高中数学必修一 (教案)二次函数与一元二次方程、不等式
- 格式:docx
- 大小:89.23 KB
- 文档页数:7
二次函数与一元二次方程、不等式教学设计课题名称二次函数与一元二次方程、不等式姓名学校年级教材版本人教版A版一、教学目标1.使学生能够运用一元二次方程以及二次函数图像、性质解决实际问题。
2.渗透数形结合思想,进一步培养学生综合解题能力。
经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法。
3.激发学生学习数学的热情,培养学生勇于探索的精神,同时体会事物之间普遍联系的辩证思想。
二、教学重难点重点:一元二次不等式的应用。
难点:一元二次方程的根的情况与二次函数图像与x轴的位置关系的联系,数形结合的运用。
三、教学方法讲授法、讨论法、练习法四、教学过程一、导入(复习导入)师生活动复习解一元二次不等式步骤:1、a变正,(二次项系数化为正数)2、判别式。
(利用一元二次方程,求出判别式的值)3、求根。
(根据判别式情况求出一元二次方程的根)4、画草图。
(利用二次函数绘制图像)5、求解集。
(根据数形结合的思想求不等式解集)复习上节课所学内容,检测学生学习情况。
二、新指探究利用一元二次不等式求解实际问题。
【例1】一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(单位:辆)与创造的价值y(单位:元)之间有如下关系:y=−2y2+220y若这家工厂希望在一个星期内利用这条流水线创收6000元以上,则在一个星期内大约应该生产多少辆摩托车?解:设这家工厂在一个星期内大约应该利用整条流水线生产x辆摩托车,根据题意得:−2y2+220y>6000移项整理,得:y2−110y+3000<0对于方程y2−110y+3000=0,∆=100>0,方程有两个实数根y1=50,y2=60画出二次函数y=y2−110y+3000的图像(图2.3-6),结合图象得不等式y2−110y+3000<0的解集为{y|50<y<60},从而原不等式的解集为:{y|50<y<60}。
2.3 二次函数与一元二次方程、不等式第1课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c 的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅预习小测自我检验1.下面所给关于x的几个不等式:①3x+4<0;②x2+mx-1>0;③ax2+4x-7>0;④x2<0.其中一定为一元二次不等式的有________.(填序号) 答案 ②④解析 一定是一元二次不等式的为②④. 2.不等式x (2-x )>0的解集为________. 答案 {x |0<x <2}解析 原不等式可化为x (x -2)<0,∴0<x <2. 3.不等式4x 2-9<0的解集是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <32 解析 原不等式可化为x 2<94,即-32<x <32.4.已知一元二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________. 答案 {a |a <-1} 解析 由题意知⎩⎪⎨⎪⎧a <0,Δ<0,∴⎩⎪⎨⎪⎧a <0,4+4a <0,∴a <-1.一、解不含参数的一元二次不等式 例1 解下列不等式: (1)-x 2+5x -6>0; (2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .反思感悟 解一元二次不等式的一般步骤第一步:把一元二次不等式化为标准形式(二次项系数为正,右边为0的形式);第二步:求Δ=b 2-4ac ;第三步:若Δ<0,根据二次函数图象直接写出解集;若Δ≥0,求出对应方程的根写出解集. 跟踪训练1 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.二、三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎪⎨⎪⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512.所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .反思感悟 三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式. 跟踪训练2 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎪⎨⎪⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x +1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤1. 三、含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a.①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2;②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. 跟踪训练3 (1)当a =12时,求关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1≤0的解集;(2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎪⎫a +1a x +1≤0的解集.解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎪⎫a +1a x +1≤0⇔⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,①当0<a <1时,a <1a ,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a≤x ≤a. 综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a.1.不等式9x 2+6x +1≤0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤13 C .∅ D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-13 答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a等于( ) A .-81 B .81 C .-64 D .64 答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0, 其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎪⎨⎪⎧1+3=a ,1×3=-b ,解得a =4,b =-3;所以b a=(-3)4=81.故选B. 3.不等式x 2-2x >0的解集是( ) A .{x |x ≥2或x ≤0} B .{x |x >2或x <0} C .{x |0≤x ≤2} D .{x |0<x <2}答案 B解析 解x 2-2x >0,即x (x -2)>0, 得x >2或x <0,故选B.4.不等式x 2-3x -10<0的解集是________. 答案 {x |-2<x <5}解析 由于x 2-3x -10=0的两根为-2,5,故x 2-3x -10<0的解集为{x |-2<x <5}.5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是________________. 答案 {m |m ≥9或m ≤1}解析 由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.1.知识清单:解一元二次不等式的常见方法 (1)图象法:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.方法归纳:数形结合,分类讨论.3.常见误区:当二次项系数小于0时,需两边同乘-1,化为正的.1.