发酵工程重点(6801)
- 格式:doc
- 大小:1.21 MB
- 文档页数:16
发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。
2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。
随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。
3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。
二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。
发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。
2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。
三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。
不同的微生物在发酵过程中起到不同的作用。
2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。
3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。
四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。
按照其作用方式可以分为氧化酶、还原酶、水解酶等。
2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。
3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。
五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。
2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。
3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。
六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。
发酵工程重点考试题型:1、名词解释(5个3分)2、填空(20空20分)3、选择(10个2分)4、简答(4个5分)5、25分第一章发酵工程的概述1.、发酵工程的概念:发酵工程是利用微生物特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系,是将传统发酵与现代的DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的发酵技术。
也可以说是渗透有工程学的微生物学,是发酵技术工程化的发展。
由于主要利用的是微生物发酵过程来生产产品,因此也可称为微生物工程。
2、微生物工业发酵的基本过程P23、发酵工程技术的特点:(1)发酵工程主体微生物的特点:1.微生物种类多、繁殖速度快、代谢能力强,容易通过人工诱变获得有益的突变株;2.微生物酶的种类很多,能催化各种生物化学反应;3微生物能够利用有机物、无机物等各种营养源;4.可以用简易的设备来生产多种多样的产品;5..不受气候、季节等自然条件的限制(2)发酵工程技术的特点P2(3)发酵工程反应过程的特点:P34、近代发酵工程全面发展时期是指20世纪40年代初到20世纪70年代末标志:青霉素工业的迅速发展5、现代发酵工程时期:是指利用现代分子生物技术即DNA重组技术所获得的“工程菌”、细胞融合所得的’杂交”细胞以及动植物细胞或固定化活细胞等,使发酵工业范畴突破了利用天然微生物的传统发酵,逐步建立起新型的发酵体系,生产天然微生物或人体及其他动植物所不能生产或产量很少的特殊产物。
6、工业发酵方式:1)根据微生物需氧或不需氧分:好氧发酵厌氧发酵2)根据培养基是固态或液态分:液态发酵固态发酵3)根据培养基是间歇或是连续进行:分批发酵连续发酵7、微生物常见的液态发酵方式:四种(1)试管液体培养(2)浅层液体培养(3)摇瓶培养(4)台式发酵罐试管液态培养:次法的通气效果一般较差。
仅适用于培养兼性好氧菌,以及进行微生物的各种生理生化实验。
浅层液态培养:在三角烧瓶中装入浅层培养液,其通气量与装液量、棉塞通气程度密切相关。
高中发酵工程的知识点总结一、发酵工程的基本概念1. 发酵工程的定义发酵工程是以微生物或酶等生物催化剂为基础,通过控制合适的环境条件,利用微生物或酶的代谢作用,进行有选择地生产物质或提取有用产品的工程技术。
2. 发酵工程的原理发酵工程利用生物催化剂在适宜的温度、pH、氧气供应等条件下对原料进行代谢作用,使其产生有用的化学产物。
