静电纺丝与碳纳米纤维的制备
- 格式:pdf
- 大小:657.55 KB
- 文档页数:10
作者简介:李 静(1985-),女,河南人,江南大学生态纺织教育部重点实验室硕士生,研究方向:纳米材料和锂离子电池材料;乔 辉(1982-),男,山东人,江南大学生态纺织教育部重点实验室副教授,博士,研究方向:新能源材料等,本文联系人;魏取福(1964-),男,安徽人,江南大学生态纺织教育部重点实验室教授,博士生导师,研究方向:功能纤维材料。
基金项目:中央高校基本科研业务费专项资金(JU SRP11102),江苏省自然科学基金(BK2010140)静电纺丝法制备的多孔碳纳米纤维李 静,乔 辉,魏取福(江南大学纺织服装学院,生态纺织教育部重点实验室,江苏无锡 214122)摘要:用静电纺丝法制备了聚丙烯腈(PA N)/聚甲基丙烯酸甲酯(PM M A)复合纳米纤维,经预氧化、高温炭化,制备用作锂离子电池负极材料的碳纳米纤维(CN F)。
透射电子显微镜(T EM )和比表面积分析发现:制备的CN F 具有多孔结构,比表面积达到572 9m 2/g,平均孔径为33 6nm 。
以50mA/g 的电流在0 01~3 00V 循环,制备的多孔CN F 的首次放电比容量为333 3mA h/g,第20次循环的可逆比容量为231 8mA h/g,充放电效率近90%。
关键词:静电纺丝法; 碳纳米纤维(CN F); 多孔结构; 负极材料; 充放电性能中图分类号:T M 912 9 文献标识码:A 文章编号:1001-1579(2011)03-0132-03Porous carbon nanofibers prepared by electrospinning techniqueLI Jing,QIAO Hui,WEI Qu fu(Key Labor atory of Eco T ex tiles of M inistry of Education ,College of T ex tiles&Clothing,J iangnan University ,Wux i,Jiangsu 214122,China)Abstract:Polyacr ylonitrile (PAN)/poly(methyl methacry late)(PM M A)co mposite nanofibers w er e prepared by electrospinningtechnique,then porous carbon nanofibers (CNF )as anode material for L i ion batter y were obtained by pr e ox idation and high tem perature carbonat ion T he analyses of transmission electron microscopy (T EM )and specific surface area showed that the as pre pared CNF had por ous structure,the specific sur face area was 572 9m 2/g,t he mean pore size was 33 6nm When cycled in 0 01~3 00V with the curr ent of 50mA /g,the initial specific discharg e capacity of the as pr epar ed porous CN F w as 333 3mAh/g,the r ev ersible specific capacity was 231 8mAh/g at t he 20th cycle,the charge discharge efficiency w as near 90%Key words:electrospinning ; carbon nanofibers (CNF ); porous structure; anode material; charge discharge performance锂离子电池所用的碳负极材料,主要为石墨类材料和低温热解碳。
