单因素随机区组设计资料的统计分析
- 格式:pptx
- 大小:4.70 MB
- 文档页数:68
一、可重复单因素随机区组试验设计8个小麦品种的产比试验,采用随机区组设计,3次重复,计产面积25平米,产量结果如下,进行方差分析和多重比较。
表1 小麦品比试验产量结果(公斤)4 3 10.15 3 16.86 3 11.87 3 14.18 3 14.41、打开程序把上述数据输入进去。
2、执行:分析-一般线性模型-单变量。
3、将产量放进因变量,品种和区组放进固定因子。
4、单击模型,选择设定单选框,将品种和区组放进模型中,只分析主效应。
5、在两两比较中进行多重比较,这里只用分析品种。
可以选择多种比较方法。
6、分析结果。
主体间效应的检验因变量: 产量源III 型平方和df 均方 F Sig. 校正模型61.641a 9 6.849 4.174 .009 截距3220.167 1 3220.167 1962.448 .000 区组27.561 2 13.780 8.398 .004 品种34.080 7 4.869 2.967 .040 误差22.972 14 1.641总计3304.780 24校正的总计84.613 23a. R 方 = .729(调整 R 方 = .554)这里只须看区组和品种两行,两者均达到显著水平,说明土壤肥力和品种均影响产量结果。
下面是多重比较,只有方差分析达到显著差异才进行多重比较。
二、两因素可重复随机区组试验设计下面是水稻品种和密度对产量的影响,采用随机区组试验设计,3次重复,品种3个水平,密度3个水平,共27个观测值。
小区计产面积20平米。
表2 水稻品种与密度产比试验1、输入数据,执行:分析-一般线性模型-单变量。
注意区组作为随机因子。
2、选择模型。
注意模型中有三者的主效和品种与密度的交互。
3、分析结果。
注意自由度的分解。
使用一个误差(0.486)计算F值。
主体间效应的检验因变量: 产量源III 型平方和df 均方 F Sig. 截距假设1496.333 1 1496.333 1035.923 .0014、语句。
东北农业大学本科课程教学大纲课程名称:田间试验与统计方法英文名称:Field Experiment and Statistic-method 课程编号:01600008j适用专业:草业科学、植物生产类总学时数:40总学分:2。
5大纲主撰人:李文霞内容简介《试验设计与统计分析》是一门收集整理数据、分析数据, 并根据数据进行推断的科学。
本课程为高等农业院校农学类专业的专业基础课,主要讲授有关田间试验的基本知识和统计分析的基本方法和技能,为学习专业课程奠定基础,使学生具备承担科学试验,正确分析和评价科学试验结果及其可靠性的能力。
教学大纲一、课堂讲授部分(一)分章节列出标题、各章节要点及授课时数(务必将要点写清楚)第1章绪论一、基本内容1.1 农业科学试验的任务和要求1学时1。
1.1 农业科学试验和田间试验1.1。
2 农业科学试验的任务和来源1.1.3 农业科学试验的基本要求1。
2 试验误差及其控制2学时1.2。
1 试验误差1.2.2 试验误差的来源1。
2.3试验误差的控制1.3 生物统计学与农业科学试验1学时1.3。
1 部分生物统计学基本概念1。
3.2 生物统计学的形成与发展1。
3。
3 生物统计学在农业科学试验中的作用和注意问题二、教学目的与要求要求学生掌握农业科学试验的基本要求、试验误差的概念、来源和控制、部分生物统计学的概念,了解农业科学试验的任务和来源、生物统计学在农业科学试验中的作用和注意问题。
三、重点与难点重点:农业科学试验的基本要求、试验误差的概念、来源和控制、部分生物统计学的概念难点:试验误差的概念和生物统计学的基本概念的理解第2章试验的设计和实施一、基本内容2.1 试验方案1学时2.1。
1 试验方案的概念和类别2。
1.2 处理效应2.1。