发酵过程分为有氧发酵和无氧发酵,有氧发酵是指微生物在充分供氧的情况下进行代谢作用,而无氧发酵则是微生物在缺氧条件下进行代谢作用。
3. 发酵工程的应用发酵工程在食品、医药、酒类、饲料、化工等领域都有重要的应用,可以生产出酒精、乳酸、维生素、抗生素、酶等多种产品。
二、微生物学基础1. 微生物的分类微生物是一类极小的生物体,包括细菌、真菌、酵母菌、病毒等。
其中,细菌可分为革兰氏阳性菌和革兰氏阴性菌,酵母菌主要是酵母菌科的酵母菌,真菌包括霉菌和酵母菌。
2. 微生物的生长特性微生物的生长需要适宜的温度、pH值、氧气供应等条件,不同微生物的生长特性有所不同。
典型的微生物生长曲线包括潜伏期、对数生长期和平稳期。
3. 微生物的代谢特点微生物的代谢分为呼吸代谢和发酵代谢两种形式。
呼吸代谢需要有氧气,产生CO2和H2O,而发酵代谢不需要氧气,产生乳酸、酒精、醋酸等产物。
4. 微生物的培养方法微生物的培养方法包括液体培养和固体培养两种形式,培养基的选择对微生物的生长有重要影响。
三、发酵工程的工艺流程1. 发酵工程的基本流程发酵工程的基本流程包括发酵菌种的培养和保存、发酵罐的设计和运行、发酵过程的控制和调节、产品的分离和提取等步骤。
2. 发酵工程的发酵罐发酵罐是进行微生物发酵的设备,按照不同的设计要求可分为批式发酵罐和连续式发酵罐。
3. 发酵工程的发酵菌种发酵菌种是进行发酵的微生物,可以是细菌、酵母菌、真菌等。
合适的发酵菌种是发酵工程成功的关键。
4. 发酵工程的发酵过程控制发酵过程的控制包括温度、pH值、氧气供应、营养物质的添加等方面,需要根据不同的菌种和发酵产品进行调节。
生物选修三发酵工程知识点知乎生物选修三:发酵工程知识点发酵工程是一门综合性的学科,涉及微生物学、生物化学、生物工程学等多个学科的内容。
本文将从发酵工程的基本概念、发酵工艺、发酵微生物、发酵设备等几个方面,介绍一些发酵工程的知识点。
一、发酵工程的基本概念发酵工程是利用微生物通过代谢过程产生的酶来合成有机物的一种工艺。
它是将发酵微生物与合适的培养基、发酵设备相结合,通过调控温度、pH值、氧气供应等条件来实现产物的合成。
发酵工程在食品工业、制药工业、酿酒工业等领域有着广泛的应用。
二、发酵工艺发酵工艺是指利用微生物进行发酵过程中的操作步骤和条件控制。
常见的发酵工艺包括批发酵、连续发酵、固定床发酵、液体床发酵等。
其中,批发酵是最常见的一种工艺,它通过将微生物接种到含有营养物质的培养基中,控制温度、搅拌速度等条件,使微生物进行生长和代谢,并最终合成所需产物。
三、发酵微生物发酵微生物是发酵工程中的重要组成部分,常见的发酵微生物有细菌、酵母菌、真菌等。
不同的微生物对于不同的产物有着不同的合成能力和产量。
例如,酵母菌常被用于酿酒工业,细菌常被用于生产乳酸等发酵食品,真菌则常被用于生产青霉素等药物。
四、发酵设备发酵设备是进行发酵工程的重要工具,常见的发酵设备有发酵罐、发酵塔、发酵槽等。
发酵设备的设计应考虑到温度、氧气供应、搅拌速度等因素,以提供一个适宜的环境供微生物进行生长和代谢。
五、应用领域发酵工程在许多领域都有广泛的应用。
在食品工业中,发酵工艺被用于生产酸奶、啤酒、面包等食品;在制药工业中,发酵工艺被用于生产抗生素、酶制剂等药物;在环境工程中,发酵工程被用于处理废水、废气等污染物。
六、发酵工程的发展趋势随着生物技术的发展,发酵工程也在不断创新和发展。
目前,利用基因工程技术改造微生物,使其具有更高的产物合成能力已成为发酵工程的研究热点。
此外,发酵工程的自动化、智能化也是未来发展的方向。
总结:发酵工程作为一门重要的学科,有着广泛的应用前景。
微生物工程微生物工程是研究微生物生长、繁殖及代谢活动、代谢产物合成及其控制规律的科学。
营养缺陷型突变株(auxotrophic mutant):指在微生物生长过程中,因产品合成途径中某种酶缺陷,而不能生成终产物,只能生成中间代谢物,必须添加终产物,微生物才能生长的突变株。
调节突变株(adjustable mutant):指菌株因受外界条件影响,而产生不受终产物及其结构类似物反馈抑制或阻遏的突变株,此时终产物能够大量积累。
种子扩大培养种子扩大培养是指将保存在沙土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种的过程。
静置培养法又称厌气培养,即将培养基盛于发酵罐中,在接种后,不通空气进行培养;通气培养法又称好气性发酵,这种发酵在培养过程中必须通入空气,以维持一定的溶氧水平,菌体才能迅速进行生长发酵;培养基是指供微生物生长繁殖和生物合成各种代谢产物所需要的、按一定比例配制的、多种营养物质的混合物;前体在产物的生物合成过程中,被菌体直接用于产物合成而自身结构无显著变化的物质消毒用物理或化学的方法杀死物料、容器器皿内外病原微生物的过程,一般只能杀死营养细胞而不能杀死细菌芽孢;灭菌(sterilization):用物理或化学的方法杀死物料或设备中所有有生命的有机体的技术或工艺过程;它既能杀死营养细胞又能杀死细菌芽孢。
