溶胶的制备及电泳实验报告
- 格式:docx
- 大小:11.97 KB
- 文档页数:4
《物理化学基础实验》溶胶的制备及电泳实验一、实验目的1.学会制备和纯化Fe(OH)3溶胶。
2.掌握电泳法测定Fe(OH)3溶胶电动电势的原理和方法。
二、实验原理1.制备和纯化Fe(OH)3溶胶原理:FeCl3+3H2O =Fe(OH)3(胶体)+3HCl 盐的水解氯化铁的水解反应本身是一个吸热反应,加热可以促使平衡向右移动,但是作为胶体的氢氧化铁是有一定的浓度限制的,若浓度过大就会形成氢氧化铁沉淀,而且温度比较高的话胶体粒子之间碰撞的机会会增多,也不利于胶体的稳定性,所以煮沸的时间不能过长。
制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。
常用的纯化方法是半透膜渗析法。
2.电泳在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。
同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。
当胶体相对静止时,整个溶液呈电中性。
但在外电场的作用下,胶体中的胶粒和分散介质反向相对移动时,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。
荷电的胶粒与分散介质间的电势差称为电动电势,用符号ξ表示。
ζ电势是表征胶粒特性的重要物理量之一,在研究胶体性质及实际应用中有着重要的作用。
它与胶体的稳定性有关, ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。
界面移动法:测量溶胶的 电位是通过测定在两铂电极间外加一定直流电场,胶体溶液与辅助溶液间可见界面在单位时间内的移动距离来测定电动电势。
在电泳仪的两极间加上电位差E (V )后,在t (s )时间内溶胶界面移动的距离为D (m ),即胶粒的电泳速度U (m •s -1)为: D U t = (1)相距为l (m )的两极间的电位梯度平均值H (V •m -1)为: E H l = (2)从实验求得胶粒电泳速度后,可按照下式求出ζ(V )电位: K U H πηζε=⋅ (3)式中K 为与胶粒形状有关的常数,对于本实验中的氢氧化铁溶胶,胶粒为棒形,有1022113.610K V s kg m --=⨯⋅⋅;而ε为介质的介电常数(无单位),η为介质的粘度(Pa •s )。
溶胶与电泳实验报告引言溶胶与电泳是常用的生物分离技术,通过利用不同溶胶和电场作用下,分离带电离子从而实现对生物分子的分离与纯化。
本实验旨在探究溶胶和电泳参数对分离效果的影响,为后续的生物分离实验提供参考。
实验步骤1. 实验前准备:将所需试剂准备好,包括琼脂糖、TAE缓冲液和DNA样品。
2. 制备溶胶:按照配方将琼脂糖与适量的TAE缓冲液加热溶解,待溶解后静置冷却。
3. 制备DNA样品:从所需材料中提取DNA样品,可以采用常规提取方法。
4. 准备电泳槽:将电泳槽放置于水平桌面上,将制备好的溶胶缓冲液倒入槽中。
5. 样品处理:将提取的DNA样品与适量的样品缓冲液混合,进行必要的处理如加热退变。
6. 加样和电泳:将处理好的样品缓冲液混合液利用吸管或微量移液器加入电泳槽中,确保样品被均匀加载。
7. 设置电泳参数:调整电泳仪的参数,如电压、时间和大小等,启动电泳。
8. 分析与记录:观察电泳过程中带电离子的迁移情况,记录结果。
9. 结束与分析:电泳结束后,关闭电源,取出电泳槽,进行染色或可视化处理,分析结果。
实验结果在本次实验中,我们使用不同浓度的琼脂糖制备了不同浓度的溶胶,并加入了DNA样品进行电泳实验。
根据实验结果,我们得出以下结论:1. 溶胶浓度对电泳效果有重要影响。
溶胶浓度过高会导致DNA分子移动速度变慢,分离效果差;而溶胶浓度过低则会导致DNA分子迁移过快,难以分离。
2. 电场强度对电泳效果有显著影响。
在一定范围内,提高电场强度可以加快DNA分子的迁移速度,提高分离效率。
但如果电场强度过高,则可能导致DNA 分子的断裂或畸变,影响实验结果。
3. DNA片段大小对迁移速度有直接影响,较长的DNA片段迁移速度较慢,较短的DNA片段迁移速度较快。
因此,在分析DNA样品时,我们可以根据迁移速度,初步判断DNA片段的大小。
结论通过溶胶与电泳实验,我们探究了溶胶浓度、电场强度和DNA片段大小对电泳效果的影响。
大学 化学原理 实验报告实验日期: 成绩:班级: 学号: 姓名: 教师: 同组者:溶胶的制备与电泳一.实验目的1. 学会溶胶制备的基本原理、掌握溶胶制备的主要方法;2. 利用界面电泳法测定AgI 的电动电位。
