第三章++二维随机变量及其分布
- 格式:ppt
- 大小:3.44 MB
- 文档页数:68
1第三章 二维随机变量及其分布在很多实际问题中,有一些随机试验需要用两个或两个以上的随机变量才能描述, 如, 炮弹着落点的位置必须用两个坐标X 和Y 来描述。
又如气候情况与气温、风力、降水量等多个随机变量有关,为了准确提供气候情况,我们就完全有必要将描述天气情况的多个随机变量作为一个整体来研究。
将n 个随机变量n X X X ,,,21 作为一个整体,记作),,,(21n X X X ,称为n 维随机变量。
在这一节我们主要研究二维随机变量的概率分布、边缘分布及二维随机变量的独立 性等. 这部分内容的讨论也可类推到)2(>n n 维随机变量的情形.§3. 1二维随机变量的联合分布3.1.1、二维随机变量的概率分布定义3.1:设)(Y X ,是二维随机变量,对于任意实数y x 、,称二元函数{}yY x X P y x F ≤≤=,,)(为二维随机变量)(Y X ,的分布函数或随机变量X 和Y 的联合分布函数,它表示随机事件}{x X ≤与}{y Y ≤同时发生的概率.2图3-1 图3-2将二维随机变量)(Y X ,看成是平面上随机点的坐标,那么分布函数)(y x F ,在点)(y x ,处的函数值就是随机点)(Y X ,落在直线x X =的左侧和直线y Y =的下方的无穷矩形区域内的概率(如图3-1)有了分布函数)(y x F ,,借助于图3-2,容易算出随机点)(Y X ,落在矩形区域 ){(y x D ,=}2121y Y y x X x ≤<≤<,内的概率为:)()(}{21222121y x F y x F y Y y x X x P ,,,-=≤<≤<)()(1112y x F y x F ,,+-.根据概率的定义和二维随机变量的定义,可得:二维分布函数)(y x F ,具有以下基本性质: (1)1)(0≤≤y x F ,;(2))(y x F ,关于变量x 和y 均单调非减,且右连续; (3)对于任意固定的y ,0)(lim )(==-∞-∞→y x F y F x ,,对于任意固定的x ,0)(lim )(==∞--∞→y x F x F y ,,1)(0)(=∞++∞=∞--∞,;,F F ; (4)对于任意2121y y x x <<,恒有:=≤<≤<}{2121y Y y x X x P ,0)()()()(11211222≥+--y x F y x F y x F y x F ,,,,3.3.1.2. 二维离散型随机变量及其分布定义3.2: 如果二维随机变量)(Y X ,可能取的值为有限对或可列无穷对实数,则称)(Y X ,为二维离散型随机变量.显然,)(Y X ,为二维离散型随机变量,当且仅当X 和Y 均为离散型随机变量.设二维离散型随机变量)(Y X ,所有可能的取值为)21()( ,,,,=j i y x j i ,且对应的概率为.,21}( ,,,,====j i p y Y x X P ij j i则称上式为二维随机变量)(Y X ,的概率分布或X 与Y 的联合概率分布.由概率的定义可知:(1) 210,,,=≥j i p ij .(2)∑∑+∞=+∞==111i j ij p .联合分布也常用表格表示,并称为X 与Y 联合概率分布表.4根据定义,离散型随机变量)(Y X ,的联合分布函数∑∑≤≤=≤≤=x x yy iji j py Y x X P y x F },{)(,即对一切满足不等式y y x x j i ≤≤,的ij p 求和.例3.1盒子里有2个黑球、2个红球、2个白球,在其中任取2个球,以X 表示取得的黑球的个数,以Y 表示取得的红球的个数,试写出X 和Y 的联合分布表,并求事件}{1≤+Y X 的概率.解:X 、Y 各自可能的取值均为0、1、2,由题设知,)(Y X ,取(1,2)、(2,1)、(2,2)均不可能. 取其他值的概率可由古典概率计算. 