发酵动力学名词解释
- 格式:doc
- 大小:10.84 KB
- 文档页数:2
第八章发酵动力学发酵动力学是研究各种环境因素与微生物代谢活动之间的相互作用随时间变化的规律的科学。
fermentation kinetics生化反应工程的基础内容之一,以研究发酵过程的反应速率和环境因素对速率的影响为主要内容。
通过发酵动力学的研究,可进一步了解微生物的生理特征,菌体生长和产物形成的合适条件,以及各种发酵参数之间的关系,为发酵过程的工艺控制、发酵罐的设计放大和用计算机对发酵过程的控发酵动力学制创造条件。
研究发酵过程中菌的生长速率、培养基的消耗速率和产品形成速率的相互作用和随时间变化的规律。
发酵动力学包括化学热力学(研究反应的方向)和化学动力学(研究反应的速度)并涉及酶反应动力学和细胞生长动力学。
它为发酵过程的控制、小罐试验数据的放大以及从分批发酵过渡到半连续发酵和连续发酵提供了理论基础。
发酵动力学也是计算机模拟发酵过程研究及发酵过程计算机在线控制的基础。
在发酵中同时存在着菌体生长和产物形成两个过程,它们都需要消耗培养基中的基质,发酵动力学因此有各自的动力学表达式,但它们之间是有相互联系的,都是以菌体生长动力学为基础的。
所谓菌体生长动力学是以研究菌体浓度、限制性基质(培养基中含量最少的基质,其他组分都是过量的)浓度、抑制剂浓度、温度和pH等对菌体生长速率的影响为内容的。
在分批发酵中,菌体浓度X,产物浓度P和限制性基质浓度S均随时间t变化菌体生长可分迟滞、对数、减速、静止、衰退等五个时期。
其中菌体的主要生长期是对数期,它的特点是:随着基质浓度继续下降,菌体的衰老死亡逐步与生长平衡以至超过生长,也即进入静止和衰退期。
发酵动力学J.莫诺于1949年提出了一个μ与S间的经验关联式,此式被称莫诺方程式:μm为最大比生长速率, 即不因基质浓度变化而改变的最大μ值;Ks为饱和常数,即在数量上相当于μ=0.5μm时的S值。
Ks值愈小,说明在低基质浓度范围中,S对μ愈为敏感,而保持μm的临界S值愈低。
发酵动力学的概念和研究内容
发酵动力学是研究发酵过程中微生物生长和代谢的速率和规律
的科学,是微生物发酵工程的重要组成部分。
发酵动力学的研究内容包括发酵过程中的微生物生长动力学、底物代谢动力学和产物生成动力学。
微生物生长动力学是研究微生物在发酵过程中生长的速率和规律。
在发酵过程中,微生物对培养基中的营养物质进行吸收和利用,生长并繁殖。
微生物的生长速率受到多种因素的影响,如温度、pH值、氧
气浓度、营养物质浓度等。
通过实验和数学模型,可以了解微生物的生长速率与这些因素之间的关系,为优化发酵过程提供理论依据。
底物代谢动力学是研究微生物在发酵过程中对底物的利用速率和规律。
微生物通过代谢途径将底物转化为产物,同时产生能量和细胞所需的物质。
底物的利用速率受到微生物的生长速率和代谢途径的调控。
通过研究底物代谢动力学,可以了解微生物对底物的利用效率,为优化底物供应策略和产物生成提供指导。
产物生成动力学是研究发酵过程中产物的生成速率和规律。
在发酵过程中,微生物通过代谢途径将底物转化为产物。
产物的生成速率受到微生物的生长速率和底物的利用速率的影响,同时也受到产物对微生物生长的抑制效应。
通过研究产物生成动力学,可以了解产物的积累
速率和抑制效应,为优化发酵过程和产物纯化提供理论指导。
综上所述,发酵动力学的研究内容涵盖微生物生长动力学、底物代谢动力学和产物生成动力学三个方面,通过研究这些内容,可以深入了解发酵过程中微生物的生长和代谢规律,为优化发酵工艺和提高产物产量提供理论支持。