2014年5月May 2014化学工业与工程CHEMICALINDUSTRY ANDENGINEERING第31卷Vol.31第3期No.3收稿日期:2014-03-30基金项目:中日国际合作项目(2011DFA50430)。
作者简介:岳孟斌(1989-),男,硕士,研究方向为电纺纤维的制备及用于水中污染物处理。
通信作者:黄正宏,E-mail :zhhhuang@tsinghua.edu.cn 。
doi :10.13353/j.issn.1004.9533.2014.03.002静电纺丝法制备碳纳米纤维及其应用岳孟斌1,陈颖芝2,白宇2,黄正宏2*,许德平1,康飞宇2(1.中国矿业大学(北京)化学与环境工程学院,北京100083;2.清华大学材料学院,北京100084)摘要:碳纳米纤维由于因其比表面积大、导电和导热性好,被广泛用于催化剂载体、吸附和储能材料。
静电纺丝是制备一维纳米纤维直接、有效的方法,在介绍静电纺丝的基本原理和工艺影响因素的基础上,综述了电纺碳纳米纤维的特性及其应用。
关键词:碳纳米纤维;静电纺丝;制备;应用中图分类号:TQ340.6文献标志码:A文章编号:1004-9533(2014)03-0013-07Preparation and Application of Carbon Nanofibers by ElectrospinningYue Mengbin 1,Chen Yingzhi 2,Bai Yu 2,Huang Zhenghong 2*,Xu Deping 1,Kang Feiyu 2(1.School of Chemical Environmental and Engineering ,China University of Mining and Technology ,Beijing 100083,China ;2.School of Materials Science and Engineering ,Tsinghua University ,Beijing 100084,China )Abstract :Carbon nanofibers have fascinating applications in the fields of catalyst support ,adsorption and energy storage ,etc.,due to their large surface area ,high electrical and thermal conductivity.Electro-spinning has been proved to be a versatile and effective way to prepare one-dimensional nanofibers.In this article ,the principle and the influential factors related to electrospinning were briefly introduced ,and the properties and applications of electrospun carbon nanofibers were reviewed.Key words :carbon nanofibers ;electrospinning ;preparation ;application 20世纪60年代碳纤维已经成为重要的工业材料。
静电纺丝技术的原理与纳米纤维制备方法静电纺丝技术是一种常用于制备纳米纤维的方法,通过利用静电力将聚合物材料从液态转变为纤维状,具有较高的纤维直径可调性和良好的纤维组织结构控制能力。
本文将介绍静电纺丝技术的原理以及常用的纳米纤维制备方法。
一、静电纺丝技术的原理静电纺丝技术是利用静电力将高分子溶液或熔融物质直接纺丝成纤维的一种制备方法。
该技术基于静电现象,通过将高电压施加于过程中的高分子溶液或熔融物,使其电荷不平衡,形成电场分布。
当电场强度超过材料的电离场强度时,分子将逐渐变成带电的纳米尺寸细丝。
最后,带电的纤维在电场的作用下逐渐伸长并凝固成固态纤维。
静电纺丝技术的关键参数包括高电压、喷丝间距和收集距离。
高电压可以产生强大的静电力,促使溶液中的聚合物形成细丝。
喷丝间距决定了纤维形成的方式和纤维直径。
收集距离可以影响纤维凝固形态和纤维排列结构。
静电纺丝技术的原理简单而直观,适用于制备各种类型的纳米纤维材料,因此在纳米材料制备领域具有广泛的应用前景。