发酵机制:是指微生物通过其代谢活动,利用基质合成人们所需要的产物的内在规律。
初级代谢:初级代谢是指微生物合成它们在生长和繁殖过程中所必须的物质(如糖、氨基酸、脂肪、核苷酸及其聚合物)的过程;所合成的物质称为初级代谢产物。
次级代谢:次级代谢是指微生物在生长和繁殖过程中合成对微生物的生长、繁殖无关或功能不明确的化合物的过程;这些化合物称为次级代谢产物。
发酵动力学:是研究发酵过程中菌体生长、基质消耗、产物生成的动态平衡及其内在规律的科学最低培养基:即培养基是由单一碳源葡萄糖与无机盐组成,这时葡萄糖在微生物生长代谢过程中既作为生长代谢过程中所需要的能源,又作为构成菌体材料的培养基。
发酵工程知识点总结一、发酵工程的基本概念发酵工程是利用微生物、酶等生物体对有机物进行代谢的技术和工艺。
通过对微生物的培养、发酵过程的调控和产物的提取等一系列工艺步骤,实现对特定有机物的高效生产。
发酵工程是一门综合国家的学科,涉及生物学、化学工程、微生物学、工艺学等多个学科的知识。
二、发酵工程的发展历史发酵工程的起源可以追溯到几千年前,人类早在古代就已经开始利用自然界中的微生物进行发酵生产,如制酒、酿酒、发酵豆腐等工艺。
随着科学技术的发展,特别是现代微生物学、生物技术和生物化工技术的兴起,发酵工程逐渐成为一门独立的学科,并得到了迅速的发展。
三、发酵工程的基本原理发酵过程是一种微生物或酶对有机物进行代谢的过程。
微生物在合适的温度、pH值、氧气供应等条件下,利用有机物作为碳源进行代谢,产生新的有机化合物。
该过程分为静态发酵和动态发酵两种方式。
在发酵工程中,需要控制好微生物的生长条件,确保发酵产物的质量和产量。
四、发酵工程的主要微生物种类发酵工程中常用的微生物包括细菌、真菌、酵母等。
常见的细菌有大肠杆菌、乳酸菌等,真菌有曲霉、酵母菌等。
不同的微生物对有机物的代谢方式有所差异,因此在不同的发酵工程中需要选择合适的微生物种类。
五、发酵工程的工艺流程发酵工程的工艺流程主要包括微生物的培养、发酵过程的控制和产物的提取三个阶段。
微生物的培养是指通过预处理、接种和发酵基质制备等步骤,使得微生物得到最佳的生长繁殖条件。
发酵过程的控制是指通过对温度、pH值、氧气供应等因素的调控,使得微生物产生出期望的产物。
产物的提取则是指将发酵产物从培养基中分离出来,并经过精制处理得到最终的产品。
六、发酵工程中的发酵罐发酵罐是发酵工程中最为重要的设备之一,它是用来进行微生物培养和发酵过程控制的容器。
根据不同的发酵工艺要求,发酵罐可以分为批次式发酵罐、连续式发酵罐等多种类型。
在发酵罐中,需要控制好温度、pH值、氧气供应等因素,以确保微生物的生长和代谢过程。
第一部分:微生物工程原理1、概论1.1 发酵工程的概念和特点1.2 发酵工业的发展简史1.3 发酵工程的应用2、生产菌种来源3、微生物代谢调节和代谢工程4、优良菌种选育5、菌种保藏6、培养基7、发酵工艺控制8、参数检测第二部分:微生物工程下游加工工程第三部分:微生物工程生产设备第四部分:微生物工程生产工艺和产品举例第一章概论掌握本章知识点:1、发酵及发酵工程的定义;2、发酵工程研究的内容;3、发酵技术的发展阶段及其技术特点;4、发酵产物类型。
1、发酵、发酵工程的概念和特点1)传统发酵:最初发酵是用来描述酵母菌作用于果汁或麦芽汁产生气泡的现象,或者是指酒的生产过程。
2)生化和生理学意义的发酵:指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。
巴斯德:发酵是酵母菌在无氧状态下的呼吸过程,即无氧呼吸,是“生物获得能量的一种方式”。
3)工业上:泛指利用微生物制造或生产某些产品的过程。
包括:厌氧培养的生产过程,如酒精,乳酸等。
通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等。
4)发酵工程:利用微生物的生长代谢活动来生产各种有用生物化学产品的技术过程。
5)发酵工程研究的内容①一条主线:菌种,培养基,种子扩大培养,发酵过程控制,后处理;②两个重点:发酵过程优化,发酵过程放大;③三个层次:反应器水平,细胞水平,分子水平;④四个目标:高转化,高产量,高效率,低成本;6)利用发酵工程进行生产的优点:安全生产,可持续发展。
7)发酵过程存在的问题和缺陷:发酵过程会产生副产物;菌种易发生变异和退化;发酵过程的控制相当复杂;原料主要是农副产品,质量和价格波动较大;与化工过程相比,反应器的效率低;发酵废水量大,并含较高的COD和BOD;;生产过程易受杂菌污染的影响。
8)上游工程:菌种培养发酵工程:发酵罐下游工程:产物提纯2、发酵工业的发展简史1)古老的发酵工业-1900年前(白酒酿造;面包发酵、奶酪制造;酱油、泡菜)特点:多菌混合天然发酵2)早期的发酵工业1900-1940(酒精,乳酸)1680 荷兰列文虎克观察到微生物。