从6个球中任取2个一共有26C =15种取法. )(Y X ,取)00(,表示取得的两个球是白球,其取法只有一种,所以其概率为 }{1510,0===Y X P ,类似地)(Y X ,取其他几对数组的概率为如下: }151}20{}02{,154}11{154152201{}10{==========⨯======Y X P Y X P Y X P Y X P Y X P ,,,,,,)(Y X ,的联合概率分布表为5P {所取两个球中至少有一个白球}=P {所取两个球中黑球和红球的和不超过一个}=}1{≤+Y X P ,由于事件}1{≤+Y X 包含三个基本事件,分别对应着点(0,0)、(0,1)和(1,0),所以:.53154154151}01{}10{}00{}1{=++===+==+===≤+Y X P Y X P y X P Y X P ,,, 3.1.3 二维连续型随机变量及其分布定义3.3:设二维随机变量)(Y X ,的分布函数为)(y x F ,,如果存在非负可积的二元函数)(y x f ,,使得对任意实数y x 、,有}{⎰⎰∞-∞-=≤≤=xydudv v u f y Y x X P y x F )(,)(、,,则称)(Y X ,为二维连续型随机变量,称函数)(y x f ,为二维随机变量)(Y X ,的概率密度函数或随机变量X 和Y 的联合密度函数.由分布函数的定义知,联合密度函数)(y x f ,具有以下性质: (1)0)(≥y x f ,;(2)1)(=⎰⎰∞+∞-∞+∞-dxdy y x f ,;(1)(=∞++∞,即F )反过来,如果一个二元函数)(y x f 、同时满足性质(1)、(2),则它一定是某个二维随机变量的概率密度函数.6 (3)若)(y x f 、在点)(y x 、处连续,则有)()(2y x f yx y x F ,,=∂∂∂; (4)设D 是xoy 平面上任一区域,则点),(y x 落在D 内的概率为{σd y x f D Y X P D)(})(,,⎰⎰=∈.在几何上,{})(D Y X P ∈,的值等于以D 为底,曲面)(y x f Z 、=为顶的曲顶柱体的体积.与一维随机变量相似,有如下常用的二维均匀分布和二维正态分布二维均匀分布:设D 是平面上的有界区域,其面积为A ,若二维随机变量),(Y X 具有概率密度函数⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x A y x f则称),(Y X 在D 上服从均匀分布.二维正态分布:若二维随机变量)(Y X ,的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+-⋅---⋅---=2222221121212221)(2)()1(21exp 121),(σμσμσμρσμρρσσπy y x x y x f(+∞<<∞-+∞<<-∞y x ,)其中参数ρσσμμ,,,,2121均为常数,且10021<>>ρσσ,,,则称)(Y X ,服从参数为2121σσμμ,,,及ρ的二维正态分布,记作);,,,,ρσσμμ222121(~)(N Y X .7如图3-4所示,二维正态分布以),(21μμ为中心,在中心附近具有较高的密度,离中心越远,密度越小,这与实际中很多现象相吻合.图 3-3 二维正态分布密度函数图象例3.2 设二维随机变量)(Y X ,的概率密度函数为⎩⎨⎧≥≥=+-其它,,,,000)()32(y x Ce y x f y x求:(1)常数C ;(2))(Y X ,的分布函数)(y x F ,;(3)}{Y X P <.解:(1)由)(y x f ,的性质2可知:⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==)32()(1dxdy Ce dxdy y x f y x ,=⎰⎰∞+∞+--⋅=03261C dy e dx e Cy x所以:6=C (2)⎰⎰∞-∞-=xydxdy y x f y x F )()(,,8 ⎪⎩⎪⎨⎧≥≥--==⎰⎰--+-其它,,,000)1)(1(60032)32(y x e e dxdy e x y y x y x(3).526),(}{00)32(⎰⎰⎰⎰∞++-<===<y y x yx dy e dx dxdy y x f Y X P .