二.实验原理溶胶是溶解度极小的谷底在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m 范围内。
1.溶胶制备要制备溶胶一般要满足两个条件:固体分散相的质点大小必须在胶体分度范围内;固体分散质点在液体介质中不聚结,为此,一般要加稳定剂。
制备胶体有两种方法:分散法和凝聚法。
(1)分散法:将大块固体分割到交替分散度的大小。
主要有3种方式,即机械磨损、超声分散和胶溶分散。
(2)凝聚法:使小分子或离子聚集成胶体大小。
主要有化学反应法和介质交换法。
2.溶胶的电泳在电场作用下,胶体粒子向正极或负极移动的现象叫电泳。
点用现象证实胶体粒子的带电性。
按对固体的关系,扩散双电层离子可沿滑动面分为吸附层离子和扩散层离子两部分,使固体表面和分散介质之间有电势差,即ξ电势。
(1)V Pa s m m ld tvd l ηξεξη=--∙--在外电场作用下,根据胶体粒子的相对运动速度计算电势的公式是:式中:胶体粒子的电动势()介质的动力粘度()溶胶界面移动的距离()两电极之间的距离()F/m V s v t ε---介电常数()两极间的电位差()电泳进行的时间()利用电泳测定电动电势有宏观法和微观法两种。
宏观法是观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。
微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。
本实验用宏观法测定。
使用的电泳管如图所示。
(图中:1.电极;2.辅助液3.界面;4.溶胶;5.活塞)三.仪器与药品1.仪器电泳仪,电泳管,电炉,秒表,电极2支,固定架,100mL烧杯,25mL量筒,玻璃棒,小滴管,钢板尺。
2.药品0.01mol·L-1 KI,0.01mol·L-1 AgNO3,0.005 mol·L-1 KCl。
石工1210 段炼学号12021469实验三溶胶的制备和电泳一.实验目的1.学会溶胶制备的基本原理,掌握溶胶制备的主要方法2.利用界面电泳法测定AgI溶胶的电动电位二.实验原理在电场作用下,胶体粒子向正极或负极移动的现象叫电泳。
电泳现象证实了胶体粒子的带电性。
胶体粒子带电是因为在它周围形成了扩散双电层。
双电层分为吸附层离子和扩散层离子,是固体表面和分散介质之间有电势差,电势大小可由实验测得。
;在外电场作用下,根据胶体粒子的相对运动速度计算电势的基本公式如下利用电泳测定电动电势有宏观法和微观法两种。
宏观法师观察在电泳管内溶胶与辅助液间界面在电场作用下的移动速度。
微观法借助于超显微镜观察单个胶体粒子在电场作用下的移动速度。
本实验采用宏观法。
三.实验仪器与药品1.仪器电泳仪,电泳管,秒表,电极2支,100ml烧杯3个,胶头滴管2支,25ml量筒2个,等。
2.药品0.01mol/LAgNO3溶液,0.01mol/LKI溶液,0.005mol/LKCl溶液四.实验步骤1.AgI负溶胶的制备2.辅助液的制备3.电势的测定五.数据处理电压:200V 室温:14℃ L:7.8cm1.总结溶胶的制备方法:(1)取20ml的碘化钾溶液倒入100ml的烧杯中,然后将18.8ml的硝酸银溶液边搅拌边用胶头滴管滴入烧杯中,滴加结束得到白色的碘化银负溶胶。
(2)关闭活塞,将溶胶倒入U形电泳仪的漏斗中(3)向U形管中加入辅助液,至4ml处(4)打开活塞,使溶胶缓慢上升到0刻度左右关闭活塞(5)将电极插入U形管中,注意平稳(6)打开电泳仪开关,分别记下溶胶界面上升到0.5cm,1.0cm,1.5cm所用的时间(7)测量U形管之间的间距(8)根据量取的数据计算电势(9)实验结束,关闭电源,收拾好仪器2.计算碘化银负溶胶的电势根据附录中的数据和实验测得的数据利用公式(水的介电常数为7.261×10∧-10)(水的介质动力粘度为1.169×10∧-3)所以带入数据得:§1=1.43×10-2V§2=1.57×10-2V§3=1.35×10-2V取平均值:§=1.45×10-2V六.思考题1.试比较不同溶胶的制备方法有什么共同点和不同点?答:相同点:用量一定,需要用滴管滴加药剂,需要玻璃棒搅拌,而且加药剂时要缓慢滴加。
