(江苏专用)2020版高考数学大一轮复习 第三章 导数及其应用 第2讲 利用导数研究函数的单调性课件
- 格式:ppt
- 大小:13.17 MB
- 文档页数:29
导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
第2课时 导数与方程题型一 求函数零点个数例1已知函数f (x )=2a 2ln x -x 2(a >0). (1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解 (1)∵f (x )=2a 2ln x -x 2,∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x,∵x >0,a >0,当0<x <a 时,f ′(x )>0, 当x >a 时,f ′(x )<0.∴f (x )的单调增区间是(0,a ),单调减区间是(a ,+∞). (2)由(1)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下:①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点;②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e<e 2,∴f (x )在(1,e 2)内有一个零点;③当a 2(2ln a -1)>0,即a >e 时,由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2ln(e 2)-e 4=4a 2-e 4=(2a -e 2)(2a +e 2),当2a -e 2<0,即e<a <e 22时,1<e<a <e 22<e 2,f (e 2)<0,由函数f (x )的单调性可知,函数f (x )在(1,a )内有唯一零点x 1,在(a ,e 2)内有唯一零点x 2, ∴f (x )在(1,e 2)内有两个零点.当2a -e 2≥0,即a ≥e 22>e 时,f (e 2)≥0,而且f (e)=2a 2·12-e =a 2-e>0,f (1)=-1<0,由函数的单调性可知,无论a ≥e 2,还是a <e 2,f (x )在(1,e)内有唯一的零点,在(e ,e 2)内没有零点,从而f (x )在(1,e 2)内只有一个零点.综上所述,当0<a <e 时,函数f (x )在区间(1,e 2)上无零点;当a =e 或a ≥e22时,函数f (x )在区间(1,e 2)上有一个零点;当e<a <e 22时,函数f (x )在区间(1,e 2)上有两个零点.思维升华 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.跟踪训练1设函数f (x )=ln x +m x,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex,则f ′(x )=x -ex 2(x >0),由f ′(x )=0,得x =e. ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=lne +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 根据函数零点情况求参数范围例2(2018·南京联合体调研)已知f (x )=12x 2-a ln x ,a ∈R .(1)求函数f (x )的单调增区间;(2)若函数f (x )有两个零点,求实数a 的取值范围,并说明理由. (参考求导公式:[f (ax +b )]′=af ′(ax +b ))解 (1)由题知f ′(x )=x -a x =x 2-ax,x >0,当a ≤0时,f ′(x )>0,函数f (x )的增区间为(0,+∞); 当a >0时,f ′(x )=(x +a )(x -a )x,令f ′(x )>0,因为x >0,所以x +a >0,所以x >a , 所以函数f (x )的单调增区间为(a ,+∞). 综上,当a ≤0时,f (x )的单调增区间为(0,+∞); 当a >0时,f (x )的单调增区间为(a ,+∞).(2)由(1)知,若a ≤0,f (x )在(0,+∞)上为增函数,函数f (x )至多有一个零点,不合题意. 若a >0,当x ∈(0,a )时,f ′(x )<0,f (x )在(0,a )上为减函数; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )在(a ,+∞)上为增函数, 所以f (x )min =f (a )=12a -12a ln a =12a (1-ln a ).要使f (x )有两个零点,则f (x )min =12a (1-ln a )<0,所以a >e. 下面证明:当a >e 时,函数f (x )有两个零点.因为a >e ,所以1∈(0,a ),而f (1)=12>0,所以f (x )在(0,a )上存在唯一零点.方法一 又f (e a )=12e a 2-a ⎝ ⎛⎭⎪⎫12+ln a =12a (e a -1-2ln a ),令h (a )=e a -1-2ln a ,a >e ,h ′(a )=e -2a>0,所以h (a )在(e ,+∞)上单调递增, 所以h (a )>h (e)=e 2-3>0,所以f (x )在(a ,+∞)上也存在唯一零点. 综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞). 方法二 先证x ∈(1,+∞)有ln x <x -1, 所以f (x )=12x 2-a ln x >12x 2-ax +a .因为a >e ,所以a +a 2-2a >a >a .因为12(a +a 2-2a )2-a (a +a 2-2a )+a =0.所以f (a +a 2-2a )>0,所以f (x )在(a ,+∞)上也存在唯一零点; 综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞).思维升华函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x2. 