(2019·全国Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <m B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1m 或x <m C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1m D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-ba ,-2×3=c a, ∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <2,∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0; (2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C.12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0, 故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立, ∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.15.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a -1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________. 答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 16.已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.解 ∵ax 2+2ax +1≥0对任意x ∈R 恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ; ②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时,1-a <x <a . 综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。
学生在小学和初中阶段已经学习了一元一次不等式的解法,在知识上已经具备了一定的知识经验和基础,在能力上初步具备了一定的解决问题的能力,同时这部分知识之前学过的二次函数也有密切的联系,因此学生对一元二次不等式的解法有一定的兴趣和积极性,但是学生能力有限,真正掌握还有一定的难度。
教学时,可以利用具体的一元二次不等式,让学生观察二次函数的图象,获得对解一元二次不等式方法的认识,培养学生直观想象的核心素养。
通过定义辨析,引导学生熟练掌握一元二次不等式特征,提高学生数学抽象的核心素养.】(1)二次函数的零点不是点,是二次函数与x轴交点的横坐标.(2)一元二次方程的根是相应一元二次函数的零点.当x <2 或x >10时,图像在x 轴上方,y >0,即x 2-12x+20>0;当2<x <10时,y <0,即x 2-12x+20<0;故一元二次不等式x 2-12x +20<0的解集是{x|2<x <10}.求解一元二次不等式x 2-12x +20<0解集的方法,是否可以推广到一般的一元二次不等式?一元二次方程、一元二次不等式与二次函数的关系:注意:(1)对于一元二次不等式的二次项系数为正且存在两个根的情况下,其解集的常用口诀是:大于取两边,小于取中间.(2)对于二次项系数是负数(即a <0)的不等式,可以先把二次项系数化为正数,再对照上述情况求解.一元二次不等式的解法】先求出对应一元二次方程的解,再结合对应的二次函数的图象写出不等式的解集.21225600.2 3.56x x x x y x x -+=∆>===-+解:对于方程,因为,所以它有两个实数根解得,画出二次函数的图象,如下图,256{|}023.x x x x x -+><>结合图象得不等式的解集为,或2122961001.3961x x x x y x x -+=∆====-+解:对于方程,因为,所以它有两个相等的实数根,解得画出二次函数的图象,如下图,29610{|}1.3x x x x -+>≠结合图象得不等式的解集为22230.80230.x x x x -+<∆=-<∴-+=解:不等式可化为,方程无实数根223y x x =-+∅画出二次函数因此,原不等式的解集为。
《二次函数与一元二次方程、不等式(第二课时)》教学设计◆教学目标1.通过从实际情境中抽象出一元二次不等式模型的过程,体会一元二次不等式的现实意义,提升数学建模的核心素养.2.能利用一元二次不等式解决一些实际问题,提升数学运算素养.◆教学重难点◆教学重点:实际问题中的一元二次不等式解法.教学难点:从实际问题所蕴含的不等关系中抽象出一元二次不等式.◆课前准备PPT课件◆教学过程一、知识回顾★资源名称:【知识点解析】一元二次不等式的解法★使用说明:本资源为一元二次不等式的解法讲解视频,通过具体例子,引导学生理解并归纳出一元二次不等式求解的一般步骤.注:此图片为微课截图,如需使用资源,请于资源库调用.问题1:二次函数与一元二次方程、一元二次不等式解集的对应关系是怎样的?请你完成下面的表格。
师生活动:学生默写,完成之后教师展示,学生互相检查纠错.预设的答案:Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅(1)函数的角度:一元二次不等式ax2+bx+c>0表示二次函数y=ax2+bx+c的函数值大于0,图象在x轴的上方;一元二次不等式ax2+bx+c>0的解集即二次函数图象在x 轴上方部分的自变量的取值范围.(2)方程的角度:一元二次不等式ax2+bx+c>0的解集的端点值是一元二次方程ax2+bx+c=0的根.设计意图:复习旧知识,并通过默写的形式让师生都了解是否掌握了,为本节课的学习扫清知识障碍。
问题2:求解一元二次不等式的步骤是怎样的?师生活动:学生写出步骤,教师用如下的程序框图呈现.预设的答案:设计意图:本节课重点依然是一元二次不等式的解法,学生需要借助三个“二次”的联系,获得一元二次不等式的一般性解法,从整体上把握所学内容,让学生明确不等式解法,有助于学生良好认知结构的建立和完善,并为后面知识的学习提供帮助.二、新知探究 利用一元二次不等式解决实际问题例1 一家车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间有如下的关系:x x y 2200202+-=.若这家工厂希望在一个星期内利用这条流水线创收60000元以上,则在一个星期内大约应该生产多少辆摩托车?问题3:这个实际问题中蕴含的不等关系是什么?求解不等式的步骤是什么?对于实际问题还需要注意什么?师生活动:学生分析题目,得出一元二次不等式,并求解。
2.3二次函数与一元二次方程、不等式【素养目标】1.理解一元二次方程与二次函数的关系.(数学抽象)2.掌握图象法解一元二次不等式.(直观想象)3.会从实际情境中抽象出一元二次不等式模型.(数学抽象)4.会解可化为一元二次不等式(组)的简单分式不等式.(数学运算)5.会用分类讨论思想解含参数的一元二次不等式.(逻辑推理)6.会解一元二次不等式中的恒成立问题.(数学运算)【学法解读】在从函数观点看一元二次方程和一元二次不等式的学习中,可以先以讨论具体的一元二次函数变化情况为情境,使学生发现一元二次函数与一元二次方程的关系,引出一元二次不等式的概念;然后进一步探索一般的一元二次函数与一元二次方程、一元二次不等式的关系,归纳总结出用一元二次函数解一元二次不等式的程序.2.3.1 二次函数与一元二次方程、不等式一、必备知识·探新知基础知识知识点1:一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________________.一元二次不等式的一般形式是:_________________________或_________________________.知识点2:二次函数与一元二次方程、不等式的解的对应关系思考2:如何用图解法解一元二次不等式?提示:图解法解一元二次不等式的一般步骤:(1)将原不等式化为标准形式ax2+bx+c>0或ax2+bx+c<0(a>0);(2)求Δ=b2-4ac;(3)若Δ<0,根据二次函数的图象直接写出解集;(4)若Δ≥0,求出对应方程的根,画出对应二次函数的图象,写出解集.基础自测1.判断正误(对的打“√”,错的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(3)设二次方程f(x)=0的两解为x1,x2,且x1<x2,则一元二次不等式f(x)>0的解集不可能为{x|x1<x<x2}.