例3.3 设二维随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤≤=其它,,,,010104)(y x xy y x fD 为xoy 平面内由x 轴、y 轴和不等式1<+y x 所确定的区域,求{}DY X P ∈)(,.解:如图3-4所示: {}⎰⎰=∈Ddxdy y x f D Y X P )(),(,⎰⎰-=xxydy dx 101461=例3.4 设),(Y X 在圆域}{4),(22≤+y x y x 上服从均匀分布,求(1)),(Y X 的概率密度;(2)}{10,10<<<<Y X P解:(1)圆的面积为π4=A ,故),(Y X 的概率密度为9⎪⎩⎪⎨⎧≤+=其他,04,41),(22y x y x f π(2)用G 表示不等式10,10<<<<y x 所确定的区域,由分布函数的性质4有}{10,10<<<<Y X P =⎰⎰=Gdxdy y x f 41),(.(注意概率密度),(y x f 在圆以外的区域都等于零)10 §3.2 边缘分布二维随机变量)(Y X ,作为一个整体,它具有分布函数)(y x F ,.而分量X 和Y 也都是随机变量,也有其各自的分布函数. 记X 和Y 的分布函数为)(x F X 和)(y F Y ,分别称它们为二维随机变量)(Y X ,关于X 和关于Y 的边缘分布函数. 边缘分布函数可以由)(Y X ,的联合分布函数)(y x F ,来确定:{}{})()(∞+=+∞<≤=≤=,,x F Y x X P x X P x F X即:)()(∞+=,x F x F X ;同理)()(y F x F Y ,+∞=. 下面分别讨论二维离散型随机变量和二维连续型随机变量的边缘分布3.2.1 二维离散型随机变量)(Y X ,的边缘分布设)(Y X ,是二维离散型随机变量,设其概率分布为{}.21 ,,,,,====j i p y Y x X P ij j i则X 的边缘分布律为:{}{}{}{}.21121,,,,,==+==++==+====∑∞=i p y Y x X P y Y x X P y Y x X P x X P j ijj i i i i X 的边缘分布函数为 ∑∑≤=+∞=x x jijX i px F x F ),()(.若将{}∑∞===1j iji px X P 记为),.21( =∙i p i ,则X 的边缘分布可写成表格形式且满足1=∑⋅ii p .同理,Y 的边缘分布律为:{}{}{}{}.21121,,,,,===+==++==+====⋅∞=∑j p p y Y x X P y Y x X P y Y x X P y Y P ji ij j i j j j写成表格形式有满足1=∑⋅jj p .Y 的边缘分布函数为∑∑≤=+∞=y y iijY j py F y F ),()(例3.5 设)(Y X ,的概率分布由下表给出,求X 和Y 的边缘分布.解:{}{}000====Y X P X P ,+{}10==Y X P ,+{}20==Y X P , 80.035.030.015.0=++=同理可求得:20.003.012.005.0}1{=++==X P20.0}0{==Y P , 42.0}1{==Y P , 38.0}2{==Y P将X 和Y 的边缘分布列入),(Y X 的联合分布表中通过该例,可以很明显地看出,边缘分布∙i p 和j p ∙分别是联合分布表中第i 行和第j列各元素之和.3.2.2 二维连续型随机变量)(Y X ,的边缘分布设)(Y X ,是二维连续型随机变量,它的概率密度函数为),(y x f ,则X 的边缘分布函数为: ⎰⎰∞-∞+∞-⎢⎣⎡⎥⎦⎤=∞+=x X dx dy y x f x F x F )()()(,, 其密度函数为:⎰∞+∞-=∞+'='=dy y x f x F x F x f XX )()()()(,,同理,Y 的边缘分布函数为⎰⎰∞-∞+∞-⎢⎣⎡⎥⎦⎤=+∞=y Y dy dx y x f y F y F )(),()(,其密度函数为⎰∞+∞-='=dx y x f y F y f Y Y )()()(,通常分别称)(x f X 和)(y f Y 为二维随机变量)(Y X ,关于X 和Y 的边缘密度函数. 