所以x 在⎣⎢⎡⎦⎥⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:又h ⎝ ⎛⎭⎪⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2.且h (e)-h ⎝ ⎛⎭⎪⎫1e =4-2e +2e <0.所以h (x )min =h (1)=4,h (x )max =h ⎝ ⎛⎭⎪⎫1e =1e+3e -2,所以实数a 的取值范围为4<a ≤e+2+3e ,即a 的取值范围为⎝⎛⎦⎥⎤4,e +2+3e .1.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增.f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e时,f (x )min <0,f (x )有2个零点.2.已知f (x )=1x +e x e -3,F (x )=ln x +exe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数. 解 (1)f ′(x )=-1x 2+e xe =x 2e x-ee x2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +exe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞,x →+∞时,F (x )→+∞,画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.3.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.解 由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln x x 2,由φ′(x )=2(1-2ln x )x3易知,φ(x )在(2,e)上为增函数, 在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e2=24e 2ln e ln 22e -<ln 81-ln 272e 2<0, 所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎢⎡⎭⎪⎫ln 22,1e .4.已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. (1)解 f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). ①设a =0,则f (x )=(x -2)e x,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)内单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0. 由于222222(2)e(1)x f x x a x --=-+-,而()22222(2)e (1)0x f x x a x =-+-=,所以222222(2)e (2)e .x x f x x x --=---设g (x )=-x e2-x-(x -2)e x ,则g ′(x )=(x -1)(e 2-x-e x).所以当x >1时,g ′(x )<0. 而g (1)=0,故当x >1时,g (x )<0. 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.5.(2018·南通模拟)已知函数f (x )=e x-|x -a |,其中a ∈R . (1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x-|x -a |=⎩⎪⎨⎪⎧e x-x +a ,x ≥a ,e x+x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧e x-1,x ≥a ,e x+1,x <a .因为f (x )在R 上单调递增, 所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x+1>1>0恒成立; 当x ≥a 时,要使f ′(x )=e x-1≥0恒成立, 所以f ′(a )≥0,即a ≥0.所以实数a 的取值范围为[0,+∞).(2)由(1)知,当a ≥0时,f (x )在R 上单调递增,不符合题意, 所以有a <0.此时,当x <a 时,f ′(x )=e x+1>1>0,f (x )单调递增; 当x ≥a 时,f ′(x )=e x-1,令f ′(x )=0,得x =0, 所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减,f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增.所以f (x )极大值=f (a )=e a,f (x )极小值=f (0)=1+a ,即a <0符合题意. 由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立, 可得e a-a -1≥ka 对任意a <0恒成立.设g (a )=e a-(k +1)a -1,求导得g ′(a )=e a-(k +1).①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e+k <0,与g (a )≥0矛盾.②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减, 又因为当a →0时,g (a )→0,所以此时g (a )>0恒成立,符合题意. ③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0), 即g (a )在(ln(k +1),0)上单调递增,又因为当a →0时,g (a )→0,所以g (ln(k +1))<0,不合题意. 综上,实数k 的取值范围为[0,+∞).。