()(4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的解集为空集,则方程ax2+bx+c=0无实根.()[解析](1)当m=0时,是一元一次不等式;当m≠0时,它是一元二次不等式.(2)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为∅.(3)当二次项系数小于0时,不等式f(x)>0的解集为{x|x1<x<x2}.(4)当Δ<0时,一元二次不等式的解集为空集,此时方程无实根.2.不等式2x≤x2+1的解集为()A.∅B.RC.{x|x≠1} D.{x|x>1或x<-1}[解析]将不等式2x≤x2+1化为x2-2x+1≥0,∴(x-1)2≥0,∴解集为R,故选B.3.不等式(2x-5)(x+3)<0的解集为_____________________.二、关键能力·攻重难题型探究题型一解一元二次不等式例题1:解下列不等式.(1)2x2-3x-2>0;(2)x2-4x+4>0;(3)-x2+2x-3<0;(4)-3x2+5x-2>0.[分析]根据三个二次之间的关系求解即可.[归纳提升]解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)的形式.(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)根据对应的二次函数的图象,写出不等式的解集.【对点练习】❶不等式6x2+x-2≤0的解集为______________________.题型二三个“二次”的关系例题2:已知不等式ax2-bx+2<0的解集为{x|1<x<2},求a,b的值.[分析]给出了一元二次不等式的解集,则可知a的符号和方程ax2-bx+2=0的两根,由根与系数的关系可求a,b的值.【对点练习】❷若不等式ax2+bx+c≤0的解集为{x|x≤-3或x≥4},求不等式bx2+2ax-c-3b≥0的解集.题型三解含有参数的一元二次不等式例题3:解关于x的不等式2x2+ax+2>0.[分析]二次项系数为2,Δ=a2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.②当a=4时,Δ=0,方程有两个相等实根,x1=x2=-1,∴原不等式的解集为{x|x≠-1}.③当a=-4时,Δ=0,方程有两个相等实根,x1=x2=1,∴原不等式的解集为{x|x≠1}.④当-4<a<4时,Δ<0,方程无实根,故原不等式的解集为R.[归纳提升]在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数a>0,a=0,a<0;(2)关于不等式对应方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0);(3)关于不等式对应方程的根的大小的讨论:x1>x2,x1=x2,x1<x2.【对点练习】❸解关于x的不等式ax2-x>0.。
2.3.1二次函数与一元二次方程、不等式(第二课时)(人教A版普通高中教科书数学必修第一册第二章)一、教学目标1.经历从实际情境中抽象出一元二次不等式的过程.了解一元二次不等式的现实意义.2.能够构建一元二次函数模型,解决实际问题.二、教学重难点1.理解二次函数及一元二次方程、一元二次不等式的联系2.会运用二次不等式模型求解范围及最值等问题及化归思想的呈现三、教学方法“问题链”教学法;“以学生为中心的课堂展开”四、教学过程1.复习引入有两个相等的实数根2.变式探究(1)一元二次不等式的本质问题1:现在,让我们回到问题的本质上去,为什么一元二次不等式的解是这个是形式?如果是一元高次不等式呢,我们又将如何解决?【活动预设】引导学生回归问题本质,运用乘法的性质来重新认识一元二次不等式,让理解力强的同学能举一反三解决三次不等式.【设计意图】从感知个例到分析通例,遵循从特殊到一般的思路,在具体实践的基础上进行理性分析,认识一元二次不等式的本质,加深外延的理解,为后续高次不等式的学习作铺垫.1.不等式0)1(12722>+++-x x x x )(的解集为 ( ) A .),(),(∞+--∞-34 B .),(),(∞+∞-43 C .),(34-- D .),(43 【预设的答案】B问题2:若上述不等式改为三次不等式如:0)1(1272>++-x x x )(:,那么我们有什么办法求解呢?问题的本质是怎么样的呢?【预设的答案】⎩⎨⎧>+->+0127012x x x 或⎩⎨⎧<+-<+0127012x x x当我们将)(1272+-x x 因式看作一个整体时,上述问题就归化为一元二次不等式的解题本质上去了,其本质是两同号因式相乘结果为正,两异号因式相乘结果为负。
(2)分式不等式问题3:在明确了问题的本质后,如果两个因式相乘与相除有什么不同呢,在具体的求解中我们又要注意些什么?【活动预设】引导学生回归问题本质,既然乘法与除法在结果上有相似性,那么对一元二次不等式问题进行迁移就可以解决分式不等式【设计意图】从感知个例到分析通例,遵循从特殊到一般的思路,在具体实践的基础上进行理性分析,认识分式不等式的本质,并理解乘法与除法的区别在于:分母不能为零2.解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 【预设的答案】解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-4<x <52. (2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4. 反思感悟 分式不等式的解法:先通过移项、通分整理,再化成整式不等式来解.如果能判断出分母的正负,直接去分母即可. 跟踪训练1 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 【预设的答案】 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12, ∴-3<x <-12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12.(3)不等式恒成立问题问题4:在理解二次函数及一元二次方程、一元二次不等式的联系后,能否提炼出一元二次不等式恒成立问题的解题核心?【活动预设】引导学生回归一元二次函数图象来解决恒成立问题. 【设计意图】从感知个例到分析通例,遵循从特殊到一般的思路,在具体实践的基础上进行理性分析,认识恒成立问题,渗透数形结合这一思想,加深对一元二次不等式,一元二次方程,二次函数三者的联系的理解,为后续函数的学习作铺垫. 3.(1)若对∀x ∈R 不等式x 2+mx >4x +m -4恒成立,求实数m 的取值范围; (2)若x 2>4x +m -4在R 上恒成立,求m 的取值范围.【预设的答案】解 (1)原不等式可化为x 2+(m -4)x +4-m >0,∴Δ=(m -4)2-4(4-m )=m 2-4m <0, ∴0<m <4,∴m 的取值范围为{m |0<m <4}.(2)原不等式可化为x 2-4x +4=(x -2)2>m 恒成立, ∴m <0,∴m 的取值范围为{m |m <0}.[素养提升] 一元二次不等式恒成立的情况: ax 2+bx +c >0(a ≠0)恒成立⇔⎩⎪⎨⎪⎧a >0,Δ<0.ax 2+bx +c ≤0(a ≠0)恒成立⇔⎩⎪⎨⎪⎧a <0,Δ≤0.1.知识清单:(1)简单的分式不等式的解法(2)利用不等式解决实际问题的一般步骤如下:①选取合适的字母表示题目中的未知数;②由题目中给出的不等关系,列出关于未知数的不等式(组);③求解所列出的不等式(组);④结合题目的实际意义确定答案.2.方法归纳:转化、恒等变形.3.常见误区:利用一元二次不等式解决实际问题时,应注意实际意义.。
必修第一册第二章一元二次函数、方程和不等式2.2.3 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出体现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。
教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。
①求得不等式①的解集,就得到了问题的答案。
思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。