例3.6 设随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤=其它,,,010)(y x y x k y x f试求参数k 的值及X 和Y 的边缘密度.解:根据联合密度函数的性质,有⎰⎰⎰⎰∞+∞-∞+∞-===101181)(x k ydydx x k dxdy y x f , 所以: 8=kX 的边缘密度函数⎰+∞∞-=dy y x f x f X )()(,当x <0或1>x 时,),(y x f 都等于零,所以此时0)(=x f X当10≤≤x 时,且1≤≤y x 时,xy y x f 8),(=,所以⎰-==12)1(48)(xX x x xydy x f即: ⎩⎨⎧≤≤-=其它,,010)1(4)(2x x x x f X同理可得: ⎩⎨⎧≤≤=其它,,0104)(3y y y f Y例3.7 设随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤≤=其它,,,010,104)(y x y x y x f试求X 和Y 的边缘密度.解:关于X 的边缘密度⎰+∞∞-=dy y x f x f X )()(,当x <0或1>x 时,),(y x f 都等于零,所以此时0)(=x f X当10≤≤x 时,且10≤≤y 时,xy y x f 4),(=,所以⎰==124)(x xydy x f X即: ⎩⎨⎧≤≤=其它,,0102)(x x x f X同理可得:⎩⎨⎧≤≤=其它,,0102)(y y y f Y例3.8 求二维正态随机变量)(~)(222121ρσσμμ;,,,,N Y X 的边缘密度.解:记X 和Y 的边缘密度函数分别为)(x f X 和)(y f Y由于222222112121)(2)(σμσμσμρσμ-+-⋅---y y x x=211221122))(1()(σμρσμρσμ--+---x x y所以:dy eedy y x f x f x y x X 211222121)()1(212)(221121)()(σμρσμρσμρσπσ-----∞+∞-∞+∞---∞+∞-⎰⎰⎰⋅-==,令 )(1111222σμρσμρ----=x y t则 )(x f X dt eet x ⎰∞+∞----=22)(1212121σμσπ21212)(121σμσπ--=x e (+∞<<-∞x )可见 )(~211σμ,N X ;同理可得:2222)(221)(σμσπ--=y Y ey f (+∞<<-∞y )即)(~222σμ,N Y .比较联合密度)(y x f ,和边缘密度函数)()(y f x f Y X 、,我们注意到当且仅当0=ρ时,对一切)y x ,(有)()()(y f x f y x f Y X ⋅=,. 以上对二维正态分布的讨论说明:(1)二维正态分布的边缘分布是一维正态分布,由二维联合分布可以唯一确定其每个分量的边缘分布;(2)已知X 与Y 的边缘分布,并不能唯一确定其联合分布,还必须知道参数ρ的值.譬如两个二维正态分布);,,,2/11100(N 和);,,,3/11100(N ,它们的联合分布不同,但其边缘分布都是标准正态分布. 引起这一现象的原因是二维联合分布不仅含有每个分量的概率分布,而且还含有两个变量X 与Y 之间相互关系的信息,而后者正是人们研究多维随机变量的原因. 联合分布中的参数ρ的值,反映了两个变量X 与Y 之间相关关系的密切程度.从以上几个例题可知,联合密度决定边缘密度,但反过来知道边缘密度并不能唯一确定联合密度3.2.3.二维随机变量的独立性在前面我们已经知道,随机事件的独立性在概率计算中起着很大的作用.在多维随机变量中,它们的分量的独立性在概率论和数理统计的研究中占有十分重要的地位。
第三章 二维随机变量及其分布■2009考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布两个及两个以上随机变量简单函数的分布■2009考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维离散型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。
3.掌握二维均匀分布,了解二维正态分布N (221212,;,;)μμσσρ的概率密度,理解其中参数的概率意义。