溶胶的制备及电泳实验报告(一)溶胶的制备及电泳实验报告1. 引言•溶胶是一种重要的物质,广泛应用于各种领域•本实验旨在探究溶胶的制备方法以及电泳实验的原理和应用2. 溶胶的制备方法•制备方法一:溶胶法–原料的选取和准备–溶剂的选择和添加–搅拌和均质处理–静置和分离–干燥和粉碎•制备方法二:溶胶凝胶法–溶胶法的基础上,添加凝胶剂–凝胶形成和成型–凝胶的干燥和烧结3. 电泳实验原理•电泳是利用电场对溶质进行迁移分离的方法•原理一:溶质的电荷性质–带电的溶质在电场中会产生迁移–阴离子和阳离子迁移的方向和速度不同•原理二:电场的作用–电场可以加速溶质的迁移–电场强度越大,迁移速度越快•原理三:胶状介质的作用–胶状介质可以阻碍溶质迁移–不同大小的溶质在胶状介质上的迁移速度不同4. 电泳实验的应用•生物学领域–蛋白质的分离和鉴定–DNA测序和染色体分析•化学领域–分子结构的研究–化合物纯化和分离•医学领域–肿瘤标记物的检测–药物分子的筛选5. 结论•溶胶的制备方法多种多样,根据不同需求选择合适的方法•电泳实验是一种重要的分离和分析技术,在多个领域有广泛应用的前景注意:本文章为生成文本,可能存在个别表达不准确或错误的情况,请以实际知识为准。
6. 材料与方法•实验材料:溶胶材料、溶剂、凝胶剂、电泳设备等•实验步骤:1.准备实验材料:称取溶胶材料、选择合适的溶剂和凝胶剂。
2.制备溶胶:按照溶胶制备方法进行操作,包括溶剂的选择、搅拌、分离、干燥等步骤。
3.制备凝胶:在溶胶的基础上加入凝胶剂,进行凝胶形成和成型的步骤。
4.电泳实验:将准备好的样品加载到电泳设备中,设置合适的电场强度和时间进行电泳实验。
5.结果分析:根据电泳结果,进行溶质的分离和分析。
7. 结果与讨论•根据不同的溶胶制备方法和电泳实验条件,得到了不同的实验结果。
•通过对实验结果的分析,可以得到溶质的分离程度、迁移速度、电荷性质等信息。
•根据实验结果和初步分析,讨论实验中可能存在的误差及改进方法。
溶胶的制备及电泳实验报告引言:溶胶是由胶粒均匀分散于溶液中而形成的胶体系统。
溶胶具有高度分散性和较小的粒径,因此在许多领域都有广泛应用。
本实验旨在通过制备溶胶和进行电泳实验,探究溶胶的性质和应用。
一、溶胶的制备溶胶的制备是通过将固体胶粒悬浮于溶液中而形成的。
在本实验中,我们选择了氧化铁(Fe2O3)作为胶粒,以水作为溶液。
制备溶胶的步骤如下:1. 首先,称取适量的氧化铁粉末,并将其加入到一定体积的水中。
2. 使用磁力搅拌器将溶液搅拌均匀,使氧化铁粉末完全悬浮于水中。
3. 继续搅拌溶液,直到观察到溶液呈现均匀的红棕色。
4. 最后,用滤纸或滤膜过滤溶液,以去除较大的固体颗粒,得到纯净的溶胶。
二、电泳实验电泳实验是利用电场对溶胶中带电颗粒进行分离和定性分析的方法。
本实验中,我们使用凝胶电泳进行分离和观察。
1. 实验装置实验装置主要包括电泳槽、电源、电极和凝胶。
电泳槽用于容纳溶胶样品和电解液,电源用于提供电场,电极用于连接电源和电泳槽,凝胶则用于分离溶胶中的带电颗粒。
2. 实验步骤(1)首先,将制备好的溶胶样品置于电泳槽中,并加入适量的电解液。
(2)将电极连接至电源,并将电源的正负极分别连接至电泳槽的两端。
(3)调节电源的电压和电流,使其维持在适当的数值。
(4)开启电源,开始电泳过程。
根据溶胶样品中带电颗粒的性质和电场的作用,颗粒会在电场的驱动下向正极或负极移动。
(5)根据不同颗粒的迁移速度和移动距离,可以对溶胶样品进行分离和观察。
3. 实验结果与分析根据电泳实验的结果,我们可以观察到溶胶样品中不同颗粒的分离情况。
带电颗粒的迁移速度与颗粒的电荷量、大小和形状等因素有关。
通过观察颗粒的移动距离和分离程度,可以对溶胶样品中的颗粒进行定性和定量分析。
三、溶胶的应用溶胶在许多领域都有广泛的应用。
以下是几个典型的应用领域:1. 生物医学:溶胶可用于药物输送、基因传递和疫苗制备等领域,利用其分散性和稳定性,实现药物和基因的高效传递。
一、实验目的1. 了解溶胶的基本概念、性质及其制备方法。
2. 掌握制备Fe(OH)3溶胶的原理和操作步骤。
3. 观察溶胶的电泳现象,学习电泳法测定溶胶电动电势的技术。
4. 探讨不同因素对Fe(OH)3溶胶电动电势测定的影响。
二、实验原理溶胶是一种介于溶液和悬浮液之间的分散体系,其分散相粒子的大小一般在1nm~1000nm之间。
溶胶的制备方法主要有分散法和凝聚法。
分散法是将较大的物质颗粒通过物理或化学方法使其变为胶体大小的质点;凝聚法是先将难溶物的分子(或离子)制成过饱和溶液,再使之相互结合成胶体粒子。
Fe(OH)3溶胶是一种常见的溶胶,其制备方法通常采用凝聚法。
在实验中,通过加热氯化铁溶液,使其水解生成Fe(OH)3胶体。
在电场作用下,Fe(OH)3胶粒会向相反电极方向移动,从而产生电泳现象。
通过测定电泳速度,可以计算出溶胶的电动电势。
三、实验器材与试剂1. 器材:烧杯、酒精灯、石棉网、玻璃棒、电泳仪、电源、量筒、滴管、pH试纸等。
2. 试剂:氯化铁(FeCl3)、蒸馏水、氢氧化钠(NaOH)、盐酸(HCl)等。
四、实验步骤1. 准备FeCl3溶液:称取0.5g氯化铁,溶解于50mL蒸馏水中,配制成0.01mol/L的FeCl3溶液。
2. 制备Fe(OH)3溶胶:取一只烧杯,加入10mL蒸馏水,用酒精灯加热至沸腾。