发酵工程知识点绪论1.传统发酵:最初发酵是用来描述酵母菌作用于果汁或麦芽汁产生气泡的现象,或者是指酒的生产过程。
1857年法国化学家、微生物家巴斯德提出了著名的发酵理论:“一切发酵过程都是微生物作用的结果。
”2.生化和生理学意义的发酵:指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。
如葡萄糖在无氧条件下被微生物利用产生酒精并放出CO2。
3.工业上的发酵:在微生物工业中,把所有通过微生物或其他生物细胞(动、植物细胞)的培养,统称为发酵。
包括:1. 厌氧培养的生产过程,如酒精,乳酸等。
2. 通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等。
产品有细胞代谢产物,也包括菌体细胞、酶以及转化产物等。
现代生物技术─分子生物学与发酵工程氨基酸发酵工业──谷氨酸、赖氨酸核酸发酵工业──肌苷酸、乌苷酸微生物变异株通过代谢调节──代谢控制发酵技术切断支路代谢转折点: 酶的活力调控, 酶的合成调控(反馈控制和反馈阻遏) →解除菌体自身的反馈调节,提高终产物水平。
细胞融合技术、基因操作技术等生物技术发展,打破了生物种间障碍,能定向地制造出新的有用的微生物:增加微生物体内控制代谢产物产量的基因拷贝数,可以大幅度地提高目标产物的产量;酒曲是我国酿酒技术的重大发明,也是世界上最早的一种复合酶制剂。
三、发酵工程的组成从广义上讲,由三部分组成:上游工程、发酵控制、下游工程四、微生物发酵产品的类型:1,菌体、酶,2 初级代谢产物,3 次级代谢产物,4 外源物质转化产物。
五、发酵方法的类别与流程(1)类别:根据对氧的需要区分:厌氧和好氧发酵根据培养基物理性状区分:液体和固体发酵根据从微生物生长特性区分:分批发酵和连续发酵按发酵原料来区分: 糖类物质发酵, 石油发酵, 废水发酵按发酵产物区分:氨基酸发酵、有机酸发酵、抗生素发酵、酒精发酵、维生素发酵、酶制剂发酵(2)发酵流程:保藏菌种---活化---扩大培养---种子罐---主发酵---产物分离纯化---成品第二章菌种选育理论与技术微生物的特点有些微生物能在厌氧的条件下生长有些微生物能够利用简单的有机物和无机物满足自身的生长有些微生物能进行复杂的代谢有些微生物能利用较复杂的化合物有些微生物能在极端的环境下生长常见的工业微生物(一)抗生素生产有关的微生物(二)氨基酸生产有关的微生物(三)食品酶制剂生产有关的微生物a-淀粉酶:黑曲霉、米曲霉、米根酶、枯草牙孢杆菌和地衣牙孢杆菌工业化菌种的要求1生产菌及其产物的毒性必须考虑(在分类学上最好与致病菌无关)2能够利用廉价的原料,简单的培养基,大量高效地合成产物3有关合成产物的途径尽能地简单,或者说菌种改造的可操作性要强4遗传性能要相对稳定5不易感染它种微生物或噬菌体6生产特性要符合工艺要求一、育种的目的(一)科研方面1.获得有遗传标记的菌株;2.得到生物合成阻断变株,以研究抗生素生物合成途径。
发酵工程知识点范文发酵工程是一门研究利用微生物和相关技术进行发酵过程的学科。
它包括了从发酵原料选择、菌种培养、发酵过程控制等多个方面的知识点。
以下是发酵工程中的一些重要知识点。
一、发酵工程的基础知识1.微生物:发酵工程的核心是微生物的利用。
了解不同种类的微生物及其特性对发酵过程的影响是非常重要的。
2.发酵原料:选择合适的发酵基质对于发酵工程的成功非常重要。
发酵原料可以是天然资源(如粮食、果汁等)或人工合成的化合物。
3.发酵罐:发酵罐是进行发酵过程的关键装置。
了解不同种类的发酵罐及其设计原则对于优化发酵过程具有重要意义。
二、发酵菌的培养1.菌种选择:根据所需产品的特点选择适当的菌种非常重要。
选择菌种时需要考虑其产物的产量、品质、稳定性等因素。
2.菌种培养基:菌种培养基是培养菌种的基础,它提供了微生物生长所需的营养物质。
了解不同种类的菌种培养基及其制备方法对于优化菌种培养过程十分关键。
3.菌种培养条件:包括温度、pH值、氧气供应等因素。
了解不同菌种的生长条件及其对发酵过程及产物的影响对于提高发酵效果至关重要。
三、发酵过程控制1.发酵过程参数的测量与控制:包括温度、pH值、氧气浓度、营养物质浓度等参数的测量与控制。
控制这些参数可以保持发酵过程的稳定性和良好的产品质量。
2.发酵过程中的微生物代谢:了解微生物在发酵过程中的代谢途径对于优化发酵过程具有重要意义。
微生物代谢产生的产物,如有机酸、酶等对产品质量和产量产生重要影响。
3.发酵产物的提取与纯化:获得高纯度的发酵产物是发酵工程的重要环节。
了解不同种类的产物提取与纯化方法及其特点对于提高产品的质量和产量至关重要。
四、发酵工程的应用1.生物制药:发酵工程在生物制药领域有着广泛的应用。
通过发酵工程技术,可以大规模生产各种药物,如抗生素、酶、蛋白质药物等。
2.食品工业:发酵工程在食品工业中也有着重要应用。