一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。
教学计划:《二次函数与一元二次方程、不等式》一、教学目标1、知识与技能:学生能够理解并掌握二次函数、一元二次方程及一元二次不等式的概念、性质及其相互关系;能够熟练求解一元二次方程和一元二次不等式,并能根据二次函数的图像判断不等式的解集。
2、过程与方法:通过案例分析、图形辅助、探究学习等方法,培养学生的观察、分析和解决问题的能力;通过小组合作、讨论交流,提升学生的协作学习能力和语言表达能力。
3、情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学规律的精神和严谨的科学态度;通过解决实际问题,让学生感受到数学在现实生活中的应用价值。
二、教学重点和难点重点:一元二次方程的求解方法(公式法、因式分解法、配方法);一元二次不等式的解法及与二次函数图像的关系;二次函数的性质(开口方向、顶点、对称轴)。
难点:一元二次不等式解法中根据判别式判断解的存在性;将一元二次不等式转化为二次函数图像下的区域问题;灵活运用二次函数的性质解决实际问题。
三、教学过程1. 导入新课(5分钟)生活实例引入:以医院中病人的病情随时间变化的例子(如体温变化、药物浓度变化),引导学生思考这些变化可能呈现出的二次函数形态,从而引出二次函数的概念。
提出问题:当病情达到某个临界点时(如体温过高或过低),医生需要采取相应措施。
这实际上涉及到一元二次方程和不等式的求解问题。
明确目标:介绍本节课将要学习的内容,即二次函数与一元二次方程、不等式的相互关系及其求解方法。
2. 讲解新知(20分钟)二次函数概念:回顾一次函数的概念,通过类比引出二次函数的一般形式及其图像特征(开口方向、顶点、对称轴)。
一元二次方程求解:详细介绍一元二次方程的三种求解方法(公式法、因式分解法、配方法),并通过实例演示每种方法的应用。
一元二次不等式:结合二次函数图像,讲解一元二次不等式的解法及其与函数图像的关系。
强调根据判别式判断不等式的解集情况,并引导学生掌握将不等式转化为图像下区域问题的方法。
必修 2.3 二次函数,一元二次方程与不等式
教学设计
活动四:完成教材52页例1,例2,例3,(利用函数图像) 例1 求不等式0652
>+-x x 的解集
例2 求不等式01692
>+-x x 的解集
例3 求不等式03-2-2
>+x x 的解集
活动五:总结一元二次不等式的解题步骤。
(三)及时反馈,数学应用 活动六、巩固训练 1. 教材53页练习1, 2,教材53页练习2 能力提升: 1.教材55页综合运用3,5
教师组织,学生完成
学生分组讨论交流,教师启发引导
最后学生复述总结
画出函数图像 学生独立完成 小组讨论,教师巡回指导,学生口述
体会过程,抽象数学
抽象数学,表达数学
锻炼学生作图能力,培养学生数形结合的思想
合作学习,学习方法指导,抽象数学
三、课堂小结
四、课下作业
1.整理笔记
2.完成质量检测A 学生版演,教师
巡回指导,
学生总结
数学运算,计算
能力培养
深化理解
体会数学的整体性
板书设计2.3 二次函数,一元二次方程与不等式
02
2<
+
+
>
+
+c
bx
ax
c
bx
ax或
课后
反思
按照学生认知程度层层递进,在原有知识基础上建立新知。
二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x│x>x2或x<x1}{x│x≠‒2b a}Rax2+bx+c<0(a>0)的解集{x│x1<x<x2}∅∅ab2-=22.一元二次不等式ax+bx+c>0(a>0)的求解的算法。
教学过程一、复习预习1、二次函数的定义:(1)一般地,如果y=ax2+bx+c(a,b,c是常数且a≠0),那么y叫做x的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据;(2)当b=c=0时,二次函数y=ax2是最简单的二次函数;(3)只要函数通过变形能变为y=ax2+bx+c(a,b,c是常数且a≠0)的形式都是二次函数,二次函数的另外两种形式为:顶点式y=a(x-h)2+k(a≠0),交点式y=a(x-x1)(x-x2)。
2、二次函数的图像:1)、y=ax2+bx+c(a≠0)的图像(1)二次函数的图像是一条抛物线;(2)在画二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.并能从图象上认识二次函数的性质;(3)对于二次函数y=ax2+bx+c(a≠0),a决定了二次函数的开口方向,a>0时,开口向上,a<0时,开口向下;︱a︱的大小决定抛物线的开口大小.︱a︱越大,抛物线的开口越小,︱a︱越小,抛物线的开口越大.(4)a、b共同决定了对称轴的位置,可以用四个字来概括“左同右异”,即:当对称轴在y轴的左边时,a、b正负性相同,当对称轴在y轴的右边时,a、b正负性相反;(5)c决定了图像与y轴的交点,即与y轴交点的横坐标,c>0,交于y轴正半轴;c<0,交于y轴负半轴;c=0时,抛物线过原点。
(6)当△=b2-4ac>0时,图像与x轴有两个交点,且两交点之间的距离为|X1−X2|=√b2-4ac;当△=b2-|a|4ac=0时,图像与x轴有一个交点;当△=b2-4ac<0时,图像与x轴没有交点。
2)、y=a(x-h)2+k(a≠0)的图像(1)二次函数的图像是一条抛物线;(2)在画二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.并能从图象上认识二次函数的性质;(3)对于二次函数y=a(x-h)2+k(a≠0),a决定了二次函数的开口方向,a>0时,开口向上,a<0时,开口向下;(4)a、k共同决定了对称轴的位置,可以用四个字来概括“左同右异”,即:当对称轴在y轴的左边时,a、k正负性相同,当对称轴在y轴的右边时,a、k正负性相反;3)、y=a(x-x 1)(x-x 2)的图像: (1)二次函数的图像是一条抛物线;(2)在画二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.并能从图象上认识二次函数的性质;(3)对于二次函数y=a(x-x 1)(x-x 2),a 决定了二次函数的开口方向,a>0时,开口向上,a<0时,开口向下;(4)x 1、x 2表示二次函数与x 轴交点的横坐标,且有对称轴x=-b2a =x 1+x 22, 两交点之间的距离为|X 1−X 2|=√b2-4ac|a |。
高中数学复习考点知识讲解教案二次函数与一元二次方程、不等式复习课(人教A 版普通高中教科书数学必修第一册第二章)一、教学目标1.通过二次函数图像性质与一元二次方程及不等式的关系的复习,巩固数形结合的思想方法.2.通过实际问题的解决,发展学生数学建模,数学抽象的核心素养. 二、教学重难点1.二次函数的图像及其性质.以及二次函数与一元二次方程、不等式的关系,熟悉三个二次的相互转化和应用.2.数学结合的思想方法与数学抽象的核心素养的培养. 三、教学过程 1.知识点回顾1.1熟悉二次函数的解析式的三种形式,尤其要熟悉配方 一般式:2y ax bx c =++顶点式:224()24b ac b y a x a a -=++,顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭两点式:当240b ac ∆=->时,12()()y a x x x x =--,1,2x = 1.2二次函数与一元二次方程,不等式的解的对应关系0)2.典例回顾:(1)求方程2230x x -++=的解,并分别求不等式2230x x -++>与2230x x -++<的解集.解析:梳理二次函数,方程的根,不等式的解集的关系.解:方程2230x x -++=可以化为:2230x x --=即()()310x x -⋅+=得123,1x x ==- 从而也可以得到二次函数223y x x =--的示意图,或者得到二次函数223y x x =-++的示意图:求2230x x -++>的解集,就是求二次函数223y x x =-++在0y >时的自变量x 的集合,易得:不等式2230x x -++>的解集为:{}|13x x -<<同理:不等式2230x x -++<的解集为:{}|13x x x <->或方法总结:二次函数的图像与x 轴的交点横坐标就是对应的一元二次方程的根,而相应不等式可以根据函数值的正负来确定x 的取值范围,二次函数是主干,一元二次方程和不等式就像它的两翼.(2)某网店销售一批新款削笔器,每个削笔器的最低售价为15元,若按最低售价销售,每天能卖出30个,若一个削笔器的售价每提高1元,日销售量将减少2个,为了使这批削笔器每天获得400元以上的销售收入,应怎样制定这批削笔器的销售价格?