将FeCl3溶液滴入沸腾的蒸馏水中,继续煮沸至溶液呈红褐色。
停止加热,取下烧杯,观察其与氯化铁溶液的外观差异。
3. 观察电泳现象:将制备好的Fe(OH)3溶胶滴入电泳仪的样品池中,接通电源,观察Fe(OH)3胶粒在电场作用下的移动情况。
4. 测定电动电势:根据电泳速度和实验数据,计算Fe(OH)3溶胶的电动电势。
5. 探讨不同因素对电动电势的影响:改变外加电压、电泳时间、溶胶浓度、辅助液的pH值等,观察电动电势的变化。
五、实验结果与分析1. 实验结果(1)制备得到的Fe(OH)3溶胶呈红褐色,具有明显的丁达尔效应。
浙江万里学院生物与环境学院化学工程实验技术实验报告实验名称:溶胶的制备及电泳一、实验预习(30分)1.实验装置预习(10分)2015年12月28日指导教师______(签字)成绩2.实验仿真预习(10分)2015年12月28日指导教师______(签字)成绩3.预习报告(10分)指导教师______(签字)成绩(1)实验目的1.掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的原理和方法。
2.掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方法。
3.明确求算ζ公式中各物理量的意义。
(2)实验原理溶胶的制备方法可分为分散法和凝聚法。
分散法是用适当方法把较大的物质颗粒变为胶体大小的质点;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶。
Fe(OH)3溶胶的制备是采用的化学法即通过化学反应使生成物呈过饱和状态,然后粒子再结合成溶胶,其结构式可表示为{m[Fe(OH)3]n FeO+(n-x)Cl-}x+x Cl-。
制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。
常用的纯化方法是半透膜渗析法。
在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。
在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。
荷电的胶粒与分散介质间的电势差称为电动电势,用符号ζ表示,电动电势的大小直接影响胶粒在电场中的移动速度。
原则上,任何一种胶体的电动现象都可以用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。
电动电势ζ与胶粒的性质、介质成分及胶体的浓度有关。
在指定条件下,ζ的数值可根据亥姆霍兹方程式计算。
即(静电单位)或·300(V) (1) 式中,K为与胶粒形状有关的常数(对于球形胶粒K=6,棒形胶粒K=4,在实验中均按棒形粒子看待);η为介质的粘度(泊);D为介质的介电常数;u为电泳速度(cm·s-1);H为电位梯度,即单位长度上的电位差。
溶胶的制备及电泳实验报告实验目的:1.掌握溶胶的制备方法;2.通过电泳实验了解溶胶的性质和应用。
实验仪器:1.恒温水浴;2.电泳槽;3.电源;4.硅胶片。
实验原理:溶胶是由固体颗粒悬浮在液体介质中形成的分散体系。
在本次实验中,我们使用了硅胶溶胶。
电泳是一种利用电场使电荷载体在电解质中运动的方法。
通过溶胶的电泳可以观察到颗粒在电场中的迁移速度以及颗粒的分离。
实验步骤:1.准备溶胶:将一定量的硅胶粉末加入到一定量的水中,并在恒温水浴中搅拌30分钟直至形成均匀的溶胶;2.准备电泳槽:在电泳槽中注入适量的电解质溶液,并安装电极;3.准备样品:将硅胶溶胶均匀涂布在硅胶片上,并待其干燥;4.进行电泳实验:将样品放入电泳槽中,施加适当的电压,观察颗粒在电解质中的迁移和分离现象;5.拍摄结果:通过显微镜观察颗粒的分离情况,并使用相机拍摄结果。
实验结果:在电泳实验中,我们观察到硅胶溶胶中的颗粒在电场的作用下迁移,并且不同颗粒随着时间的推移逐渐分离。
小颗粒受到电场力的影响较大,迁移速度较快;大颗粒受到电场力的影响较小,迁移速度较慢。
通过电泳实验,我们可以了解颗粒的大小、形态以及电荷状况。
实验结论:通过本次实验,我们成功制备了硅胶溶胶,并通过电泳实验观察到了颗粒的迁移和分离现象。
实验结果表明,溶胶中的颗粒在电场的作用下有不同的迁移速度,从而实现了颗粒的分离。
这种方法可以用于颗粒的筛选和纯化,具有广泛的应用前景。
实验改进:1.在制备溶胶的过程中,可以尝试使用不同粒径的硅胶粉末,以观察不同粒径颗粒的迁移差异;2.可以使用不同浓度的电解质溶液,以观察不同浓度对颗粒分离效果的影响;3.可以对样品进行不同电压和时间的电泳实验,以研究其对颗粒迁移速度和分离效果的影响。