4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。
本章的核心内容是离散3分布(联合、边缘和条件);连续3密度(联合、边缘和条件);均匀与正态。
介绍了作者原创的3个秘技(直角分割法、平移法和旋转法) 求分布问题。
本章是教育部关于概率论大题命题的重点。
一、二维随机变量(向量)的分布函数1.1 二维随机变量(向量)的分布函数的一般定义(), X Y 是二维随机变量,对任意实数x 和y ,称为(), X Y 的分布函数,又称联合分布函数。
●(), F x y 具有一维随机变量分布类似的性质。
① ()0, 1F x y ≤≤;② (), F x y 对x 和y 都是单调非减的,如()()1212, , x x F x y F x y >⇒≥; ③ (), F x y 对x 和y 都是右连续;④ ()()()()(), lim , 1, , , , 0,x x F F x y F F x F y →+∞→+∞+∞+∞==-∞-∞=-∞=-∞=●(), F x y 几何意义:表示(), F x y 在(), x y 的函数值就是随机点(), X Y 在X x =左侧和Y y =下方的无穷矩形内的概率。
第三章 二维随机变量及其分布 一、 二维随机变量及其联合分布设Ω为某实验的样本空间,X 和Y 是定义在Ω上的两个随机变量,则称有序随机变量对(X,Y )为比如,研究某地区人口的健康状况可能取身高和体重两个参数作为随机变量;打靶弹着点选取横纵坐标。
§3.1.1联合分布函数定义1:设(X ,Y )为二维随机变量,对任意实数χ,y为(X ,Y )的分布函数或称为X 与Y 几何上,F (χ,y )表示(X ,Y )落在平面直角坐标系中以(χ,y )为顶点左下方的无穷矩形内的概率(见图) y 二维随机变量(X ,Y )的分布函数F (x,y 1°F(x,y)对每个自变量是单调不减的,即若x1<x2,则有F(x1,y)≤F(x2,y); 若y1<y2,则有F(x,y1)≤F(x,y2).2°0≤F(x,y)≤1且 F(x,-∞)=F(-∞,y)=F(-∞,-∞)=0,F(+∞,+∞)=13° F(x,y)对每个自变量是右连续的,即 F (x+0,y )= F (x,y ), F (x,y+0)= F (x,y ) 4° 对任意x1≤x2, y1≤y2有 F(x2,y2)-F(x1,y2)- F(x2,y1)+F(x1,y1)≥0事实上,由图可见(见右图)F(x2,y2)-F(x1,y2)- F(x2,y1)+F(x1,y1)例1设(X ,Y )的分布函数为解:由性质4°可得X,Y)的所有可能取值为有限对或可列对,则称(X,Y设(X,Y)的所有可能取值为(xi,yj),i ,j=1,2,……P{X=xi,Y=yj }=pij,i,j=1,2,……,为(X,Y)的分布律,或称为X与Y 用表格表示:性质 1. pij≥0,一切i,j,2. 显然,(X,Y)落在区域D内的概率应为由此便得(X,Y)的分布函数与分布律之间关系为例2两封信随机地向编号为Ⅰ,Ⅱ,Ⅲ,Ⅳ的四个邮筒内投,令 X表示投入Ⅰ号邮筒内的信件数; Y 表示投入Ⅱ号邮筒内的信件数。
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
第三章 二维随机变量及其分布第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=⎭⎬⎫⎩⎨⎧→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧→分布分布分布三大统计分布函数分布正态分布均匀分布常见二维分布独立性条件分布边缘分布连续型分布密度离散型分布律联合分布F t X X X Z Y X Z Y X n 221),,min(max,),(χξΛ2、重要公式和结论例3.1 二维随机向量(X ,Y )共有六个取正概率的点,它们是:(1,-1),(2,-1),(2,0),2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布},1||,1|:|),{(≤-≤+=y x y x y x D求X 的边缘密度f X (x)例3.3:设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立。