解:设这批削笔器每一个的销售价格为x (15x ≥), 则每天销售量为302(15)602x x --=- 设销售收入为y ,()602y x x =-⋅当400y >时,()602400x x -⋅>得2302000x x -+<,(10)(20)0x x --<,又15x ≥ 所以1520x ≤<.答:这批削笔器的销售价格应该定在[15,20).方法总结:设未知数,根据题意写出函数,不等式,求解实际问题.以二次函数为例为建立数学模型解决实际问题的学习打下基础.(3)当k 取何值时,一元不等式23208kx kx +-<对一切实数x 都成立?解:①若0k =,则23208kx kx +-<即308-<对一切实数x 都成立.②若0k >,则二次函数2328y kx kx =+-的图像开口向上,函数值不可能恒为负数,23208kx kx +-<对一切实数x 不可能恒成立.③若0k <,则二次函数2328y kx kx =+-的图像开口向下,函数值恒为负数时,函数图像和x 轴无交点,即23208kx kx +-<对一切实数x 恒成立时2342()08k k k <⎧⎪⎨∆=-⨯-<⎪⎩即2030k k k <⎧⎨+<⎩解得:30k -<<. 综上所得:30k -<≤时,一元不等式23208kx kx +-<对一切实数x 都成立.方法总结:关于x 的含参的不等式,要关注二次项系数是否为0,根据函数的图像性质对不等式恒成立问题分类讨论.【活动预设】通过解题重新梳理二次函数与二次方程不等式的解的关系. 老师在教学中也可以指出二次函数的零点的概念,为后面的学习做铺垫.【设计意图】巩固数形结合的解题方法. 在典例回顾(3)中提升学生的数学抽象思维能力.3.反思提升:二次函数和一元二次方程,不等式之间的关系密切,二次函数的图像和性质决定了对应的一元二次方程的根和不等式的解集.所以,二次函数的图像和性质成为重要的解题依据.那么除了上面回顾的典型例题,对于二次函数的应用,还有哪些主要的题型呢?题型一、利用二次函数图像性质解函数值的范围问题.例 1.已知函数223y x x =-+,当35x -≤≤时,求函数值y 组成的集合.解:函数2223(1)2y x x x =-+=-+图像开口向上,对称轴方程为:1x =,当1x =时,2y =当1x <时,函数值y 随着x 的增大而减小,3x =-时,18y = 当1x >时,函数值y 随着x 的增大而增大,5x =时,18y = 函数值y 组成的集合为:{}|218y y ≤≤.方法总结:确定的二次函数在确定的区间中的函数值变化问题,一看函数的开口方向,二看函数的对称轴,三看给定区间上的函数单调性.变式1. 已知函数223y x x =-+,当2a x a ≤≤+时,其中a 为常数,求函数值y 组成的集合.解:2223(1)2y x x x =-+=-+,对称轴为1x =①当1a ≥时,函数在2a x a ≤≤+上递增.()222322(2)3a a y a a -+≤≤+-++,()222(2)3a a +-++=223a a ++{}22|2323y aa y a a -+≤≤++为所求.②当21a +≤时,即1a ≤-时,函数在2a x a ≤≤+上递减.()2222(2)323a a y a a +-++≤≤-+,{}22|2323y a a y a a -+≤≤++为所求.③当12a a <<+时,即11a -<<时,当1a x <<时函数递减,当12x a <<+时函数递增.1x =时,函数值min 2y =,max y 为223a a -+与223a a ++中的最大者.当0a =时,区间[],2a a +关于对称轴1x =对称,2223233a a a a ++=-+=,{}|23y y ≤≤为所求.当10a -<<时,222323a a a a ++<-+,{}2|223y y a a ≤≤-+为所求 当01a <<时,222323a a a a ++>-+,{}2|223y y a a ≤≤++为所求变式2. 已知函数223y x ax a =-++,当35x -≤≤时,求函数值y 组成的集合.变式3. 已知函数223y x ax a =-++,当35a x a -+≤≤+时,求函数值y 组成的集合. 变式2函数在动,区间确定,需要讨论函数的对称轴和区间的位置关系,解法和变式1相似,变式3,函数和区间都在动,函数值取值范围又该如何分类讨论呢?请同学们课后完成解答.同学之间可以互相讨论交流.方法总结:二次函数在给定的区间中的函数值变化问题,一看函数的开口方向,二看函数的对称轴,三看给定区间上的函数单调性.如果有参数,记得分类讨论.【活动预设】通过定函数定区间,定函数动区间,动函数定区间,动函数动区间的二次函数值域问题求解,掌握如何利用图像性质解题.【设计意图】巩固数形结合与分类讨论的思想方法. 题型二、一元二次方程根的分布问题例2.若方程230x mx m --+=的两实根满足条件:一根在0与1之间,另一根在1与2之间,求实数m 的集合.解:记2()3f x x mx m =--+,当0x x =时,2000()3f x x mx m =--+ 由于23y x mx m =--+的图像开口向上,根据题意做出二次函数示意图.所以(0)0(1)0(2)0f f f >⎧⎪<⎨⎪>⎩,即301304230m m m m m -+>⎧⎪--+<⎨⎪--+>⎩解得:723m <<.方法总结:由一元二次方程根的分布求参数的取值范围问题,可以转为二次函数图像与x 轴的交点位置问题。
2.3 二次函数与一元二次方程、不等式教学设计三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2. 使学生能够运用二次函数及其图像,性质解决实际问题.3. 渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集; 难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题.类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本50-52页,思考并完成以下问题1. 二次函数与一元二次方程、不等式的解的对应关系.2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.一元二次不等式与相应的一元二次函数及一元二 次方程的关系如下表:判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y=ax 2+bx+c (a>0)的图象一元二次方程ax 2+bx+c=0 (a>0)的根 有两相异 实根x 1,x 2 (x 1<x 2)有两相等实根 x 1=x 2没有实数根ax 2+bx+c>0 (a>0)的解集{x|x >x 2或x <x 1}{x|x ≠−2b a} Rax 2+bx+c<0 (a>0)的解集{x|x 1<x <x 2}∅∅ab 2-=2.一元二次不等式ax 2+bx+c>0 (a>0)的求解的算法.(1)解ax 2+bx+c=0;(2)判断开口方向;(3)根据开口方向和两根画草图;(4)不等式>0,看草图上方,写对应x的结果;不等式<0,看草图下方,写对应x的结果.四、典例分析、举一反三题型一解不等式例1求下列不等式的解集(1)x2−5x+6>0(2)9x2−6x+1>0(3)−x2+2x−3>0【答案】(1){x|x<2,或x>3}(2){x|x≠13}(3)∅解题方法(解不等式)(1)解ax 2+bx+c=0;(2)判断开口方向;(3)根据开口方向和两根画草图;(4)不等式>0,看草图上方,写对应x的结果;不等式<0,看草图下方,写对应x的结果;跟踪训练一1、求下列不等式的解集(1)(x+2)(x−3)>0;(2)3x2−7x≤10;(3)−x2+4x−4<0(4)x2−x+14≤0【答案】(1){x|x<−2,或x>3}(2){x|x≤−3,或x≥103}(3) {x|x ≠2} (4) {x|x =12}题型二 一元二次不等式恒成立问题 例2 (1). 如果方程20ax bx c ++=的两根为2-和3且0a <,那么不等式20ax bx c ++>的解集为____________.(2).已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤C .k 0<或1k >D .0k ≤或1k >【答案】(1){}|23x x -<< (2)A【解析】(1)由韦达定理得231236bac a⎧-=-+=⎪⎪⎨⎪=-⨯=-⎪⎩,6b a c a =-⎧∴⎨=-⎩,代入不等式20ax bx c ++>,得260ax ax a -->,0a <,消去a 得260x x --<,解该不等式得23x -<<,因此,不等式20ax bx c ++>的解集为{}|23x x -<<,故答案为:{}|23x x -<<.(2)当0k =时,不等式为80≥恒成立,符合题意;当0k >时,若不等式2680kx kx k -++≥对任意x ∈R 恒成立, 则2364(8)0k k k ∆=-+≤,解得01k <≤;当k 0<时,不等式2680kx kx k -++≥不能对任意x ∈R 恒成立。
