一定的机制来回复其磁导率。
铁氧体的磁导率回复机制主要包括两种:热回复和磁回复。
铁氧体化学成分
铁氧体是一种复合材料,其化学成分通常包括铁氧化物和一些其他材料,例如钡铁氧化物、镍铁氧化物、锌铁氧化物、铝氧化物等。
以下是一些常见的铁氧体化学成分:
1. 晶体结构
铁氧体的晶体结构通常为立方晶系,常见的包括立方氧化铁(Fe2O3)、立方钡铁氧化物(BaFe12O19)等。
2. 氧化铁
铁氧体中最主要的成分是氧化铁(Fe2O3),它是铁氧体的主要磁性质源。
3. 钡铁氧化物
钡铁氧化物(BaFe12O19)是一种典型的铁氧体材料,它的磁性能很强,常被用于制造电机、传感器、磁记录等领域。
4. 镍铁氧化物
镍铁氧化物(NiFe2O4)是一种锰铁氧体,其磁性质相对较弱,但在高温下仍具有良好的磁性和化学稳定性,常被用于制造耐高温陶瓷、催化剂等。
5. 锌铁氧化物
锌铁氧化物(ZnFe2O4)是一种次磁性物质,其磁性质相对较弱,但同时具有良好的光催化和电化学性能,常被利用于制造光催化剂、电化学电池等。
6. 铝氧化物
铝氧化物(Al2O3)常被用作添加剂,可以改善铁氧体材料的物理和化学性质。
例如,铝氧化物可以提高铁氧体的抗腐蚀性、提高热稳定性等。
铁氧体参数计算公式
铁氧体参数的计算公式因具体的应用场景和需求而有所不同,包括承受强度、磁芯功率等。
以下是两个常用的铁氧体参数计算公式:
1. 铁氧体的承受强度可以通过以下公式进行计算:σ= F / A。
其中,σ表示铁氧体的应力,F表示作用在铁氧体上的力,A表示铁氧体的横截面积。
这
个公式基于经典的力学原理,可以帮助我们计算铁氧体在受力情况下的应力分布,从而评估其承受的强度。
2. 计算铁氧体磁芯的功率的公式为:P=V×f×Bmax²×10^-4。
其中,P表
示磁芯承受的功率,V表示磁芯的体积,f表示电流的频率,Bmax表示磁
芯的饱和磁感应强度。
如需更多信息,建议咨询相关专家或查阅铁氧体领域的研究文献。
铁氧体又称铁淦氧或磁性瓷。
为一类非金属磁性材料。
是磁性的三氧化二铁与其他一种或多种金属氧化物的复合氧化物(或正铁酸盐)。
铁氧体有磁性,在高频时会较高的磁导率(比金属磁性材料高);其电阻率比金属磁性材料大得多,还有较高的介电性能。
磁铁矿FeO·Fe2O3是最简单的铁氧体。
通常铁氧体限于由那些具有d层或f层不成对电子的元素组成,尤其是与二价铁离子半径接近的二价金属离子,如锰、锌、铜、镍、镁、钴等离子,也可是希土元素离子或镓、铝、铋、钡、锶等离子。
铁氧体磁性材料按其矫顽力(使已磁化的铁磁质失去磁性而必须加的与原磁化方向相反的外磁场强度)和用途可分为软磁、硬磁、旋磁、矩磁、压磁五类。
软磁铁氧体在较弱磁场下易磁化也易退磁,如锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFe2O4,结构为尖晶石型;主要做各种电感元件,如滤波器、变压器、天线等的磁芯和录音、录像机的磁头。
硬磁铁氧体磁化后不易退磁,能长期保留磁性,如钡铁氧体BaFe12O17,结构大多为磁铅石型;主要用作恒磁源,在电讯、电声、电表、电机工业中可代替铝镍钴系硬磁金属材料。
旋磁铁氧体也称微波铁氧体,如镍铜铁氧体Ni-CuFe2O4和钇石榴石铁氧体3M2O3·5Fe2O3(M为三价钇、钐、钇等希土离子),用于雷达、导航、遥控等电子设备中。
矩磁铁氧体有矩形磁滞回线,如锂锰铁氧体Li-MnFe2O4等,一般用作记忆元件,用于电子计算机存储器中。
压磁铁氧体磁化时,能在磁场方向作机械伸长或压缩,如镍锌铁氧体Ni-ZnFe2O4、镍铜铁氧体Ni-CuFe2O4等,一般作磁致伸缩元件,用于超声波换能器等。
铁氧体性能好,成本低,生产工艺简单,又能节约大量贵重金属,为高频弱电领域中有发展前途的非金属磁性材料。
但其饱和磁化强度较低,通常为纯铁的1/3—1/5,不能用于发电、电动、输电变压器等大功率电力设备中。
隐身技术与隐身材料 时间:2007-1-6 来源:生命经纬当人们谈论1991年初春海湾战争中的先进武器时,都免不了要提到隐身战斗机F-117A。
隐身飞机的英文名称是stealthy aircraft,也可译成隐形飞机。
设计者的主导思想是力图降低飞机在航行过程中的目标特性,以提高它的突防能力和攻击能力。