例如,通过发酵过程可以生产酸奶、啤酒、酱油等食品。
3.生物能源:利用发酵工程技术可以将生物质转化为生物能源,如生物乙醇、生物气体等,具有环保和可再生的特点。
2024年高考生物复习重点、难点、热点专项解析—发酵工程高考感知课标要求——明考向近年考情——知规律11.1阐明在发酵工程中灭菌是获得纯净的微生物培养物的前提。
11.2阐明无菌技术是在操作过程中,保持无菌物品与无菌区域不被微生物污染的技术。
11.3举例说明通过调整培养基的配方可有目的地培养某种微生物。
11.4概述平板划线法和稀释涂布平板法是实验室中进行微生物分离和纯化的常用方法。
11.5概述稀释涂布平板法和显微镜计数法是测定微生物数量的常用方法。
11.6举例说明日常生活中的某些食品是运用传统发酵技术生产的。
11.7阐明发酵工程利用现代工程技术及微生物的特定功能,工业化生产人类所需产品。
11.8举例说明发酵工程在医药、食品及其他工农业生产上有重要的应用价值。
2023·山东培养基的成分及其功能、无菌技术、土壤中分解尿素的细菌的分离与计数2023·山东泡菜的腌制、亚硝酸盐含量的测定2023·广东培养基的类型及其应用、其他微生物的分离与计数2023·浙江培养基的类型及其应用、微生物的接种方法、解读泡菜的腌制2023·山东果酒和果醋的制作原理2023·北京培养基的成分及其功能、微生物的接种方法、微生物的培养与菌种保藏2023·全国培养基的类型及其应用、无菌技术、果酒和果醋的制作原理2023·全国蛋白质的结构及多样性、蛋白质分离的原理及方法蛋白质的提取和分离的实验操作2023·湖南基因突变、培养基的成分及其功能、动物细胞培养技术2023·浙江果酒和果醋的制作原理、有氧呼吸和无氧呼吸的异同命题趋势1.该部分内容的命题以选择题为主,属于年年必考的内容。
2.试题情境以下列两种居多:(1)以实际发酵的过程为情境考查传统发酵食品制作。
(2)以来自生产生活实际、与现实联系密切的实例为情境考查微生物的培养及应用。
知识必备一、传统发酵技术的应用1.千百年来,腐乳一直受到人们的喜爱。
•发酵工程:以微生物、动植物细胞为生物作用剂进行工业化生产的工程,包括发酵工艺和发酵设备。
•主要研究内容:菌种选育与构建、大规模培养基和空气的灭菌、大规模细胞培养过程、细胞生长和产物形成动力学、生物反应器的优化设计和操作、发酵产品的分离纯化过程中的技术问题等。
•发酵工程原理:指导发酵产品研究与开发,发酵工厂设计与建设以及发酵生产实践的理论。
•初级代谢:是许多生物都具有的生物化学反应,蛋白质、核酸的合成等,均称为初级代谢。
•初级代谢产物:指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、多糖等。
•次级代谢:微生物以初级代谢产物为前提合成的对微生物本身的生命活动没有明确功能的物质的过程。
•自然选育:不经过人工处理,利用菌种的自然突变而进行菌种筛选的过程。
•杂交育种:将两个基因型不同的菌株经吻合使遗传物质重新组合,分离和筛选具有新性状的菌株。
•诱变育种:利用物理、化学等诱变剂处理均匀而分散的微生物细胞群,在促进其突变率显着提高的基础上,采用简便、高效的筛选方法,从中挑选出少数符合目的的突变株,以供科学实验或生产实践使用。
•原生质体融合育种:两个亲本的原生质体在高渗条件下混合,由聚乙二醇作为助融剂,使它们互相凝集,发生细胞融合,接着两个亲本基因组由接触到交换,从而实现遗传重组•前体:某些化合物加入发酵培养基中,能直接被微生物在生物合成过程中结合到产物中去,而自身结构并没有明显变化,产物的产量却因前体的加入而有较大的提高。
•抑制剂:某些化合物可以抑制特定代谢途径的进行,使另一种代谢途径活跃,获得人们所需产物的积累。
如生产甘油加抑制剂亚硫酸钠,它与代谢过程中的乙醛生成加成物。
这样使乙醇代谢途径中的乙醛不能成为NADH还原型辅酶I)的受氢体,而使NAD2在细胞中积累,从而激活a -磷酸甘油脱氢酶的活性,使磷酸二羟基丙酮取代乙醛作为NADH勺受氢体而还原为a-磷酸甘油,其水解后即形成甘油。
•促进剂:指那些既不是营养物质又不是前体,但却能提高产量的添加剂,如加巴比妥盐能使利福霉素单位增加,并能使链霉菌推迟自溶,延长分泌期。
高中生物发酵工程知识点总结
发酵工程是生物工程的一个分支,主要关注微生物的生长、代谢和产物分泌等过程。
以下是高中生物发酵工程的知识点总结:
1. 发酵定义和分类:发酵是指利用微生物对有机物进行代谢,产生特定的有用产物的过程。
常见的发酵分类包括酒精发酵、乳酸发酵、醋酸发酵、葡萄糖酸发酵等。
2. 微生物发酵过程:微生物发酵是指某些微生物在适宜的条件下(温度、pH、氧气浓度等)对有机底物进行代谢,产生有用的产物和能量的过程。
典型的微生物有乳酸菌、酵母菌、大肠杆菌等。
3. 发酵器:发酵器是用于进行微生物发酵的设备。
常用的发酵器有罐式发酵器、塔式发酵器、灵活床式发酵器等。