2.3 二次函数与一元二次方程、不等式教学设计教学目标:1.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义;2.了解一元二次不等式的概念与二次函数的零点;3.借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系,体会数学的整体性;4.能够借助二次函数,求解一元二次不等式;5.通过一元二次函数、一元二次方程、不等式三者关系的探究过程,提升学生数学抽象、数学运算、直观想象的核心素养.教学重点、难点重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图象与x 轴位置关系的联系,数形结合思想的运用. 教学方法:以学生为主体,采用诱思探究式教学,精讲多练.教学工具:多媒体.教学过程一.问题引入园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m²,则这个矩形的边长为多少米?解:设这个矩形的一条边长为m x ,则另一条边长为12)m.x -(由题意,得12)20,x x ->(其中{012}.x x x ∈<<整理得 212200,{012}.x x x x x -+<∈<< ①求得不等式①的解集,就得到了问题的答案.设计意图:由问题引入,引发学生思考,得到一元二次不等式,引入课题并出示本节教学目标 .二.新知探究问题:什么是一元二次不等式?学生总结回答,说出定义.定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一般形式是0022<++>++c bx ax c bx ax 或其中,,a b c 均为常数,0.a ≠教师引导学生解读定义,强调关键词,目的加深学生对定义的理解.在初中,我们学习了一元一次不等式的解法,以30,30x x ->-<两个不等式为例,求出3=0x -的根,进而画出函数3y x =-的图象,通过图象写出不等式的解.类比这种解法,我们能否借助二次函数的图象求解一元二次不等式呢?设计意图:教师引导学生回顾一元一次不等式的解法,体会求解步骤,通过类比,有助于探究一元二次不等式的解法.探究一:一元二次不等式212200x x -+< 的解法(1)求一元二次方程21220=0x x -+的_____ ,12____,_____.x x == (2)画一元二次函数2=1220y x x -+的图象;(3)当210x <<时,函数图象位于x 轴___方,此时0y <,即212200x x -+<. 所以,一元二次不等式的解集为{210}x x <<.从而解决了引例的问题.设计意图:通过以上三个步骤的设置,让学生自主探究具体的一元二次不等式的解法,进而推广到一般情况.问题:2和10是方程的根,是二次函数与x 轴交点的横坐标,也叫做函数的零点.引出零点的定义.一般地,对于二次函数2y ax bx c =++,我们把使2=0ax bx c ++的实数x 叫做二次函数2y ax bx c =++的零点.注:一元二次函数的零点不是点,是实数.教师强调上述方法可以推广到求一般的一元二次不等式)0(02>>++a c bx ax 和)0(02><++a c bx ax 的解集.探究二:二次函数与一元二次方程、不等式的解对应关系下面我们以表格的形式探究三者之间的关系(学生分组谈论,合作交流)讨论结束,教师提问学生,完成表格.三.典例分析、举一反三一元二次不等式的解法 例1 求不等式2560x x -+>的解集.分析:因为方程256=0x x -+的根是函数256y x x =-+的零点,所以先求出256=0x x -+的根,再根据函数图象得到2560x x -+>的解集.解:对于方程256=0x x -+,因为0,∆>所以它有两个实数根,解得12=2 3.x x =, 画出二次函数256y x x =-+的图象,结合图象得不等式2560x x -+>的解集为{2,3}.x x x <>或设计意图:教师板书步骤,规范学生作答,强调关键语句.判别式2=4b ac ∆- 0∆> =0∆ 0∆< 2,0y ax bx c a =++> 的图象2=0,0ax bx c a ++>的根 有两相异实根 1212,x x x x <,有两相等实根 没有实数根 20,0ax bx c a ++>> 的解集12{}x x x x x <>或 {}2b x x a ≠-R 20,0ax bx c a ++<>的解集12{}x x x x << φ φ例2 求不等式01692>+-x x 的解集.解:对于方程2961=0x x -+,因为=0,∆所以它有两个相等实数根,解得121=.3x x =画出二次函数2961y x x =-+的图象,结合图象得不等式01692>+-x x 的解集为1{}.3x x ≠ 教师直接利用课件展示做题步骤,比较与例1的区别与联系.例3 求不等式03-2-2>+x x 的解集.解:不等式可化为0322<+-x x .因为=-8<0,∆所以方程无实数根.画出二次函数322+-=x x y 的图象,结合图象得不等式0322<+-x x 的解集为∅ 方法总结:如何用图解法解一元二次不等式?(1)化标:将原不等式化为系数为正的标准形式(2)求根:依据2=4b ac ∆-,判定方程根的情况;(3)画图;(4)写解集.巩固练习:求不等式 2.580.2)200.1x x --⨯≥( 的解集. 设计意图:强化学生对一元二次不等式标准形式转化能力与求解能力 .四、课堂小结1.学到了哪些知识?(1)一元二次不等式的定义与二次函数的零点定义;(2)“三个二次”的关系(3)一元二次不等式解法步骤:化标、求根、画图、写解集2.运用了哪些数学思想方法?函数与方程 数形结合 类比法 特殊到一般3.提升了哪些数学素养?数学抽象 数学运算 直观想象五、板书设计六、作业布置分层训练 2.3二次函数与一元二次不等式七.教学反思本节通过画图,看图,分析图,小组讨论完善表格,深化知识,抽象概括进行教学,让每个学生动手,动口,动脑,积极参与,提高教学效率和教学质量,使学生进一步理解数形结合和从特殊到一般的思想方法.。
2.3.1二次函数与一元二次方程、不等式(第一课时)(人教A版普通高中教科书数学必修第一册第二章)一、教学目标1.从函数观点看一元二次方程会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系。
2.从函数观点看一元二次不等式。
经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。
能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。
3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系。
二、教学重难点1.判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系。
2.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。
三、教学过程从函数观点看一元二次方程和一元二次不等式用函数理解方程和不等式是数学的基本思想方法。
可以帮助学生用一元二次函数认识一元二次方程和一元二次不等式。
通过梳理初中数学的相关内容,理解函数、方程和不等式之间的联系,体会数学的整体性。