总结:通过本次实验,我们学习了溶胶的制备方法,并通过电泳实验了解了溶胶的性质和应用。
电泳实验是一种重要的分离和纯化方法,在生物、医药、化工等领域具有广泛的应用。
通过不断改进实验条件和方法,我们可以进一步了解和应用溶胶的特点,为相关研究提供参考和依据。
胶体的制备与电泳实验报告胶体的制备与电泳实验报告胶体是一种特殊的物质,由微小的颗粒悬浮在液体中形成。
它具有许多独特的性质和应用,因此在科学研究和工业生产中得到广泛应用。
本文将介绍胶体的制备方法以及电泳实验的原理和应用。
一、胶体的制备方法胶体的制备方法有很多种,常见的包括溶胶-凝胶法、乳化法、共沉淀法等。
其中,溶胶-凝胶法是一种常用且简单的方法。
它通过控制溶胶的凝胶过程来制备胶体。
溶胶-凝胶法的制备步骤如下:首先,将所需的物质溶解在适当的溶剂中,形成溶胶。
然后,通过加热或加入适当的试剂,使溶胶逐渐凝胶,形成胶体。
最后,将胶体分离和纯化,得到所需的胶体产品。
二、电泳实验的原理电泳是一种利用电场作用于带电粒子的运动现象。
在电泳实验中,通过在两个电极之间施加电场,使带电粒子在电场力的作用下向相应的电极移动。
电泳实验的原理可以用库仑定律来解释。
根据库仑定律,带电粒子在电场中受到的电场力与电荷量成正比,与电场强度成正比,与带电粒子的大小和形状无关。
因此,在电场中,带电粒子会受到电场力的作用,从而发生运动。
三、电泳实验的应用电泳实验在科学研究和工业生产中有广泛的应用。
其中,凝胶电泳是一种常用的分离和分析方法。
它通过将带电粒子在凝胶介质中的迁移速度差异来实现分离。
凝胶电泳可以用于DNA分离和检测。
通过将DNA样品加入凝胶孔道中,施加电场,DNA片段会根据其大小和电荷迁移速度的差异在凝胶中分离出来。
通过观察凝胶中的DNA迁移距离,可以确定DNA片段的大小和浓度。
此外,电泳还可以用于纳米颗粒的分离和纯化。
通过在电场中施加电泳力,可以控制颗粒的迁移速度,从而实现不同大小和形状的颗粒的分离和纯化。
总结胶体的制备是一项重要的实验技术,它可以通过溶胶-凝胶法等方法来实现。
电泳实验是一种常用的分离和分析方法,它利用电场力作用于带电粒子的运动来实现分离和纯化。
电泳实验在DNA分离和纳米颗粒纯化等领域有广泛的应用。
通过深入研究胶体的制备方法和电泳实验的原理和应用,可以为科学研究和工业生产提供有力的支持。
胶体制备和电泳,实验报告
本实验旨在研究胶体制备和电泳方法。
实验设备及实验材料:除雾滴装置、高压恒温加热装置、电泳装置及必要耗材剩余所有药品;
实验内容:
1.准备胶体。
在恒温恒压的容器中,通入水溶液、乳化剂、稳定剂和可溶性乳化剂,以形成混合胶体,然后使用纱布过滤器将胶体过滤出来,使之变得清晰透明。
2.准备电泳溶胶。
分别将高中低离子表面活性物质加入实验溶胶中,搅拌10分钟后液力学比表(VBT)与标准比较。
3.胶体电泳。
使用电泳装置以2.5-5kV/cm的电压梯度实施电泳,在20-200μL/min 的流速范围内可以调节,记录调节后的实验结果。
胶体制备结果表明,实验室经过过滤的胶体的清晰度达到90%以上,并且胶体中乳化剂的含量不超过2.0%。
电泳实验中,当流速调至20μL/min时,离子表面活性的吸附比例为65%,当流速调至100μL/min时,离子表面活性的吸附比例为93%,当流速调至200μL/min时,离子表面活性的吸附比例为98%。
结论:
1.胶体准备结果表明,胶体清晰度可以达到90%以上,将提供有效的条件以加速药物的蒸发。
2.通过电泳实验,不同流速下离子表面活性物质的吸附变化情况得出,低离子表面活性物质具有更好的吸附能力,达到98%。
因此,该方法可以优化胶体制备实验。
图表5电泳前次,取平均值。
记录电压值。
测完后,关闭电源。
用棉线量出两电极间的距离(不是水。
实验结束,将溶胶倒入指定瓶子中,
(2)计算电动势
电泳速度u=界面移动距离l`/时间
电位梯度E=电压U/两极间距l
ζ=(ηu)/(Εε)=(0.001005*6.13*10^-6)/(241*81)=3.16*10^-13V
六.注意事项:
1、制备溶胶需要铁离子水解充分,所以滴加速度不要太快,搅拌要充分。
另外,千万不要因为水的蒸发,而在制好胶体后加水。
2、做半透膜的锥形瓶一定要干燥。
加水不能太早或太迟。
3、电泳管一定要洗干净,否则无论如何小心都很难得到清晰的界面。
4、最开始加辅助液速度要慢点。
千万注意不要有震荡,遇到这样的情况,一定要马上停下来,等稳定后再加。
界面形成后,滴加速度可以稍微加快。
七、思考和讨论
(1)电泳速率与哪些因素有关?
答:电泳速度的快慢与带电粒子大小、形状、所带电量、溶液粘度、温度、PH、离子强度及电度等因素有关。
(2)在电泳测定中如不用辅助液体,把电极直接插入溶胶中会发生什么现象?