4. 发酵调控:发酵过程需要控制环境因素来促进微生物的生长和代谢,包括温度、pH、氧气浓度、碳源和氮源等。
5. 发酵产物:发酵产物是指微生物在发酵过程中产生的有用物质。
常见的发酵产物有乳酸、醋酸、酵母、酒精等。
6. 发酵应用:发酵应用广泛,包括生物制药、食品工业、化工工业等领域。
常
见的应用包括酸奶生产、啤酒酿造、酱油发酵等。
发酵工程知识点总结高中一、发酵工程的概念和发展发酵工程,是指通过微生物的代谢活动,将有机物质转化成更有用的产物的工程技术。
发酵工程是综合应用生物化学、微生物学、工程学的一门新兴科学,是现代生产中的重要组成部分。
随着生物技术和工程技术的不断发展,发酵工程得到了较快的发展。
发酵工程的产物广泛用于医学、农业、食品、环保等多个领域。
在国民经济各部门和人们生活中都起着重要作用。
二、发酵工程的基本原理1.微生物发酵的基本原理发酵的基本过程是:首先是微生物分解所需营养物质为能量,随后是将其转化为生长代谢的生物体组织,进一步是将有机物质转化为对人类生产和生活有益的产物。
在这个过程中,微生物起着关键的作用。
2.发酵过程的基本特点发酵过程是由微生物代谢活动引起的,具有时间长、可控制性差等特点。
另外,发酵过程还会产生较多的热量,需要合理的散热措施。
3.发酵工程原料的选择原料的选择对于发酵工程至关重要,原料一般包括碳源、氮源、矿物盐等,不同的微生物对原料要求差异较大。
4.发酵工程的主要流程发酵工程主要包括发酵罐的设计、微生物的培养、发酵条件的控制等步骤,其主要目的是通过发酵罐培养微生物得到需求的产物。
三、发酵工程中的微生物1.发酵工程中的微生物的种类常见的发酵微生物有酵母菌、乳酸菌、霉菌、细菌等。
在不同的发酵过程中,选择合适的微生物种类非常重要。
2.微生物的选型对于发酵工程来说,微生物的选型是十分关键的。
要根据所需产物的性质和发酵条件的要求来选择合适的微生物。
3.微生物的培养微生物的培养是发酵工程中的核心环节,培养的条件应该控制得很好,确保微生物的最佳生长繁殖情况。
四、发酵罐的设计1.发酵罐的结构发酵罐通常分为罐体、搅拌器、温控装置、进气装置、排气装置等几个部分。
2.发酵罐的主要功能和要求发酵罐的主要功能是提供合适的生长环境给微生物,要求它能够充分搅拌,保持温度和通气等。
3.发酵罐的类型目前,常用的发酵罐类型有批量式、连续式及其衍生的多种类型。
发酵工程全部重点,想答高分的背吧!来源:隋源的日志填空选择:1、突变分类:点突变和染色体畸变2、发酵培养基作用:满足菌体生长+促进产物形成。
3、培养基原料:C(50%)、N、无机盐、微量元素、水、生长因子、前体。
4、总染菌率(一年内)=发酵染菌批数/总投料批数×100%5、配制培养基时防止物料结块或带异物,定期消毒配料和送料系统。
在实罐、空罐、培养基、管道灭菌操作过程中,严格按工艺规程执行,确保蒸汽畅通及压力与温度的对应关系;发酵过程中取样、平板划线要严格无菌状态操作;对空气净化、补料、转种系统等要求定期无菌检查。
6、工业常用的灭菌方法:化学物质灭菌;热灭菌;辐射灭菌;过滤介质除菌。
7、适用于小批量生产,固体颗粒培养基,产泡沫多时采用。
8、通常必须灭菌条件:110-130℃,5-20分钟,培养液灭菌采用高温短时加热的方式。
9、使用于大规模生产、小颗粒液体培养基,产少量泡沫。
10、利用板式换热器进行连续灭菌的流程图,其流程的能量利用较合理。
11、微生物吸氧量常用呼吸强度和耗氧速率两种方式表示。
12、水中的污染物:有机污染物+无机污染物13、谷氨酸发酵,在中性和微碱性条件下积累谷氨酸,在酸性条件下则容易形成谷氨酰胺和N-乙酰谷氨酰胺。
14、生物转化与化学反应相比优点:反应条件温和,对环境无污染。
15、发酵工业生产菌几乎都是经人工诱变处理后获得的突变株。
这些突变株是以大量生成某种代谢产物(发酵产物)为目的筛选出来的,因而它们属于代谢调节失控的菌株。
16、DNA损伤的修复和基因突变有密切的关系5种方式修复DNA:1)光复活作用;2)切补修复;3)重组修复;4)SOS修复系统;5)DNA多聚酶的校正作用。
17、表型延迟的两种原因:分离性延迟和生理性延迟。
18、诱变育种中2个主要环节:(一)制定筛选目标(二)制定筛选方案19、诱变育种的3个环节:突变的诱发、突变株的筛选、突变高产基因。
20、诱发突变是不定向而随机的→多种变异性状的出现选择。
第一章绪论1、什么是发酵狭义“发酵”定义:在生物化学或生理学上发酵是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。
如葡萄糖在无氧条件下被微生物利用生成乙醇并放出二氧化碳,同时获得能量;丙酮酸被还原为乳酸而获得能量等等。
广义“发酵”的定义:工业上所称的发酵是泛指利用生物细胞制造某些产品或净化环境的过程。
2、什么是发酵工程定义:应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。