二、常用的纳米纤维制备方法1. 单向静电纺丝法单向静电纺丝法是静电纺丝技术中最基本、最常用的制备方法之一。
在该方法中,高电压施加于旋转的喷丝头和静置的收集器之间,通过控制高电压和喷丝间距,可以得到直径均匀、纤维排列有序的纳米纤维。
2. 多向静电纺丝法多向静电纺丝法在单向静电纺丝法的基础上进行了改进,通过使用多根喷丝头和多个收集器,使得纤维的纺织方向更加多样化。
这种方法可以制备出多孔的纳米纤维薄膜,应用于过滤、分离和组织工程等领域。
3. 旋转盘静电纺丝法旋转盘静电纺丝法是利用旋转盘上的多个喷丝孔,将高分子溶液均匀喷洒在盘面上,通过旋转盘和静电作用将纤维逐渐形成。
这种方法制备的纳米纤维表面光滑均匀,适用于电子器件、传感器和催化剂支撑材料等领域。
4. 共喷纺丝法共喷纺丝法是在静电纺丝过程中,将两种或多种不同的高分子溶液或熔融物质通过不同的喷丝孔同时喷射到收集器上。
静电纺丝制备纳米纤维的研究进展近年来,随着纳米技术的快速发展,纳米材料的应用领域也越来越广泛,其中纳米纤维作为一种新型材料备受关注。
静电纺丝技术作为一种制备纳米纤维的有效方法,其应用范围也越来越广泛。
本文将介绍静电纺丝制备纳米纤维的研究进展。
1. 静电纺丝技术概述静电纺丝技术是一种利用静电场将高分子材料制备成纳米纤维的方法。
该技术具有工艺简单、操作方便、成本低、制备纤维直径可调等优点。
静电纺丝技术离不开两个基本元素:溶液和电场。
高分子材料被溶解在溶液中,经过特定的处理后,在电场的作用下开始拉伸,形成纳米直径的纤维。
2. 静电纺丝技术的优缺点静电纺丝技术在制备纳米纤维方面具有以下优点:①纳米纤维可以制备成连续的纤维丝,其长度可达数百米以上,比传统制备方法的纤维连续性更好;②纳米纤维直径可在10纳米至数微米之间调节;③制备成纳米纤维的材料具有极高的比表面积和孔隙度,这些特性使得其在耐热性、膜分离、天然气储存等方面具有广泛的应用前景。
但是,静电纺丝技术也存在一些缺点:①纤维纳米化会导致纤维的拉伸力和断裂十分容易,因此在制备过程中需要控制拉伸度,避免出现纤维过于脆弱导致纤维丝断裂;②由于溶剂挥发以及电场造成的电荷分布不均,容易导致制备的纳米材料出现不均匀性和不稳定性。
3. 静电纺丝技术的进展目前,在静电纺丝技术领域已有许多研究成果。
例如,在制备金属氧化物、生物纳米纤维、纳米复合材料、药物等方面都有广泛的应用。
例如,学者们在制备PCL(聚己内酯)纳米纤维过程中,将X射线光谱法和原子力显微镜(AFM)技术结合,探究了纤维的结构、力学性能和表面形貌等。
研究结果表明,纤维直径的变化可以显著改变材料的力学性能。
在另一项研究中,学者们使用静电纺丝技术制备出药物包被的聚乳酸(PLA)纳米纤维,实现了药物的缓慢释放,有望在医药领域得到应用。
4. 静电纺丝技术未来发展随着人们对纳米材料需求的增加,静电纺丝技术的应用前景也越来越广阔。
静电纺丝技术制备纳米纤维膜研究纳米材料在科技领域有着广泛应用,其中纳米纤维膜是一种重要的纳米材料。
静电纺丝技术是制备纳米纤维膜的一种常见方法,下面将详细介绍静电纺丝技术制备纳米纤维膜的原理、优势和应用。
一、静电纺丝技术的原理静电纺丝技术又称为电纺法、纺织电晕法等,是一种制备高分子材料纳米纤维膜的方法。
该技术使用高压电场使稀溶液产生强烈的电荷,经过过度拉伸后会产生电极化、沉积和电晕等现象,最终将溶液转变为具有纳米级直径的纤维。
静电纺丝技术的制备过程主要分为三个步骤:①将高分子溶解于有机溶剂中,制备出高分子稀溶液;②通过静电势场,将稀溶液产生电极化和增加表面能;③将带电的液滴通过冷凝作用凝聚成为纳米纤维膜。
二、静电纺丝技术的优势(1)高纳米纤维膜产量:静电纺丝技术可以同时制备多个纳米纤维膜,可大幅提高产量。
(2)低成本、高效率:静电纺丝技术制备的纳米纤维膜采用的有机溶剂可以再生利用,不仅成本低,而且制备速度非常快。
(3)纳米纤维膜直径可调:可以通过调节静电场、流量、距离和喷嘴的直径等参数,控制纳米纤维膜的大小,进一步优化纳米纤维膜的性质。
三、静电纺丝技术的应用(1)纳米滤膜:静电纺丝技术可以制备出高效纳米滤膜,例如空气过滤器和水处理过滤器等。
(2)纳米材料:纳米纤维膜可以用于制备纳米材料,例如非常完美的是一簇具有纤维维度的SiO2微晶。