例3.4:如图3.1,f(x,y)=8xy, f X (x)=4x 3, f Y (y)=4y-4y 3,不独立。
例3.5:f(x,y)=⎩⎨⎧≤≤≤≤其他,010,20,2y x Axy例3.6:设X 和Y 是两个相互独立的随机变量,且X ~U (0,1),Y ~e (1),求Z=X+Y 的分布密度函数f z (z)。
例3.7:设随机变量X 与Y 独立,其中X 的概率分布为,6.04.021~⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡X 而Y 的概率密度为e(1),求随机变量U=1+Y X的概率密度g(u)。
第三章、二维随机变量及其分布-----MATLAB 实验(wenjie 仅供参考)随机变量的联合分布、边缘分布P78:例2、设二维随机变量(X ,Y )具有概率密度(2),0,0(,)0,x y ce x y f x y -+⎧>>=⎨⎩其它 (1)求常数c (2)求分布函数F (x ,y )(3)求概率{}P Y X ≤[Matlab 实现] (1)00(,)(,)1F dx f x y dy +∞+∞+∞+∞==⎰⎰syms x y cf=c*exp(-(2*x+y));C=int(int(f,x,0,inf),y,0,inf)%分布函数最大值只能为1,所以C=1;(2)syms u v cf=c*exp(-(2*u+v));F1=int(int(f,v,0,'y'),u,0,'x')%分布函数其中X>0,Y>0的情形 F=subs(F1,c,2)或F1=int(int(f,y,0,'ty'),x,0,'tx')F=subs(F1,c,2)pretty(F)(3){}P Y X ≤00(,)xdx f x y dy +∞=⎰⎰p1=int(int(f,y,0,x),x,0,inf)format rat%有理数格式P=subs(P1,c,2)(4)求X ,Y 的边缘密度;[Matlab 实现](4)0()(,)xX f x f x y dy =⎰ syms x y cf=c*exp(-(2*x+y)); fx=int(f,y,0,x)()(,)Y y f y f x y dx ∞=⎰ fy=int(f,x,y,inf)随机变量函数的分布1、一维随机变量函数的分布P73:第28题、设随机变量X 在(0,1)服从均匀分布,(1)求XY e =的概率密度 (2)求2ln Y X =-概率密度[解析法]:[Matlab 实现]clearx=solve('y=exp(x)') ;%计算随机变量函数的反函数 dx=diff(x,'y');%对反函数求导 f=1*dy%计算随机变量X 的函数Y 的密度函数clearx=solve('y=-2*log(x)');%计算随机变量函数的反函数 dx=diff(x,'y');%对反函数求导 f=1*(-dy)%随机变量函数为单调递减,(-dy )P73:第29题、设随机变量(0,1)X N ,(1)求XY e =的概率密度 (2)求Y X =的概率密度 [Matlab 实现]syms x y pif=exp(-x^2/2)/sqrt(2*pi)x=solve('y=exp(x)')%计算随机变量函数的反函数 dx=diff(x,y)%反函数求导 f=subs(f,'x',x)%计算f (h (y )): x 用h (y )代替 f1=f*dx%随机变量函数为单调递增加:(+dx )pretty(f1)syms x y piFy=int('exp(-x^2/2)/sqrt(2*pi)',x,-y,y);fy=diff(Fy,y) %分布函数求导或者:clc,clearsyms x y pif=exp(-x^2/2)/sqrt(2*pi)x=solve('y=abs(x)')f1=subs(f,'x',x(1)) % y = x 情形dx1=diff(x(1),y)fy1=f1*dx1pretty(fy1)f2=subs(f,'x',x(2)) % y = -x 