3、发酵工程的特点主要特点:以高产量、高转化率和高效率及低成本为目标的发酵过程(1)发酵过程一般来说都是在常温常压下进行的生物化学反应,反应安全,要求条件也比较简单。
(2)所用原料主要是农副产品及其加工产品通常以淀粉、糖蜜或其它农副产品为主,只要加入少量的有机和无机氮源就可进行反应。
因不同的类别可以有选择地去利用它所需要的营养。
(3)发酵过程是通过生物体的自动调节方式来完成的,反应的专一性强,因而可以得到较为单一的代谢产物。
(4)发酵过程中对杂菌污染的防治至关重要。
必须对设备进行严格消毒处理和空气过滤外,反应必须在无菌条件下进行。
如果污染了杂菌,生产上就要遭到巨大的经济损失,要是感染了噬菌体,对发酵就会造成更大的危害。
(5)由于生物体本身所具有的反应机制,能够专一性和高度选择性地对某些较为复杂的化合物进行特定部位地氧化、还原等化学转化反应,也可以产生比较复杂的高分子化合物。
(6)微生物菌种是进行发酵的根本因素,通过变异和菌种筛选,可以获得高产的优良菌株并使生产设备得到充分利用,也可以因此获得按常规方法难以生产的产品。
4、发酵工程的主要问题发酵工程的主要问题过程优化与放大:在高产菌株的基础上,如何把高产菌种在培养过程中进一步考察它的生理生化特性,稳定或改进微生物反应工艺过程,要求对生物物性的动态有详尽的了解,对生化反应做定量的和动力学方面的考察。
第二章菌种选育1、与筛选营养缺陷型有关的三类培养基?答:基本培养基、补充培养基、完全培养基2、诱变育种的步骤?出发菌株的选择处理菌悬液的制备诱变处理中间培养分离和筛选3、什么叫营养缺陷性菌株?它的筛选步骤?营养缺陷型是指因发生基因突变而丧失合成一种或几种生长因子、氨基酸、维生素和碱基等的能力,无法再基本培养基上正常生长繁殖的突变类型,称为营养缺陷型。
筛选步骤:诱变淘汰野生型检出缺陷型确定生长谱4、工业微生物有哪些要求①营养特征:能在廉价或来源丰富的原料制成的培养基上迅速生长;②培养条件:生长速度较快,发酵周期较短,易于控制,抗噬菌体及杂菌污染的能力强,生长温度应高于40℃,降低冷却成本;③产物得率和浓度:生成的目的产物产量高、易于回收;5、从自然界分离筛选新菌株需哪些步骤定方案:首先要查阅资料,了解所需菌种的生长培养特性。
采样:有针对性地采集样品。
增殖:人为地通过控制养分或培养条件,使所需菌种增殖培养后,在数量上占优势。
分离:利用分离技术得到纯种。
发酵性能测定:进行生产性能测定(形态、营养要求、生理生化特性、发酵周期、耐受最高温度、生长和发酵最适温度、最适pH值等)。
6、富集培养:根据目的微生物的生理特点,设计一种选择性培养基,创造有利于目的微生物生长的条件,使目的微生物迅速地生长繁殖,数量增加,由原来的劣势种变的优势种,以利分离到所需要的菌株。
7、利用平皿的生化反应进行分离①透明圈法:平板培养基中加入溶解性较差的底物,使培养基浑浊。
②变色圈法:在底物平板中加入指示剂或显色剂,使所需微生物能被快速鉴别出来。
③生长圈法:生长圈法通常用于分离筛选氨基酸、核苷酸和维生素的产生菌。
④抑菌圈法抑菌圈法是抗生素筛选常用的初筛方法。
8、工业微生物育种目的防止菌种退化解决生产实际问题提高目标产物的能力提高产品质量开发新产品9、自然选育: 称为菌种的分离纯化在生产过程中,不经过人工处理,利用菌种的自然突变而进行菌种筛选的过程叫自然选育.10、菌种衰退(degeneration):由于自发突变的结果,而使某物种原有的一系列生物学性状发生量变到质变的现象。
11、菌种保藏原理:根据菌株生理生化特性,人工创造条件(低温、干燥、真空)使菌体的代谢活动休眠期状态。
12、菌种保藏的目的要求:经长期保藏后菌种存活健在,保证菌种不改变表型和基因型,特别是不改变菌种代谢产物生产能力13、菌种保藏的方法1、冷冻保藏冷冻保藏(-20℃以下):将菌种加入菌种保护剂(甘油或二甲基亚砜)通过冷冻,使微生物代谢活动停止。
冷冻温度愈低,效果愈好。
同时要掌握好冷冻速度和解冻速变。
冷冻保藏的缺点运输较困难。
主要冷冻保藏方法:普通冷冻保藏技术(-20℃)超低温冷冻保藏技术(-60--80℃)液氮冷冻保藏技术(-130--150℃)2、冻干保藏保藏方法:将混有保护剂冰冻至-60℃菌种迅速转移至-40℃时启动真空泵,使真空度减压到2.67~4.00Pa条件下使冻结的细胞悬液中的水分升华,使菌种干燥成粉,分装密封安瓿,低于5℃下保藏。
是微生物菌种长期保藏的最为有效的方法之一。
保藏期限:10年以上注意事项:冷冻干燥过程中必须使用冷冻保护剂,如脱脂乳和蔗糖,冻干后的菌株无需进行冷冻保藏,便于运输。
3、其他保藏方法①传代保藏②矿物油中浸没保藏第三章微生物培养基一、培养基的分类:按纯度合成培养基: 原料其化学成分明确、稳定天然培养基: 采用天然原料按状态固体培养基半固体培养基液体培养基按用途孢子(斜面)培养基种子培养基发酵培养基二、孢子、种子、发酵培养基的用途及要求:孢子(斜面)培养基供菌体繁殖产孢子的一种常用固体培养基,要求使菌体生长快,产生较多优质的孢子。