隐身技术、星球大战和核技术被美国列为国防的三大高科技领域。
飞机隐身有六大要素:雷达、红外、视觉、噪音、烟雾、凝迹。
早期的隐身措施是:(1)使发动机排气更干净,烟道气更淡;(2)蒙皮染成灰色,提高视觉隐形;(3)提高升限和飞行速度。
但这些还不是真正的隐身飞机。
F-117A是第一种真正的隐身战斗机。
其隐身的具体措施是:(1)设计成独特的气动外形。
当入射的无线电波波长远小于飞机尺寸时,根据几何光学原理,可以看成独立反射的集合,并尽量使反射信号相互干涉。
(2)为防止进气道、发动机、压气机反射雷达波,两侧设有条形隐蔽网状格栅栅条,能屏蔽10cm或更长的雷达波。
(3)采用能够吸收雷达波的复合材料和吸波涂料。
(4)采用有源或无源电子干扰。
(5)在红外隐身方面,主要是降低飞机的红外辐射,其具体措施是降低发动机的喷口排气温度和采用屏蔽技术。
从以上几项措施可以看到:(1)隐身技术主要是指降低飞机的雷达反射截面积和红外特征。
(2)隐身技术是一种综合技术。
在进行雷达波隐身技术研究中,最重要的是改进飞行器的气动外形设计,其次是吸波材料的选用。
(3)隐身技术是一种探测对抗技术。
在一切军事行动中,交战双方的行为都具有很大的保密性、多样性。
不同的隐身技术都是针对现有探测技术而发展起来的,铁氧体又称铁淦氧或磁性瓷。
为一类非金属磁性材料。
是磁性的三氧化二铁与其他一种或多种金属氧化物的复合氧化物(或正铁酸盐)。
铁氧体有磁性,在高频时会较高的磁导率(比金属磁性材料高);其电阻率比金属磁性材料大得多,还有较高的介电性能。
磁铁矿FeO·Fe2O3是最简单的铁氧体。
通常铁氧体限于由那些具有d层或f层不成对电子的元素组成,尤其是与二价铁离子半径接近的二价金属离子,如锰、锌、铜、镍、镁、钴等离子,也可是希土元素离子或镓、铝、铋、钡、锶等离子。
铁氧体磁性材料按其矫顽力(使已磁化的铁磁质失去磁性而必须加的与原磁化方向相反的外磁场强度)和用途可分为软磁、硬磁、旋磁、矩磁、压磁五类。
软磁铁氧体在较弱磁场下易磁化也易退磁,如锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFe2O4,结构为尖晶石型;主要做各种电感元件,如滤波器、变压器、天线等的磁芯和录音、录像机的磁头。
硬磁铁氧体磁化后不易退磁,能长期保留磁性,如钡铁氧体BaFe12O17,结构大多为磁铅石型;主要用作恒磁源,在电讯、电声、电表、电机工业中可代替铝镍钴系硬磁金属材料。
旋磁铁氧体也称微波铁氧体,如镍铜铁氧体Ni-CuFe2O4和钇石榴石铁氧体3M2O3·5Fe2O3(M为三价钇、钐、钇等希土离子),用于雷达、导航、遥控等电子设备中。
矩磁铁氧体有矩形磁滞回线,如锂锰铁氧体Li-MnFe2O4等,一般用作记忆元件,用于电子计算机存储器中。
压磁铁氧体磁化时,能在磁场方向作机械伸长或压缩,如镍锌铁氧体Ni-ZnFe2O4、镍铜铁氧体Ni-CuFe2O4等,一般作磁致伸缩元件,用于超声波换能器等。
铁氧体性能好,成本低,生产工艺简单,又能节约大量贵重金属,为高频弱电领域中有发展前途的非金属磁性材料。
但其饱和磁化强度较低,通常为纯铁的1/3—1/5,不能用于发电、电动、输电变压器等大功率电力设备中。
这是隐身和反隐身技术发展的动力源泉。
隐身飞机是80年代崛起的新型武器。
除隐身飞机已投入使用外,其他隐形武器和装备正在积极研制中。
研究和发展隐身和反隐身技术,对于未来的反侵略战争具有重大意义。
二微波干涉、吸收隐身原理雷达,原义为无线电侦察和定位。
一般系指利用无线电波发现目标并测定目标位置的装备,其组成部分主要有发射机、无线电接收机和显示器等。
发射机产生高频脉冲,由天线集束成无线电波束,按一定方向连续或间歇地向空间发射。
通常,天线不断旋转,波束碰到目标物,其中一小部分反射回来,被原天线接收,经接收机检波、放大后,目标物的方向、高度、距离或景象等在显示器上显示出来。
表1列出了各种无线电波的波长范围和主要用途。
由表1可知,雷达波的频率高、波长短。
所以称雷达探测为微波探测。
微波具有类似于光波的特性,它是直线传播的,因此特别适合于无线电定位即雷达技术的需要。