1.一元二次不等式的概念1.1创设情境,引发思考二次函数与一元二次方程、不等式在初中,我们从一次函数的角度看一元一次方程、一元次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题对于二次函数、一元二次方程和一元二次不等式,是否也有这样的联系呢? 问题1:【数学情境】园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的20m,则这个矩形的边长为多少米?矩形区域的面积要大于2【设计意图】通过实际问题,让学生感受“求不等式”这样的问题是客观存在的,是源于实际生活的.同时引发学生思考.1.2探究典例,形成概念问题2: 【数学情境】在初中,我们学习了从一次函数的观点看一元二次方程、一元一次不等式的思想方法.类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?【活动预设】通过图象解决不等式求解问题,分析二次函数与一元二次函数不等式之间的关系【设计意图】从引例中的具体问题入手,树立学生数形结合的数学思想,为推广一元二次不等式求解做准备。
第二章 一元二次函数、方程和不等式2.2.3 二次函数与一元二次方程、不等式(第1课时)本节课是新版教材人教A 版普通高中课程标准实验教科书数学必修1第二章第3节《一元二次不等式及其解法》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出本现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
课程目标学科素养1.理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2.经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
a.数学抽象: 一元二次不等式的定义及解法; b.逻辑推理:理解三个二次的关系; c.数学运算:按步骤解决一元二次不等式; d.直观想象:运用二次函数图像解一元二次不等式;e.数学建模:将生中的不等关系转化为一元二次不等式解决;重点:1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想. 难点:理解二次函数、一元二次方程与一元二次不等式的关系.多媒体(一)、情境导学问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20,其中x∈{x|0<x<12}.整理得x2-12x+20<0,x∈{x|0<x<12}.①求得不等式①的解集,就得到了问题的答案.一元二次不等式的定义:我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般表达式ax2+bx+c>0 (a≠0)或ax2+bx+c<0 (a≠0),其中a,b,c均为常数.(二)、探索新知问题:二次函数y=x2-5x的函数图像如下,思考:当x为何值时,y=0,函数图像与x轴有什么关系?当x为何值时,y<0,函数图像与x轴有和关系?当x为何值时,y>0,函数图像与x轴有什么关系?思考:对于一般一元二次不等式的解集怎么求呢?我们知道,对于一元二次方程a x2+b x+c=0(a>0),设其判别式为Δ=b2-4ac,它的解按照Δ>0,Δ=0,Δ<0分为三种情况,相应地,抛物线y=a x 2+b x+c (a >0)与x 轴的相关位置也分为三种情况(如下图),因此,对相应的一元二次不等式a x 2+b x+c >0或a x 2+b x+c <0(a >0)的解集我们也分这三种情况进行讨论.根据二次函数及其对应的不等式与方程之间的联系,填写下列表格。
《2.3 二次函数与一元二次方程、不等式(第一课时)》教学设计◆教学目标1.经历从实际情境中抽象出一元二次不等式模型的过程,了解一元二次不等式的现实意义,提升数学抽象素养;2.能用二次函数的观点,看一元二次方程和一元二次不等式,并能求解二次方程和二次不等式问题,感悟数学知识的整体性和关联性,提升逻辑推理、几何直观和数学运算等核心素养.◆教学重难点◆教学重点:从实际问题中抽象出一元二次不等式模型,并会借助二次函数求解一元二次不等式,体会函数思想、化归思想及数形结合的思想.教学难点:理解二次函数、一元二次方程与一元二次不等式解集之间的关系.◆课前准备GEOGEBRA、PPT课件.◆教学过程一、情境引入★资源名称:【情景演示】二次函数与一元二次方程、不等式★使用说明:本资源类比一次函数与一元一次方程、不等式的联系,提出对二次函数与一元二次方程、不等式之间联系的思考,引发学生以类比的视角来学习函数、方程、不等式之间的关系.注:此图片为视频截图,如需使用资源,请于资源库调用.问题1:园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24 m ,围成的矩形区域的面积要大于20 m 2,则这个矩形的边长为多少米?师生活动:学生独立思考,把实际问题中的数量关系用数学模型表示出来. 预设的答案:1.因为学生已经学习过基本不等式,所以部分学生会令矩形的一边长为x ,另一边为y ,可以得到⎩⎨⎧>=+.20,12xy y x 此时还需要消元从而转化为一元二次不等式求解.2.部分学生用一个未知数x 即可表示问题中的不等式20)-12>x x (,但学生容易忘记自变量x 的取值范围.追问:不等式20)-12>x x (即020122<+-x x ,与我们学习过的一元一次不等式有什么不同?你能再举出一些类似的不等式吗?师生活动:学生可以回答这个问题.之后学生阅读课本获得定义,或者教师给出一元二次不等式的定义,一元二次不等式的一般形式:0022<++>++c bx ax c bx ax 或,并且强调二次项的系数a ≠0.设计意图:通过具体问题抽象出一元二次不等式的过程,明确一元二次不等式的定义和一般形式,体会一元二次不等式的现实意义.二、探究新知1.探究一元二次不等式的解法问题2:在初中,我们学习了从一次函数的观点看一元一次方程、一元一次不等式的思想方法.那么这三个“一次”之间的关系是什么?师生活动:教师引导学生回答问题,并强调从代数和几何两方面的理解,注意数形结合的思想.师生共同总结如下:设计意图:通过对三个“一次”的关系的总结,帮学生梳理函数和相应的方程、不等式之间的关系,为下面的探索做好铺垫.★资源名称: 【数学探究】二次函数与一元二次方程、不等式的关系★使用说明:本资源动态展示了二次函数的零点与一元二次方程的根、一元二次不等式的解集之间的关系,使用时可通过滑动条改变二次函数中的系数,直观观察三者之间的关系.注:此图片为动画截图,如需使用资源,请于资源库调用.问题3:类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?以函数20122+-=x x y 为例.师生活动:学生类比研究,应该有一部分学生可以获得思路.教师设计追问,引导学生思考.追问1:教师用信息技术画出函数20122+-=x x y 的图象,图象与x 轴有两个交点,并在函数图象上任取一点P (x ,y ).当点P 在抛物线上移动时,请你观察:随着点P 的移动,它的纵坐标的符号怎样变化?师生活动:学生观察思考后回答.预设的答案:当点P 移动到x 轴上时,它的纵坐标等于0(即0=y );当点P 移动到x 轴上方时,它的纵坐标大于0(即0>y );当点P 移动到x 轴下方时,它的纵坐标小于0(即0<y ).追问2:当点P 的纵坐标y =0时、y >0时、y <0时所对应的横坐标x 的取值范围分别是什么?师生活动:学生独立获得答案.师生活动:学生思考并对上述方法进行了归纳、概括,获得求解一般一元二次不等式的解法.预设的答案:求解一元二次不等式的关键是利用二次函数的图象与x 轴的相关位置确定不等式对应的x 的取值范围,而确定x 的取值范围需要先求出相应一元二次方程的根.这种关系体现在下表中.Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a>0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}{x |x ≠-b2a}Rax 2+bx +c <0(a>0)的解集{x |x 1<x <x 2}∅ ∅设计意图:通过问题引导学生从具体的“三个二次”的关系,归纳、概括、获得一般的一元二次不等式的解法.在这个过程中培养学生数学抽象概括的能力,以及从具体到抽象,从特殊到一般的研究问题的基本方法.并体会数形结合和函数思想的应用.3.应用举例例1 求下列不等式的解集:(1)0652>+-x x (2)01692>+-x x (3)03-2-2>+x x追问:求解不等式的依据是什么?步骤是什么?第(3)题与(1)(2)题有何异同?能否转化为(1)(2)题.师生活动:学生独立完成后展示交流,师生总结求解思路.对于二次项系数是负数(即0<a )的不等式,可以先把二次项系数化成正数,再求解.