学习好资料欢迎下载C初级代谢产物:微生物合成在它们生长和繁殖过程中所必须的物质(如糖、氨基酸、脂肪、核苷酸及其聚合物)的过程;所合成的物质称为初级代谢产物。
次级代谢产物:微生物在生长和繁殖过程中合成对微生物的生长、繁殖无关或功能不明确的化合物的过程;这些化合物称为次级代谢产物。
F发酵:任何通过扩大规模培养生物细胞(含动、植物细胞和微生物细胞)来生产产品的过程。
发酵机制:微生物通过其代谢活动,利用基质合成人们所需要的产物的内在规律。
分批培养:在一个密闭系统内一次性投入有限数量营养物进行培养的方法。
发酵动力学:研究发酵过程中菌体生长、基质消耗、产物生成的动态平衡及其内在规律的科学。
H呼吸强度:指单位质量干菌株在单位时间内的吸氧量。
耗氧速率:指单位体积培养液在单位时间内的吸氧量。
J静置培养法:又称厌气培养,即将培养基盛于发酵罐中,在接种后,不通空气进行培养。
绝对过滤:是介质之间的空隙小于被滤除的微生物,当空气流过介质后,空气中的微生物被滤除的过滤方式。
L连续培养:又称连续发酵,是指以一定速度向发发酵罐内添加新鲜培养基,同时以相同速度流出培养液,从而使发酵罐内的液量维持恒定,使培养物在近似恒定状态下生长的培养方法。
M灭菌:用物理或化学的方法杀死物料或设备中所有有生命的有机体的技术或工艺过程;它既能杀死营养细胞又能杀死细菌芽孢。
P培养基:微生物生长繁殖和生物合成各种代谢产物所需要的、按一定比例配制的、多种营养物质的混合物。
Q前体:产物的生物合成过程中,被菌体直接用于产物合成而自身结构无显著变化的物质。
T通气培养法:又称好气性发酵,这种发酵在培养过程中必须通入空气,以维持一定的溶氧水平,菌体才能迅速进行生长发酵。
同功酶:能催化相同的生化反应,但酶蛋白分子结构有差异的一类酶。
调节组成酶:酶的合成不依赖于环境中的物质存在而存在的一类酶。
调节诱导酶:细胞为适应外来底物或其结构类似物而临时合成的一类酶。
调节突变株:指菌株因外界条件影响,而产生不受终产物及其结构类似物反馈抑制或阻遏的突变株,此时终产物能够大量积累。
发酵动力学名词解释
发酵动力学是研究微生物在发酵过程中的生长、代谢和动力学行为的学科。
以下是一些常见的发酵动力学名词解释:
1. 比生长速率 (μ):每小时单位质量的菌体所增加的菌体量,是表征微生物生长速率的一个参数,也是发酵动力学中的一个重要参数。
2. 基质消耗动力学:指消耗单位营养物所生产的产物或细胞数量,可以通过确定菌体和基质之间的动力学关系来研究。
3. 最大比生长速率 (μmax):微生物在最优生长条件下的最大比生长速率。
4. 饱和常数 (Ks):表示微生物细胞浓度达到最大值时的营养物浓度。
5. 动力学参数 (kinetic parameters):用于描述微生物生长和代谢过程的一些参数,如比生长速率、饱和常数等。
6. 发酵热 (fermentative heat):在发酵过程中产生的热能,可以用于加热发酵液或产生蒸汽。
7. 非竞争性抑制剂 (non-competitive inhibitor):一种能够
与酶结合并抑制其活性的抑制剂,但其结合常数小于竞争性抑制剂。
8. 群体动力学 (population dynamics):研究微生物种群数量
的动态变化,包括菌落形成和灭绝、种群增长和衰退等。
这些名词解释可以帮助读者更好地理解发酵动力学的基本概念
和应用。