雷达为了正确测定目标位置,必须发射窄波束,而天线的波束宽度正比于工作波长(λ)和天线口径(D)之比,同时,为了能发现目标,要求有强的目标反射,而回波强度将取决于目标373表1 各种无线电波波长与主要用途铁氧体又称铁淦氧或磁性瓷。
为一类非金属磁性材料。
是磁性的三氧化二铁与其他一种或多种金属氧化物的复合氧化物(或正铁酸盐)。
铁氧体有磁性,在高频时会较高的磁导率(比金属磁性材料高);其电阻率比金属磁性材料大得多,还有较高的介电性能。
磁铁矿FeO·Fe2O3是最简单的铁氧体。
通常铁氧体限于由那些具有d层或f层不成对电子的元素组成,尤其是与二价铁离子半径接近的二价金属离子,如锰、锌、铜、镍、镁、钴等离子,也可是希土元素离子或镓、铝、铋、钡、锶等离子。
铁氧体磁性材料按其矫顽力(使已磁化的铁磁质失去磁性而必须加的与原磁化方向相反的外磁场强度)和用途可分为软磁、硬磁、旋磁、矩磁、压磁五类。
软磁铁氧体在较弱磁场下易磁化也易退磁,如锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFe2O4,结构为尖晶石型;主要做各种电感元件,如滤波器、变压器、天线等的磁芯和录音、录像机的磁头。
硬磁铁氧体磁化后不易退磁,能长期保留磁性,如钡铁氧体BaFe12O17,结构大多为磁铅石型;主要用作恒磁源,在电讯、电声、电表、电机工业中可代替铝镍钴系硬磁金属材料。
旋磁铁氧体也称微波铁氧体,如镍铜铁氧体Ni-CuFe2O4和钇石榴石铁氧体3M2O3·5Fe2O3(M为三价钇、钐、钇等希土离子),用于雷达、导航、遥控等电子设备中。
矩磁铁氧体有矩形磁滞回线,如锂锰铁氧体Li-MnFe2O4等,一般用作记忆元件,用于电子计算机存储器中。
压磁铁氧体磁化时,能在磁场方向作机械伸长或压缩,如镍锌铁氧体Ni-ZnFe2O4、镍铜铁氧体Ni-CuFe2O4等,一般作磁致伸缩元件,用于超声波换能器等。
铁氧体性能好,成本低,生产工艺简单,又能节约大量贵重金属,为高频弱电领域中有发展前途的非金属磁性材料。
但其饱和磁化强度较低,通常为纯铁的1/3—1/5,不能用于发电、电动、输电变压器等大功率电力设备中。
尺寸(L)与工作波长(λ)之比。
因此只有采用微波才能很好满足雷达技术的要求。
可以设想,如果目标物采用了散射、干涉等隐身技术处理,使有效反射截面减小3个数量级,则能使接收讯号衰减30分贝(dB)。
电磁波具有一定能量。
根据光量子理论,每个光量子能量大小与波长有关,表达式如下:铁氧体又称铁淦氧或磁性瓷。
为一类非金属磁性材料。
是磁性的三氧化二铁与其他一种或多种金属氧化物的复合氧化物(或正铁酸盐)。
铁氧体有磁性,在高频时会较高的磁导率(比金属磁性材料高);其电阻率比金属磁性材料大得多,还有较高的介电性能。
磁铁矿FeO·Fe2O3是最简单的铁氧体。
通常铁氧体限于由那些具有d层或f层不成对电子的元素组成,尤其是与二价铁离子半径接近的二价金属离子,如锰、锌、铜、镍、镁、钴等离子,也可是希土元素离子或镓、铝、铋、钡、锶等离子。
铁氧体磁性材料按其矫顽力(使已磁化的铁磁质失去磁性而必须加的与原磁化方向相反的外磁场强度)和用途可分为软磁、硬磁、旋磁、矩磁、压磁五类。
软磁铁氧体在较弱磁场下易磁化也易退磁,如锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFe2O4,结构为尖晶石型;主要做各种电感元件,如滤波器、变压器、天线等的磁芯和录音、录像机的磁头。
硬磁铁氧体磁化后不易退磁,能长期保留磁性,如钡铁氧体BaFe12O17,结构大多为磁铅石型;主要用作恒磁源,在电讯、电声、电表、电机工业中可代替铝镍钴系硬磁金属材料。
旋磁铁氧体也称微波铁氧体,如镍铜铁氧体Ni-CuFe2O4和钇石榴石铁氧体3M2O3·5Fe2O3(M为三价钇、钐、钇等希土离子),用于雷达、导航、遥控等电子设备中。
矩磁铁氧体有矩形磁滞回线,如锂锰铁氧体Li-MnFe2O4等,一般用作记忆元件,用于电子计算机存储器中。
压磁铁氧体磁化时,能在磁场方向作机械伸长或压缩,如镍锌铁氧体Ni-ZnFe2O4、镍铜铁氧体Ni-CuFe2O4等,一般作磁致伸缩元件,用于超声波换能器等。
铁氧体性能好,成本低,生产工艺简单,又能节约大量贵重金属,为高频弱电领域中有发展前途的非金属磁性材料。