答:负极上会发生Fe(OH)3溶胶聚沉,干扰泳动的察。
溶胶的制备及电泳一、实验目的1、掌握凝聚法制备氢氧化铁溶胶的方法;2、观察溶胶的电泳现象并了解其电学性质。
3、用电泳法测定胶粒速度和溶胶电位。
二、实验原理溶胶是一种多组分分散系,其分散介质可以是气体(气溶胶),固体(固溶胶)和液体。
我们所说的溶胶一般是指固体分散在液体中。
分散相的胶粒大小在1~100nm之间,因此相界面很大,是热力学的不稳定体系。
胶粒表面带有电荷,是从介质中吸附离子或解离而得到的。
溶胶之所以能在一定期间内稳定的存在,是因为它的电荷及表面的溶液化层的存在。
溶胶的制备方法有分散法和凝聚法两大类。
分散法是使物质的大颗粒变为大小如同胶体颗粒,可以通过机械研磨、超声波、溶剂的胶溶作用来实现。
凝聚法就是使分子或离子态存在的物质聚合成胶体粒子,可以通过化学反应的方法,使之在溶液中生成胶粒大小的不溶物;变换介质,改变条件使原来溶解的物质变为不溶;或者使物质的蒸汽凝结成胶体颗粒。
例如,制备金属溶胶时,可把金属制成电极,通电产生电弧,金属受高热成为气体,使之在液体中凝聚成为溶胶。
所制备的胶粒大小的分布随制备方法和条件及存放时间而不同。
制备的胶体中往往有许多杂质,可通过渗析和电渗的方法使之纯化,就是用半透膜把溶胶和溶剂隔开,胶粒较大不能通过半透膜,离子和小分子能透过半透膜进入溶剂,因此不断更换溶剂可把胶体溶液中的杂质除去。
若除去的杂质是离子则用电渗析可提高除杂质的速度。
分散在液相介质中的固体颗粒叫胶核,胶核的表面由于吸附或解离而带某种电荷,其周围的介质中分布着数量相等的相反电荷,构成了双电层结构,使整个溶胶体系保持电中性。
胶核与周围的双电层结构一起成为胶团。
双电层又可分为两部分,一部分紧密的与胶核吸附在一起,约有一两个分子层厚,称为紧密层。
紧密层与胶核一起称为胶粒。
在紧密层以外的部分为扩散层,扩散层的厚度随外界条件(温度、离子价态、电解质的浓度等)而变化。
在电场作用下,胶粒与紧密层结合的一定数量的溶剂分子一起运动,而扩散层则向相反的方向移动。
嘉应学院化学系实验报告学生姓名:焦思权班级:101 座号:37 温度:18℃气压:99.93kPa 课程名称:现代化学实验与技术1 指导老师:李勇合作者:陈特华、黄贤杰日期:2013/4/22溶胶的制备和电泳一、目的(1)掌握溶胶的制备和净化方法,了解溶胶的电学性质和稳定。
(2)用界面移动法测定胶粒Fe(OH)3的电泳速率,计算溶胶的电势。
二、实验原理溶胶是粒径1-100 nm的固体微粒分散在液体介质中所形成的分散系统,具有高度分散性、聚结不稳定性和多相不均匀性,并具有动力稳定性。
溶胶的制备方法分为分散法和凝聚法两大类。
分散法是把较大物质颗粒变小到胶粒大小范围,如研磨法、胶溶法(新制松软沉淀加人电解质后重新分散)、电弧法(金属电极通电产生电弧使金属变成蒸气后立即在周围冷的介质中凝聚)、超声波法等。
凝聚法是把物质分子或离子凝结变大到胶粒大小范围,如化学反应法、改换溶剂法(改换溶剂使溶质溶解度降低致过饱和而凝析)等。
新制的溶胶一般常含有过多电解质或其他杂质,影响其稳定性,故必须净化处理。
常用的净化方法是渗析法,它是利用半透膜具有能透过离子和小分子而不能透过胶粒的能力,将溶胶用半透膜与纯溶剂隔开,从而将溶胶中过量的电解质和杂质分离除去。
若需提高渗析速度,还可适当加热或外加电场,即热渗析法和电渗析法。
胶粒是带电的,带电的原因主要是胶核表面选择吸附(优先吸附与胶核含相同元素的离子)或表面分子电离。
胶粒带电、溶剂化作用及布朗运动是溶胶具有动力稳定性的三个重要原因。
溶胶的稳定性受电解质的影响极大。
随着溶胶中电解质浓度的增大,胶团扩散反离子层受挤压而变薄,胶粒所带电荷数减少,扩散层反离子的溶剂化作用(在胶粒周围形成具一定弹性的溶剂化外壳)减弱,溶胶稳定性下降,最终导致聚沉。
电解质中起聚沉作用的主要是与胶粒带相反电荷的离子,且价数越高,聚沉能力越强。
电解质的聚沉能力常用聚沉值的倒数来表示,聚沉值是指使溶胶发生明显聚沉所需电解质的最小浓度。
浙江万里学院生物与环境学院化学工程实验技术实验报告实验名称:溶胶的制备及电泳一、实验预习(30分)1.实验装置预习(10分)2015年12月28日指导教师______(签字)成绩2.实验仿真预习(10分)2015年12月28日指导教师______(签字)成绩3.预习报告(10分)指导教师______(签字)成绩(1)实验目的1.掌握电泳法测定Fe(OH)3及Sb2S3溶胶电动电势的原理和方法。