要求:1、营养不要太丰富(特别是有机氮源);2、无机盐浓度要适量,否则影响孢子的颜色和数量;3、要注意培养基的pH和湿度。
种子培养基:是供孢子发芽、生长和大量繁殖菌丝体,并使菌丝体长得粗壮,成为活力强的种子要求:1、营养要求比较丰富和完全;2、氮源和维生素含量要求高,供菌体生长和繁殖;3、最后一级种子培养基的成分要接近发酵培养基。
发酵培养基:供菌体生长、繁殖和合成产物之用。
要求:1、满足菌体生长必需的元素和化合物;2、有合成产物所需的特定元素、前体和促进剂;三、碳源作用:提供微生物菌体的生长繁殖所需的能源和合成菌体所必需的碳骨架;氮源作用:氮源主要用于构成菌体细胞物质(氨基酸,蛋白质、核酸等)和含氮代谢物。
生理酸性物质:经微生物生理作用(代谢)后能形成酸性物质的无机氮源,如硫酸铵;生理碱性物质:经微生物生理作用(代谢)后能产生碱性物质的无机氮源,如硝酸钠。
生长因子:凡是微生物生长不可缺少的微量的有机物质,如氨基酸、嘌呤、嘧啶、维生素等均称生长因子。
前体:某些化合物加入到发酵培养基中,能直接被微生物在生物合成过程中合成到产物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。
四、培养基成分选择的原则1、菌种的同化能力2、代谢的阻遏和诱导3、合适的C、N比100∶0.2~2.04、pH的要求第四章灭菌一、湿热灭菌的原理高温的蒸汽使微生物细胞中的蛋白质、酶和核酸分子等大分子发生变性,使微生物死亡。
热阻:不同种类的微生物对热的抵抗力不同,微生物对热的抵抗力称为热阻。
噁3二、湿热灭菌理论时间的计算(书121-125)升温、冷却两阶段也有一定的灭菌效果,考虑到灭菌的可靠性主要在保温阶段进行,故可以简单地利用式㏑(N/N0) =-kt来粗略估算灭菌所需时间。
有一发酵罐内装40m3培养基,在1210C温度下实罐灭菌,原污染程度为每1ml有2×105个耐热细菌芽孢,已知1210C时灭菌速度常数k=1.8min-1,求灭菌失败机率为0.001时所需时间。
解:N0=40×106×2×105=8×1012(个)Nt=0.001(个) k=1.8(min-1)㏑(Nt/N0)=-ktt=2.303/k[lg(N0/Nt)]=2.303/1.8[lg(8×1015)]三、培养基分批灭菌的优缺点(书122)优点:无需专门的灭菌设备,设备投资少,灭菌效果可靠,对灭菌用蒸汽要求低缺点:对培养基成分破坏大,升温时间长,难以实现自动控制.四、培养基连续灭菌的优缺点连续灭菌的优点:(适用于大型罐)1、可采用高温短时灭菌,营养成分破坏少,有利于提高发酵产率;2、发酵罐利用率高;3、蒸汽负荷均衡;4、采用板式换热器时,可节约大量能量;5、适宜采用自动控制,劳动强度小;6、可实现将耐热性物料和不耐热性物料在不同温度下分开灭菌,减少营养成分的破坏。
缺点:1、对小型罐无优势,不方便,对设备要求高;2、蒸汽波动时灭菌不彻底;3、当培养基中含有固体颗粒或有较多泡沫时,以分批灭菌好,防止灭菌不彻底。
五、热阻定义:是指微生物在某一特定条件(主要是温度和加热方式)下的致死时间。
可用比死亡速率常数k来表示。
六、空气除菌的方法1、辐射灭菌原理α射线、X射线、β射线、γ射线、紫外线、超声波等能破坏微生物的核酸或蛋白质,从而起到杀菌作用。
2.加热灭菌加热方法可用蒸汽、电和空气压缩机产生的热量3、静电除菌原理高压产生电晕,电晕使空气分子电离为带正电和负电荷的空气离子,遇到空气中固体微粒和液体微粒,使后者带上电荷分别向两极运动,利用静电引力来吸附带电粒子而达到除尘、除菌的目的4.介质过滤除菌法原理:利用有孔介质从气体中除去微生物。
空气中的微生物菌体是依靠气流通过过滤介质时,由于滤层纤维的层层阻碍,迫使空气在流动过程中多次改变气流速度大小和方向的绕行运动,从而导致微生物微粒与滤层纤维间的产生撞击、拦截、布朗运动、重力及静电引力等运动,从而把微生物微粒截留、捕捉在纤维表面上,实现过滤的目的。
第五章种子扩大培养一、什么是种子扩大培养指将保存在砂土管、冷冻干燥管中处休眠状态的菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定发酵产量高、数量充足、无污染的生产菌种的过程。
二、种子扩大培养的目的和要求目的:接种量的需要、菌种的驯化、缩短发酵时间、保证生产水平。
要求:应根据菌种的生理特性选择合适的培养条件获得代谢旺盛、数量足够的种子。
三、制备种子的准则1、细胞生长活力强,移种至发酵罐后能迅速生长,迟缓期短;2、生理性状稳定;3、菌体总量及浓度能满足大容量发酵罐的要求;4、无杂菌污染;5、保持稳定的生产能力。
四、种子罐的级数的概念种子罐级数:指制备种子需逐级扩大培养的次数,取决于菌种生长特性、孢子发芽及菌体繁殖速度;所采用发酵罐的容积五、接种量:移入种子的体积除以接种后培养液的体积的值。