(3)医用纱线:静电纺丝技术可以制备含有药物的医用纱线,用于缓释药物,使药物更加高效和准确。
总之,静电纺丝技术作为制备纳米纤维膜的一种常见方法,具有优越性能,并有着广泛的应用前景。
在未来的生产和科研中,这种技术将大大促进纳米材料的发展和应用。
静电纺丝碳膜一、引言静电纺丝技术是一种高效制备纳米纤维的方法,近年来在材料科学领域引起了广泛关注。
通过静电纺丝技术制备的碳膜具有优异的力学性能、电学性能和热学性能,因此在能源、环保、生物医学等领域具有广阔的应用前景。
本文将详细探讨静电纺丝制备碳膜的技术原理、工艺流程、性能表征以及应用领域,旨在为相关领域的研究者提供有价值的参考。
二、静电纺丝技术原理静电纺丝技术是一种利用高压静电场制备纳米纤维的方法。
在静电纺丝过程中,聚合物溶液或熔体在高压静电场的作用下形成射流,射流在电场中经历拉伸、细化、固化等过程,最终沉积在接收装置上形成纳米纤维膜。
通过调节溶液浓度、电压、接收距离等参数,可以实现对纳米纤维直径、形貌和结构的调控。
三、碳膜制备工艺流程利用静电纺丝技术制备碳膜的工艺流程主要包括以下几个步骤:1. 配置纺丝溶液:选择适当的聚合物作为碳源,将其溶解在合适的溶剂中,形成一定浓度的纺丝溶液。
2. 静电纺丝:将纺丝溶液置于静电纺丝机中,在高压静电场的作用下进行纺丝。
通过调节纺丝参数,如电压、接收距离、溶液流速等,控制纳米纤维的形貌和结构。
3. 热处理:将静电纺丝得到的纳米纤维膜进行高温热处理,使聚合物纤维碳化。
热处理过程中需要控制升温速率、碳化温度和保温时间等参数,以获得理想的碳膜结构。
4. 后处理:对碳化后的碳膜进行必要的后处理,如表面修饰、结构调控等,以提高其性能和应用价值。
四、碳膜性能表征静电纺丝制备的碳膜具有优异的力学性能、电学性能和热学性能。
为了全面评价碳膜的性能,需要进行一系列的性能表征。
常用的表征方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱(Raman)、X射线衍射(XRD)、热重分析(TGA)等。
这些表征方法可以从微观结构、化学组成、热稳定性等方面对碳膜进行全面的分析和评价。
五、碳膜应用领域由于静电纺丝制备的碳膜具有优异的性能,因此在多个领域具有广泛的应用前景。
以下是一些主要的应用领域:1. 能源领域:碳膜可以作为锂离子电池、超级电容器等能源器件的电极材料,提高其能量密度和功率密度。
- 47 -第4期2019年8月No.4 August,20191 锂空气电池电极材料概述锂空气电池是一种非常有潜力的高比能量电池,具有很高的研究价值,其理论能量密度上限达到11 400 Wh/kg ,几乎可与化石燃料相媲美,远超过其他电池,因此得到了学术界和科研界的大力关注,被一致认为是可充电电池领域中最有前景的颠覆性技术[1]。
正极材料的选择是锂空气电池成功的关键因素。
电池正极决定了氧气在正极区的流通情况以及电池放电产物的沉积[2]。
因此,正极材料需要具有不易堵塞的大孔结构,比表面积需要尽可能地大,以保证正极区反应的顺利进行。
由于具有较高的导电性,碳纳米纤维(Carbon Nanofiber ,CNF )材料是锂空气电池正极的优选材料之一。
然而碳纤维材料在制备过程中需要添加粘结剂,粘结剂的加入使得电极有效比表面积下降,降低电池容量和能量密度,而且粘结剂通常是绝缘体,会阻碍电解质中离子转移,进而影响电池电化学性能。
静电纺丝是一种简单而有效的制备碳纳米纤维的方法[3]。
与传统的碳纳米纤维相比,通过静电纺丝制备的碳纳米纤维通常交互排列形成一定厚度的纳米纤维毡,直接用作正极自支撑电池材料,而不需要添加非活性粘合剂,可以有效避免粘结剂对电化学性能的不利影响[4]。
同时,在放电过程中,单根碳纳米纤维之间存在的微米大小的孔隙不会被堵塞,保证O 2不间断地进入正极。
然而,传统的静电纺丝制备的CNF 的比表面积相对较低,限制了其放电容量[5]。
基于此,利用静电纺丝结合物理活化的方法制备了具有自支撑结构的分级多孔碳纳米纤维电极(ACNF ),探讨了制备条件对ACNF 正极材料微观结构和用于锂空气电池时的电化学性能的影响。
2 实验部分2.1 试剂及仪器试剂:聚丙烯腈,N ,N-二甲基甲酰胺,二(三氟甲基磺酰)亚胺锂(LITFSI ),聚偏氟乙烯,三乙二醇二甲醚(国药集团化学试剂有限公司)。