情形dx2=diff(x(2),y)fy2=f2*(-dx2) %随机变量函数为单调递减,(y=-x )pretty(fy2)2、二维随机变量函数的分布P107:第19题、设随机变量(X,Y )的概率密度为()1(),0,0(,)20,x y x y e x y f x y others -+⎧+>>⎪=⎨⎪⎩(2)求Z X Y =+的概率密度[Matlab 实现] (2):00(){}{}(,)(,)Z G x y z z z x F z P Z z P X Y z f x y dxdy dx f x y dy+≤-=≤=+≤==⎰⎰⎰⎰ clearsyms x y zfxy=1/2*(x+y)*exp(-x-y)Fz=int(int(fxy,y,0,z-x),x,0,z)%计算分布函数 fz=diff(Fz,z)%分布函数求导,密度函数或者: 0()(,)zZ f z f x z x dx =-⎰ clear,clcsyms x y zfxy=1/2*(x+y)*exp(-x-y)f=subs(fxy,y,z-x)fz=int(f,x,0,z)P107:第20题、设X,Y 是相互独立的随机变量,服从正态分布2(0,)N σ,试验证随机变量Z =2222,0()0,zZ z e z f z others σσ-⎧⎪≥=⎨⎪⎩称Z 服从参数为(0)σσ>的瑞利分布(Rayleigh )[Matlab 实现](2)syms w r z sigma pifxy=exp(-r^2/2/sigma^2)/2/pi/sigma^2 Fz=int(1,w,0,2*pi)*int(fxy*r,r,0,z)fz=diff(Fz,z)。
第三章二维随机变量及分布的重点难点一、重点、难点概要复述二维随机变量的概率分布及其性质,二维随机变量的分布函数的概念,二维随机变量的均匀分布和正态分布,条件分布,随机变量的独立性,二维随机变量函数的概率分布的基本知识是重点。
其中二维连续型随机变量的相关内容是教学中的难点。
二、常见问题及解法(一)二维离散型随机变量的分布律及边缘分布律的问题X的分布律及边缘分布律1.求二维离散型随机变量),(YX的有可能取值点;解法:(1)找),(YX在各点上取值的概率;(2)求),(Y(3)分别求X和Y在各自有可能取值点上的概率;X的分布律及边缘分布律;(4)写出)(Y,(5)用分布律性质检验计算结果。
2.确定分布律中的待定系数解法:(1)利用分布律的性质确定;(2)利用联合分布律与边缘分布律的关系确定。
(二)求二维均匀分布的概率密度函数解法:(1)计算区域D的面积S;(2)利用定义写出概率密度函数。
(三)条件分布的问题1.求条件分布律解法:(1)找出联合分布律及边缘分布律;(2)利用条件分布律定义,找出条件分布律中所有可能取值点;(3)利用条件分布律定义,计算条件分布律中各点上的概率值;(4)写出条件概率分布律;(5)用分布律性质检验计算结果。
2.求条件概率密度函数 解法:(1)找出联合概率密度函数及边缘概率密度函数;(2)利用条件密度概率函数的计算公式,计算条件概率密度函数; (3)写出条件概率密度函数;(4)用概率密度函数性质检验计算结果。
(四)计算概率值的问题1.利用二维随机变量),(Y X 的分布律计算概率 解法:设D 为平面点集,),(Y X 的分布律为{};,3,2,1;,3,2,1,, =====j i p y Y x X P ij j i则{}{}∑∈===∈Dy x j i ji y Y x X P D Y X P ),(,),(。
2.利用二维随机变量),(Y X 的概率密度函数计算概率 解法:设D 为平面区域,),(y x f 为),(Y X 的概率密度函数,则{}⎰⎰=∈Ddxdy y x f D Y X P ),(),( 3.利用二维随机变量),(Y X 的分布函数计算概率解法:设d c b a ,,,均为实数且d c b a <<,,),(y x F 为),(Y X 的分布函数,则{}),(),(),(),(,c a F c b F d a F d b F d Y c b X a P +--=≤<≤<4.利用条件分布计算条件概率解法:(1)利用条件分布定义计算;(2)根据题意,仿照1.,2.,3.的思路计算。