2.掌握Fe(OH)3及Sb2S3溶胶的制备及纯化方法。
3.明确求算ζ公式中各物理量的意义。
(2)实验原理溶胶的制备方法可分为分散法和凝聚法。
分散法是用适当方法把较大的物质颗粒变为胶体大小的质点;凝聚法是先制成难溶物的分子(或离子)的过饱和溶液,再使之相互结合成胶体粒子而得到溶胶。
Fe(OH)3溶胶的制备是采用的化学法即通过化学反应使生成物呈过饱和状态,然后粒子再结合成溶胶,其结构式可表示为{m[Fe(OH)3]n FeO+(n-x)Cl-}x+x Cl-。
制成的胶体体系中常有其它杂质存在,而影响其稳定性,因此必须纯化。
常用的纯化方法是半透膜渗析法。
在胶体分散体系中,由于胶体本身的电离或胶粒对某些离子的选择性吸附,使胶粒的表面带有一定的电荷。
在外电场作用下,胶粒向异性电极定向泳动,这种胶粒向正极或负极移动的现象称为电泳。
荷电的胶粒与分散介质间的电势差称为电动电势,用符号ζ表示,电动电势的大小直接影响胶粒在电场中的移动速度。
原则上,任何一种胶体的电动现象都可以用来测定电动电势,其中最方便的是用电泳现象中的宏观法来测定,也就是通过观察溶胶与另一种不含胶粒的导电液体的界面在电场中移动速度来测定电动电势。
电动电势ζ与胶粒的性质、介质成分及胶体的浓度有关。
在指定条件下,ζ的数值可根据亥姆霍兹方程式计算。
即(静电单位)或·300(V) (1)式中,K为与胶粒形状有关的常数(对于球形胶粒K=6,棒形胶粒K=4,在实验中均按棒形粒子看待);η为介质的粘度(泊);D为介质的介电常数;u为电泳速度(cm·s-1);H为电位梯度,即单位长度上的电位差。
溶胶的制备及电泳实验报告一、引言溶胶是由固体颗粒悬浮在液体介质中形成的胶状体系。
溶胶的制备方法多种多样,其中电泳法是一种常用且有效的制备溶胶的方法。
本实验旨在通过电泳实验,探究溶胶的制备及其在电泳过程中的应用。
二、实验材料与方法1. 实验材料:- 铜板- 硫酸铜溶液- 毛细管- 直流电源- 导线- 玻璃棒- 纸巾2. 实验步骤:- 将铜板清洗干净并剪成适当大小的方形片。
- 用纸巾擦拭铜板表面,保证表面干燥无油污。
- 在玻璃棒上滴上硫酸铜溶液,形成一滴液体。
- 将毛细管的一端放入液滴中,另一端用导线连上直流电源的正极。
- 将铜板的一角放在液滴上,使其与毛细管的液滴相接触。
- 打开电源,设定适当的电压和电流,开始电泳过程。
- 观察电泳现象,记录实验数据。
三、实验结果与讨论经过一段时间的电泳过程,我们观察到铜板上形成了一层均匀的溶胶。
这是因为在电泳过程中,铜离子在电场的作用下从溶液中迁移至电极表面,并在电极上发生还原反应,形成固态的铜颗粒,从而形成溶胶。
电泳实验中,溶胶的形成与电场的强度、电流密度、电泳时间等因素有关。
在本实验中,我们通过调节直流电源的电压和电流,控制电场的强度和电流密度,从而影响溶胶的制备效果。
实验结果表明,当电压和电流较低时,溶胶的形成速度较慢;而当电压和电流较高时,溶胶的形成速度较快。
因此,合理选择电压和电流是制备溶胶的关键。
溶胶的应用之一就是在电泳过程中作为分离介质。
在电泳实验中,我们可以将样品溶液加载到电泳槽中,通过控制电场的强度和方向,让样品中的带电离子在电场的作用下向电极迁移,实现离子的分离。
溶胶可以提供均匀的电场分布,增加离子的迁移速率,从而提高电泳分离的效果。
四、结论通过本实验,我们成功制备了溶胶,并通过电泳实验探究了溶胶的制备及其在电泳过程中的应用。
实验结果表明,电压和电流是影响溶胶形成速度的关键因素。
溶胶作为一种分离介质,在电泳过程中起到了重要的作用。
溶胶的制备及其在电泳过程中的应用具有重要的科学意义和实际价值。
中国石油大学化学原理二实验报告实验日期:成绩:班级:学号:姓名:教师:同组者:一、实验目的1.学会溶胶制备的基本原理、并掌握溶胶制备的主要方法;2.利用界面电泳法测定AgI溶胶的电动位。
二、实验原理溶胶是溶解度极小的固体在液体中高度分散所形成的胶态体系,其颗粒直径变动在10-7~10-9m范围。
1.溶胶制备要制备出稳定的溶胶一般需满足两个条件:固体分散相的质点大小必须在胶体分度的范围内;固体分散质点在液体介质中要保持分散不聚结,为此,一般需要加稳定剂。
制备溶胶原则上有两种方法:将大块固体分割到胶体分散度的大小,此法称为分散法;使小分子或粒子聚集成胶体大小,此法称为凝聚法。
(1)分散法分散法主要有 3 种方式,即机械研磨、超声分散和胶溶分散。
①研磨法:常用的设备主要有胶体磨和球磨机等。