仪器:静电纺丝机(深圳通力微纳科技有限公司),管式炉(上海钜晶仪器制造有限公司),扫描电子显微镜(QUANTA 200FEG ),X 射线衍射仪(Rigaku Rotalflex ),手套箱(上海珂璐纳有限公司),蓝电电池测试仪(武汉蓝电电子有限公司。
基于静电纺丝技术的纳米纤维材料的制备与应用随着科技的不断发展,纳米材料已经成为了热门研究领域之一。
纳米技术在各个领域都有着广泛的应用,其中基于静电纺丝技术的纳米纤维材料更是备受关注。
静电纺丝技术是一种通过静电力将聚合物溶液转换成纳米级纤维的制备技术。
这种技术制备出的纳米纤维材料具有很多优异的特性,如表面积大、孔隙度高、硬度高、柔软性好等,因此在医药、环保、能源等各个领域都有着广泛的应用前景。
一、静电纺丝技术的原理静电纺丝技术的核心原理是通过静电力将聚合物溶液转换成纳米级纤维。
其具体制备过程为:将聚合物溶解在有机溶剂中,加入适量的表面活性剂,并通过高压泵将溶液液滴喷射到高压电场中,在电场的作用下,液滴被拉长成纤维状,并在收集器上形成纳米纤维膜。
此过程需要注意控制聚合物溶液的质量浓度、电场的强度和纤维收集器的旋转速度等因素。
二、纳米纤维材料的优异特性静电纺丝技术制备出的纳米纤维材料具有很多优异的特性,如表面积大、孔隙度高、硬度高、柔软性好等。
其中,表面积大是原因之一。
由于纤维的直径非常小,因此单位质量的纳米纤维材料表面积非常大,这可以使得纳米纤维材料可以更好地去吸附和固定其他物质。
另外,纳米纤维材料的孔隙度也是比较高的,可以作为高效的过滤材料,可以过滤掉一些微小的颗粒和微生物。
纳米纤维材料的硬度比较高,还有较好的柔软性,可以被用于一些需要高强度和柔软性的领域。
三、纳米纤维材料在医药领域的应用纳米纤维材料在医药领域有着广泛的应用。
例如,在伤口的治疗方面,纳米纤维材料可以用来制造敷料。
普通的敷料很难贴合到伤口处,导致注入药物的过程中药物流失,而纳米纤维敷料则可以完美地贴合伤口处,不仅能够阻止药物的流失,还可以在敷料上注入药物,促进伤口的愈合。
另外,纳米纤维材料还可以用于制备人工组织,如人工心脏瓣膜等。
四、纳米纤维材料在环保领域的应用在环保领域中,纳米纤维材料可以用来制备高效的过滤材料。
例如,在空气净化领域,纳米纤维材料可以制备成高效的空气净化器,可以过滤掉一些危险有害气体中的颗粒,如PM2.5等,从而保证室内空气的清洁。
静电纺丝法制备纳米纤维材料的研究一、引言纳米纤维材料具有突出的性能和应用前景,也成为了研究的热点领域。
其中,静电纺丝法作为一种制备纳米纤维材料的有效手段,在制备新型功能材料、纳米传感器、高效滤料等方面得到了广泛应用。
本文旨在从静电纺丝的原理、影响因素、纳米纤维材料制备及其应用等方面进行探讨。
二、静电纺丝法的原理静电纺丝法是一种通过静电力将溶液或熔体中的材料拉伸成纤维的方法,其工作原理主要基于电荷的相互作用。
将电荷量极小的液体通过针口细孔注入一定作用电场的区域,溶液中的分子会受到电场作用而形成直径约为几毫米的液滴。
当液滴越过针尖位置时,电场将液滴内部的电荷分布不均匀地拉伸并发生极化,此时液滴极性变化引发静电力的作用,液滴表面附着上的荷电分子会被电场加速拉伸,从而形成纺丝流。
在纺丝过程中,液滴内部溶液挥发蒸发,纤维逐渐细化,并随风中漂浮而将纤维收集起来即可。
三、静电纺丝法影响因素1. 溶液性质:包括溶液粘度、熔点、表面张力、介电常数、溶解度等。
如:面张力较大的液体易形成不规则形状的纤维;低粘度的液体纺丝时容易出现喷溅等问题。
2. 纺丝电场:静电纺丝中的电场强度与纤维的直径具有很大的相关性。
纤维直径可通过改变电场强度(或与之相关的电压、电流密度等)进行控制,同时还可以对纤维的形态和结构进行微调。
3. 收集器:收集器的类型和形状对制备出的纳米纤维材料的质量和形貌影响显著。
与此同时,收集器对纤维形态的影响还是该领域研究的热点和难点。
4. 操作条件:比如通风条件、湿度、温度、气流速度等,也会对静电纺丝制备纳米纤维材料产生影响。
四、静电纺丝制备纳米纤维材料静电纺丝法制备的纳米纤维材料已经得到广泛应用,并在许多领域发挥了独特的作用。
此处将简要介绍其中几个应用领域。
1. 纳米级滤料:由于静电纺丝法可以将材料拉成直径为数十纳米的纤维,因此用其制备纳米级滤料可以大大提高滤材的表面积和孔隙率,从而提高滤材的过滤效率,并且还具有良好的机械性能和生物兼容性能。