3 试验方案的设计要点2。
2 试验设计原则1。
5学时2。
2.1 重复2.2。
2 随机排列2。
2.3 局部控制2。
3 小区技术0.5学时2。
3.1 小区2。
方差分析(ANOVA)方差分析的应用范围单因素完全随机设计, 随机化区组设计,拉丁方设计多因素析因设计,裂区设计,交叉设计,正交设计多变量多元方差分析回归方程的假设检验第一节完全随机设计与资料分析方差分析目的:根据多个组间样本均数的差别推断总体均数是否存在差别。
一、方差分析的基本思想:1 / 162 / 16表12.2 红细胞沉降率(mm/h) 抗凝剂 红细胞沉降率 n i XS 2Σx Σx 2甲 17, 16, 16, 15 4 16.00.67 64 1026 乙 10, 11, 12, 12 4 11.3 0.92 45 509 丙 11, 9, 8, 9 4 9.3 1.58 37 347 合计1212.23.17146 1882观察值之间有变异,这变异可以用离均差平方和表示。
67.105)(112..=-=∑∑==Gi n j ij T ix x SS3 / 16进一步分析,总变异中有两类变异: 1. 组内变异,指各组内观察值的差异50.9)1()(12112.=-=-=∑∑∑===Gi ii Gi n j i ij W s n x x SS i2. 组间变异,指各组间样本均数与总均数的差异17.96)(12...=-=∑=Gi i i B x x n SS由于组内变异完全是个体间的差异,因此可以认为是随机误差。
而组间变异反映组间均数的差异,其可能仅仅包含随机误差,这时零假设成立。
也可能除随机误差外,还包含处理的效应,这时则备择假设成立。
组间变异和组内变异的自由度不同,无可比性。
计算均方,再进行比较:4 / 164 / 1637.4506.109.489/50.92/17.96)/()1/(====--=W B W B MS MS G n SS G SS F 二、方差分析的基本步骤 1. 方差分析的基本条件a. 各组观察值分别服从总体均数为μi 的正态分布。
b. 各组观察值总体方差相等。
第八章单因素试验结果的统计分析•单因素试验指仅研究一个供试因素若干处理间的效应是否有显著差异的试验.•按试验设计的类型单因素试验可分为:•顺序排列试验•单因素完全随机试验•单因素随机区组试验•拉丁方试验第一节对比和间比试验的统计分析(自学)第二节完全随机试验设计的统计分析完全随机设计:是所有的处理和重复小区在整个试验空间完全随机排列的设计方法。
只满足试验设计三项基本原则中的重复和随机排列两项原则。
•如:k = 5,n = 3的完全随机排列示意图主要优点:对各处理的重复次数没有限制,可以相等也可以不相等不足之处:没有遵循局部控制原则,所以要求试验地较为均匀一致,不存在有明显方向性的肥力差异,一般不用于田间试验。
•根据每一处理的重复次数或重复的设计方法不同, 又分为:①组内观察值数目相等;②组内观察值数目不等的完全随机试验;③组内又可分为亚组的完全随机试验一、组内观察值数目相等的完全随机试验设计的统计分析组内观察值数目相等的完全随机试验是各处理重复次数相等的试验。
设有k个处理,每处理均有n个重复观察值,共设kn个观察值;其资料的数据结构模式类型见第7章表7.1。
其试验结果的方差分析方法列于表8.1。
表7.1 k个处理每处理n个重复观察值的完全随机试验数据符号表表7.1 nk个观察值的单向分组资料模式表8.1 组内观察值数目相等的完全随机试验的方差分析•〔例8.1〕研究6种棉花种子包衣剂对棉花生长的影响,设TW1为对照。
采用盆栽试验,各种子包衣剂处理播种5盆,完全随机设计。
出苗一定时期后测定棉花苗高(cm),其结果如下。
试检验各种子包衣剂与对照的棉花平均苗高差异显著性及各种子包衣剂棉花平均苗高间的差异显著性。