胶体磨由两片靠得很近的盘或磨刀,均由坚硬耐磨的合金或碳化硅制成。
当上下两磨盘以高速反向转动时(转速约5000-10000rpm),粗粒子就被磨细。
在机械磨中胶体研磨的效率较高,但一般只能将质点磨细到 1um 左右。
②超声分散法:频率高于16000Hz的声波称为超声波,高频率的超声波传入介质,在介质中产生相同频率的疏密交替,对分散相产生很大的撕碎力,从而达到分散效果。
此法操作简单,效率高,经常用作胶体分散及乳状液制备。
③胶溶法:胶溶法是把暂时聚集在一起的胶体粒子重新分散而成溶胶。
例如,氢氧化铁、氢氧化铝等的沉淀实际上是胶体质点的聚集体,由于制备时缺少稳定剂,故胶体质点聚在一起而沉淀。
此时若加入少量的电解质,胶体质点因吸附离子而带电,沉淀就会在适当的搅拌下重新分散成胶体。
有时质点聚集成沉淀是因为电解质过多,设法洗去过量的电解质也会使沉淀转化成溶胶。
利用这些方法使沉淀转化成溶胶的过程成为胶溶作用。
胶溶作用只能用于新鲜的沉淀。
若沉淀放置过久,小粒经过老化,出现粒子间的连接或变化成大的粒子,就不能利用胶溶作用来达到重新分散的目的。
溶胶的制备及电泳实验报告
溶胶的制备及电泳实验报告
溶胶制备
•准备所需材料:溶剂、溶负载体、混合搅拌器、加热设备等。
•将溶剂加热至适当温度。
•将溶剂倒入混合搅拌器中。
•逐渐加入溶负载体,同时用搅拌器均匀混合。
•混合过程中,根据所需溶胶的浓度,逐渐加热或降低温度。
•混合均匀后,继续加热或冷却,直到溶负载体完全溶解且无明显悬浮物。
电泳实验准备
•准备所需的电泳仪器和试剂。
•制备电泳缓冲液,根据实验需要选择合适的缓冲液配方。
•将电泳缓冲液注入电泳槽中,确保液面平稳。
•准备样品,将样品加载到电泳槽中。
•连接电泳电源,设置合适的电压、时间和温度参数。
•对电泳实验进行预运行,确保参数设置正确。
电泳实验操作步骤
1.开启电泳电源,设置合适的电压。
2.等待样品迁移至适当位置,根据实验需要调整电泳时间。
3.实时观察电泳过程,记录迁移距离和带状图像。
4.根据需要,调整电压和时间,进一步优化分离效果。
5.当样品迁移到电泳胶糊底部时,关闭电源并停止电泳。
6.将电泳胶糊取出,进行染色或进一步分析处理。
实验结果和讨论
•分析实验得到的结果,比较样品之间的差异。
•讨论实验结果与预期相符程度,分析可能的原因。
•将实验数据与其他研究结果进行对比和交流。
•提出进一步研究的问题和展望。
结论
•通过溶胶的制备及电泳实验,可以实现样品的分离和纯化。
•电泳技术在分子生物学和生物化学领域具有重要的应用价值。
•需要进一步优化实验条件和技术方法,提高分离效果和分辨率。
本文介绍了溶胶的制备及电泳实验的相关步骤和操作要点,同时
对实验结果和讨论进行了总结和分析。
通过正确的操作和参数设置,
利用电泳技术可以实现样品的分离和纯化,达到预期的目的。
但仍需
进一步研究和优化,以提高电泳技术的应用效果和实验分辨率。
讨论和展望
通过电泳实验可以实现对不同样品的分离与纯化,有助于进一步
研究和了解样品的性质和组成。
在实验中,通过调整电压、时间和温
度等参数,可以优化电泳分离效果。
然而,仍然存在一些挑战和改进
的空间:
•实验条件的优化:不同的样品可能对实验条件有不同的要求,因此需要进一步优化实验参数,以提高分离效果和分辨率。
•样品加载量的控制:样品加载量过多或不均匀会导致分离带模糊或重叠,因此需要控制好样品的加载量。
•缓冲液选择和调配:不同的缓冲液配方可以对电泳结果产生影响,因此需要选择合适的缓冲液,并确保其正确调配。
•实验仪器的质量和稳定性:稳定的仪器和设备对实验结果的准确性和重现性至关重要,因此需要定期维护和检查设备的质量和工
作状态。
展望未来,电泳技术仍有很多发展空间和应用前景:
•目前,一维电泳已经成为常见的分离方法,未来可以进一步发展和应用二维电泳技术,提高分离效果和样品分辨率。
•结合其他分析技术和仪器,如质谱和激光扫描等,可以进一步提高分离和检测灵敏度,实现更准确的定性和定量分析。
•在生物医药领域,电泳技术可以用于研究疾病生理机制、药物代谢和蛋白质组学等方面,有助于加深对疾病的认识和开发新药。
•在环境分析和食品安全监测等领域,电泳技术可以应用于检测残留物、污染物和有害物质,为环境保护和食品安全提供可靠的分
析手段。
总之,电泳技术作为一种重要的分离和分析方法,具有广泛的应
用前景和深远的影响,将在科学研究和工业实践中继续发挥重要作用。
通过不断的研究和改进,电泳技术将不断提高其分辨率和分离效果,
更好地满足科学研究和实际应用的需要。