预设的答案:(1)解:对于方程0652=+-x x ,因为∆>0, 所以它有两个实数根,解得3,221==x x ,画出二次函数652+-=x x y 的图象(图2.3-2)结合图象得不等式0652>+-x x 的解集为}{3,2><x x x 或.(2)解:对于方程01692=+-x x ,因为∆=0,所以它有两个相等的实数根,解得3121==x x ,画出二次函数169y 2+-=x x 的图象(图2.3-3),结合图象得不等式01692>+-x x 的解集为}31|{≠x x .(3)解:不等式可化为032-2<+x x ,因为∆=-8<0,所以方程032-2=+x x 无实数根,画出二次函数32y 2+-=x x 的图象(图2.3-4),结合图象得不等式032-2<+x x 的解集为∅.因此原不等式的解集为∅.追问:通过这三道题的学习,请你试着总结一下:解一元二次不等式的一般步骤是什么?师生活动:学生总结,教师完善.预设的答案:步骤是:(1)先把二次项系数化为正数;(2)求判别式的值;(3)求相应方程的实数根;(4)结合函数图象写出一元二次不等式的解集.设计意图:这三道例题对应的三个二次函数的图象分别与x 轴有两个交点、有一个交点和没有交点,再次巩固了利用二次函数解二次不等式的方法.并要注重代数问题的求解程序的提炼总结,以便学生有序地思考,规范地求解,提升学生的数学运算素养.注重数形结合思想方法的应用,培养学生思维的严谨性.例 2 已知一元二次不等式02<++c bx ax 的解集为{}53-><x x x ,或,则02<+-c bx ax 的解集为________.追问:如何利用“三个二次”的关系求解?能大致画出不等式对应的函数的草图吗? 师生活动:学生先独立思考,画出函数的草图,从而可以确定a 0<.并利用方程的根与函数零点的关系,及韦达定理求出a ,b ,c 之间的关系(而不是具体的值),再化简求值.预设的答案:解:根据题意可知a 0<.图2-3-5令)0(02≠=++a c bx ax .由根与系数的关系得⎪⎪⎩⎪⎪⎨⎧⨯-=+-=,53,53-ac a b解得⎩⎨⎧-=-=.15,2a c a b 代入所求不等式得01522<-+a ax ax .①又∵0<a ,∴①化为01522>-+x x . 对于方程015-22=+x x ,因为∆>0,所以它有两个实数根,解得3,-521==x x ,画出二次函数15-22x x y +=的图象(图2-3-5),结合图象得不等式15-22>+x x 的解集为}{53-<>x x x ,或.设计意图:进一步理解三个“二次”之间的关系,在较复杂的情境中应用新知识,提高学生分析问题的能力.三、归纳小结,布置作业★资源名称: 【知识点解析】二次函数与一元二次方程、不等式★使用说明:本资源为二次函数与一元二次方程、不等式的知识讲解视频,主要以二次函数为视角讨论了三个“二次”之间的关系,让学生明确二次函数的零点、一元二次方程的根和一元二次不等式的解集之间的统一性.注:此图片为微课截图,如需使用资源,请于资源库调用.问题4:这节课我们学习了解一元二次不等式,那么我们是如何去研究一元二次不等式。
二次函数与一元二次方程、不等式
【教材分析】
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
【教学目标】
课程目标
1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。
2.使学生能够运用二次函数及其图像,性质解决实际问题。
3.渗透数形结合思想,进一步培养学生综合解题能力。
数学学科素养
1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;
2.逻辑推理:一元二次不等式恒成立问题;
3.数学运算:解一元二次不等式;
4.数据分析:一元二次不等式解决实际问题;
5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
【教学重难点】
重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;
难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。
【教学准备】
【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
【教学过程】
一、情景导入
在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。
类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?
要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察。
研探。
二、预习课本,引入新课
阅读课本,思考并完成以下问题
1.二次函数与一元二次方程、不等式的解的对应关系。
2.解一元二次不等方的步骤?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究
1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式
Δ=b 2
-4ac
Δ>0Δ=0Δ<0
二次函数
y=ax 2
+bx+c
(a>0)的图象
一元二次方程ax2+bx+c=0(a>0)的根有两相异
实根x1,x2
(x1<x2)
有两相等实根
x1=x2
没有实数根
ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2b
a
}R
ax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅
a
b
2
-
=
2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。
(1)解ax2+bx+c=0;
(2)判断开口方向;
(3)根据开口方向和两根画草图;
(4)不等式>0,看草图上方,写对应x的结果;
不等式<0,看草图下方,写对应x的结果。
四、典例分析、举一反三
题型一
解不等式
例1求下列不等式的解集
(1)x2−5x+6>0
(2)9x2−6x+1>0
(3)−x2+2x−3>0
【答案】(1){x|x<2,或x>3}
(2){x|x≠1
3
}
(3)∅
解题方法(解不等式)
(1)解ax 2
+bx+c=0;
(2)判断开口方向;
(3)根据开口方向和两根画草图;
(4)不等式>0,看草图上方,写对应x的结果;不等式<0,看草图下方,写对应x的结果;
跟踪训练一
1.求下列不等式的解集
(1)(x+2)(x−3)>0;
(2)3x2−7x≤10;
(3)−x2+4x−4<0
(4)x2−x+1
4
≤0
a<,消去,0
{|x
的解集为
时,不等式为时,若不等式kx
1.恒大于零就是相应的二次函数的图像在给定的区间上全部在x 轴上方,恒小于零就是相应的二次函数的图像在给定的区间上全部在x 轴下方,从而确定∆的取值范围,进而求参数。
(若二次项系数带参数,考虑参数等于零、不等于零)
2.解决恒成立问题,一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数。
跟踪训练二
1.已知不等式20x x a -->的解集为{|3x x >或}2x <-,则实数a =__________。
2.对任意实数x ,不等式2
(3)2(3)60a x a x ----<恒成立,则实数a 的取值范围是____。
【答案】1.6 2.−3<a <3
【解析】1.由题意可知2-,3为方程2
0x x a --=的两根,则23a -⨯=-,即6a =。
故
答案为:6
2.①当30a -=,即3a =时,不等式为:60-<,恒成立,则3a =满足题意 ①当30a -≠,即3a ≠时,不等式恒成立则需:
()()()230434360a a a -<⎧⎪⎨∆=---⨯-<⎪⎩,解得:−3<a <3 综上所述:-3<a≤3 题型三
一元二次不等式的实际应用问题 例3
一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间有如下的关系:
y=-2x 2+220x
若这家工厂希望在一个星期内利用这条流水线创收6000元以上,则在一个星期内大约应该生产多少辆摩托车?
【答案】见解析
【解析】设这家工厂在一个星期内大约应该利用这条流水线生产x 辆摩托车,根据题意,得
-2x 2+220x>6000.
移项整理,得
{x|50<x<60},从而原不等式的解集为{x|50<x<60}。
长方形)。
应如何围才能使猪舍的总面积最大?最大面积是多少?。