表8.2 6种棉花种子包衣剂的棉花苗高结果(cm)•解:已知:处理数k=6,重复次数n=5,共有kn=6×5=30个观察值。
•1、自由度及平方和的分解•总自由度df T = nk– 1 =6 × 5 – 1 =30 – 1 =29•处理自由度df t = k– 1 =6 – 1 =6 – 1 =5•误差自由度df e = df T–df t =29 – 5 =24或df e = n(k– 1) =6 ×( 5 – 1) =24 – 1 =23•矫正数总平方和SS T =Σx2-C=22.92+22.32+……+23.72-C=45.763处理平方和误差平方和SS e=SS T-SS t=45.763-44.463=1.3002、F 检验和列方差分析表统计假设H O:μ1= μ2=…= μ6;H A:μi不“全相等”(即至少有一个不等号)将上述计算的各项自由度、平方和、均方结果,按变异来源列出方差分析表(表8.5)。
第十一章随机区组试验知识目标:●掌握随机区组试验田间试验设计方法;●掌握随机区组排列田间试验结果统计分析方法。
技能目标:●学会随机区组试验设计;●能够绘制随机区组设计田间布置图;●学会随机区组试验结果统计分析。
随机区组试验设计是把试验各处理随机排列在一个区组中,区组内条件基本上是一致的,区组间可以有适当的差异。
随机区组试验由于引进了局部控制原理,可以从试验的误差方差中分解出区组变异的方差(即由试验地土壤肥力、试材、操作管理等方面的非处理效应所造成的变异量),从而减少试验误差,提高F检验和多重比较的灵敏度和精确度。
随机区组试验也分为单因素和复因素两类。
本节只介绍单因素和二因素随机区组试验的方差分析方法,第一节单因素随机区组试验和统计方法一、随机区组设计随机区组设计(randomized blocks design)是根据“局部控制”和“随机排列”原理进行的,将试验地按肥力程度等性质不同划分为等于重复次数的区组,使区组内环境差异最小而区组间环境允许存在差异,每个区组即为一次完整的重复,区组内各处理都独立地随机排列。
这是随机排列设计中最常用、最基本的设计。
区组内各试验处理的排列可采用抽签法或随机数字法。
如采用随机数字法,可按照如下步骤进行:(1)当处理数为一位数时,这里以8个处理为例,首先要将处理分别给以1、2、3、4、5、6、7、8的代号,然后从随机数字表任意指定一页中的一行,去掉0和9及重复数字后,即可得8个处理的排列次序。
如在该表1页第26行数字次序为0056729559,3083877836,8444307650,7563722330,1922462930 则去掉0和9以及重复数字而得到56723841,即为8个处理在区组内的排列。
完成一个区组的排列后,再从表中查另一行随机数字按上述方法排列第二区组、第三区组……,直至完成所有区组的排列。
(2)当处理数多于9个为两位数时,同样可查随机数字表。
从随机数字表任意指定一页中的一行,去掉00和小于100且大于处理数及其最大整数倍相乘所得的数字及重复数字后,将剩余的两位数分别除以处理数,所得的各余数即为各处理在此区组内的排列。
单因素随机区组实验设计一、单因素随机区组实验设计的大体特点心理和教育科学研究中,被试的个体不同是误差变异的重要来源。
它常常会混淆实验处置的效应,因此是无关变异。
随机区组设计利用区组方式减小误差变异,即用区组方式分离出由无关变量引发的变异,使它不出此刻处置效应和误差变异中。
单因素随机区组设计适用于如此的情境:研究中有一个自变量,自变量有两个或多个水平(P ≥2),研究中还有一个无关变量,也有两个或多个水平(n ≥2),而且自变量的水平与无关变量的水平之间没有交互作用。
当无关变量是被试变量时,一样第一将被试在那个无关变量上进行匹配,然后将他们随机分派给不同的实验处置。
如此,区组内的被试在此无关变量上加倍同质,他们同意不同的处置水平常,可看做不受无关变量的阻碍,要紧受处置的阻碍而区组之间的变异反映了无关变量的阻碍,咱们能够利用方差分析技术区分出这一部份变异,以减少误差变异,取得对处置效应的更精准的估价。
另外,环境因素也是潜在可考虑的区组变量,例如,天天的时刻、每一年的季节、地址、仪器等方面的因素也能够进行区组,以减少误差变异,时刻是一个专门有效的区组变量,因为它常常还会带来一些附加的变量,如躯体的生理周期、疲劳等等。
单因素随机区组实验设计适合查验的假说有两个:(1)处置水平的整体平均数相等,即:0.1.2.:P H μμμ==⋅⋅⋅⋅⋅⋅⋅=或处置效应等于0,即:0:0j H a =(2)区组的整体平均数相等,即:0.1.2.:n H μμμ==⋅⋅⋅⋅⋅⋅⋅=或区组效应等于0,即:20:0i H π=图中能够看出实验中有一个自变量,自变量有4个水平。
实验中还有一个无关变量,将16个被试在无关变量上进行匹配,分为4个区组,每一个区组内4个同质被试,随机分派每一个被试同意一个处置水平。
二、单因素随机区组实验设计与计算举例(一)研究的问题与实验设计咱们仍然利用第一节中文章的生字密度对阅读明白得阻碍的研究做例子。
例子:研究者想考察三种背景音乐(摇滚乐、爵士乐和古典音乐)对英语单词记忆效果的影响。
从同一班级中挑选了45人参加实验,事先对他们的智商、英语基础等方面进行了评定,按照评定情况以及其他特点对被试进行了配伍,每三人一伍。
在进行实验时,每个配伍组的三个被试分别分配给一种背景音乐,在该背景音乐中学习40个陌生的英语单词。
30分钟后进行测试,要求被试根据中文意思默写出刚才学习过的单词,写对一个积一分。
被试的成绩如表12章-数据1所示。
问:不同的背景音乐对英文单词的记忆效果是否有显著影响?。
常用实验设计方法(一)一、完全随机设计(c o m p l e t e l y r a n d o m d e s i g n)属于单因素实验设计,可为两或多个水平。
将受试对象按随机化方法分配到各处理组,各处理组例数可以相等或不等。
优点:简单易行缺点:①只能分析一个因素的效应;②需要足够的样本含量,使各组基线(混杂)均衡可比。
设计要点◆完全随机设计的两组比较◆完全随机设计的多组比较1.两组比较为实验“736”对肉瘤的抑制作用,将16只长出肉瘤的小鼠随机分为两组,实验组注射“736”,对照组注射同量的生理盐水,10天后解剖称瘤重,试问:①该实验为何种设计类型?②请写出相应的设计方案?③对资料进行统计分析?组别瘤重(克)给药组1.62.22.02.02.51.03.71.5对照组2.14.92.74.32.51.74.53.4随机分配方案:①动物编号1-16②分配随机数:随机排列表第6行取0-15,弃去16-19。
③规定:随机数奇数分配至“736”组,偶数为对照组1表示给药组“736”,0表示对照组(生理盐水)备注:常用的随机分配方案:①按随机数的奇偶分配至两组;②按随机数的余数分配至各组;③将随机数排序,等分成各区段,对应将研究对象分配至各组。
统计分析①数据录入(d a t a1.x l s/s h e e t1)g r o u p瘤重11.612.2121212.51113.711.502.104.902.704.302.501.704.503.4②统计分析结果解释:两组瘤重平均水平差异有统计学意义,给药组的瘤重低于对照组。
2.完全随机设计多组比较研究某药在机体内的杀虫效果,选取20只小鼠,用幼虫感染,8d后随机取15只分为三组分别给予该药的不同药量以杀灭蠕虫,另5只为对照,用药2d后,将所有的小鼠杀死计数体内成虫数。
获得资料如下:对照低剂量中剂量高剂量381279378172346338275235340334412230470198265282318303286250试问:①该实验为何种设计类型?②请写出相应的设计方案?③对资料进行统计分析?随机分配方案:①动物编号1-20②分配随机数:随机排列表第10行。