文档从网络中收集,已重新整理排版.word 版本可编辑:•欢迎下载支持.专题3. 3导数的综合应用含解析_________________ 姓名 _____________ 学号 ___________ 得分(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置上(共10题,每小题6分,共计60分).1. [2017课标3.理11改编】已知函数f(x) = x 1 2-2x + a(e^l+e^1)有唯一零点,则/?(x) = min{/(.r),c?(x)}(x>0)恰有三个零点,则实数加的取值范围是 ▲ 【答案】(弓t 【解析】试题分析:f ,(x) = 3x 2+m,因为 g(l) = 0,所以要使 /I (A )= min{/(x),S (A-)}(A>0)恰有三个3. 【泰州中学2016-2017年度第一学期第一次质量检测】若函数y = f(x)的左义域为R, 对于V AC /?, 且/(A + 1)为偶函数,/⑵=1,则不等式f(x)<e x的解集为 ___________ • 【答案】(。
,+8) 【解析】试题分析:令g(x) = ^l 9则g(x)= f Cv);/Cv)<0,因为/(X + 1)为偶函数,所以 e e/(X + I) = /(-X+1) n/(0) = f(2) = 1 =>g(0) = 1,因此fM < e x => g(x) < 1 = g(0) =>x>04. (2017届髙三七校联考期中考试】/(x) = x-l-«lnx^(x) = —/ <0,且对任意e【答案】-2f (A ) = x 3 +"tv + *,g(x) = -lnx ・min {a.b}表示a.b 中的最小值, 若函数班级零点,须满足f(l)>0,/(^)<0./n <0文档从网络中收集,已重新整理排版.word 版本可编辑:•欢迎下载支持.速度应定为 ■-2 -word 版本可编辑•欢迎下载支持.e [3,41(xI/(X ])-/g)l<!―! ------------------ !—I 的恒成立,则实数a 的取值范围为・ g3) g (£)▲_.【答案】[3- =孑,0) 【解析】则〃(劝'=1一上一》(*「1)50在xw(3,4)上恒成立,・・・anx — *J+以*丘[玄4]恒成立x * xX —1 令 H(x) = x 一 e x ~}+ -——、x w [3,4],2 值为“(3) = 3-一e 27 [3-卅 0) 综上.实数a 的取值范围为 35. f(0是宦义在(0, +8)上的非负可导函数,且满足G)+f(£W0,对任意正数⑦b 、 若a< b,则af(t>)与bf{ a)的大小关系为 _______ . 【答案】af(b)Wbf(a)【解析】°・° xf (x) W — f(x) , f C Y ) M 0,\ X J X X则函数 J —在(0, +8)上是单调递减的,由于o<a<^则丄亠.即 x ab6. 设D 是函数尸f(x)定义域内的一个区间,若存在.YO GP,使fCv°)=—及,则称弘是f(x) 的一个“次不动点”,也称在区间Q 上存在“次不动点”,若函数f^=ay-3x-a+- 在区间[1,4]上存在“次不动点”,则实数a 的取值范围是 _______ . 【答案】[一 8, J1 397•电动自行车的耗电量y 与速度*之间有关系y=yV ― Y —40.Y (-Y >0),为使耗电量最小,则 【答案】40【解析】由” =¥_39%—40=0,(1 1V 3 i — — — + ——\x 2) 4 3>-e 2 > 1,/. u \x)<09 4 ・・吩)为减函数,・・"心)在XV [3,4]的最大得x= —1 或.¥=40,由于0<A<40时,/ <0;当x>40 时,y' >0.所以当f=40时,p有最小值.8. 函数f(x)=ax'+x恰有三个单调区间,则a的取值范围是____________ .【答案】(一8, 0)【解析】f(x)=af+x恰有三个单调区间,即函数f(x)恰有两个极值点,即f' C Y)= 0有两个不等实根.*.* f{x) = ax + x,二f' (x) = 3 +1.要使f (x)= 0有两个不等实根,则*0.9. 函数y=2(x>0)的图象在点成处的切线与X轴的交点的横坐标为a…,其中圧肛若^1 = 16.则ai + as+娄的值是_________ .【答案】2110・设函数g(x)=字,对任意出、走G(0, +8),不等式T-w—兰T旦x e k k+1成立,则正数R的取值范围是 _______ .【答案】[1, +8)解析】因为对任意X、A-G (0, +8),不等式恒成立,所以召2[宁亠匚・k k+1&+1 Lf 及_r因为g(x) =¥,所以 $ 3 =(卅9 =e: x4-.ve: x•(一1) =e3_x(l-j0 .当0<Xl 时,孑(x)>0:当01 时,g' C Y)<0,所以g(x)在(0,1]上单调递增,在[1, +8)上单调递减.所以当攵=1时,&(£取到最大值,即g(x)适=&(l)=e:e : v:+1因为fCv)= —•当丄€(0, +8)时,XX-Y)=e\v+-^2e> 当且仅当X X即尸丄时取等号,故f3也=2e・ek 1所以—^9-又因为&为正数,所以心L二.解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指■ 定区域内。
第2课时 导数与函数的极值、最值题型一 用导数求解函数极值问题命题点1 根据函数图象判断极值例1 设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f(x)有极大值f(2)和极小值f(1);②函数f(x)有极大值f(-2)和极小值f(1);③函数f(x)有极大值f(2)和极小值f(-2);④函数f(x)有极大值f(-2)和极小值f(2).答案 ④解析 由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.命题点2 求已知函数的极值例2 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R .讨论函数f (x )极值点的个数,并说明理由.解 f ′(x )=+a (2x -1)1x +1= (x >-1).2ax 2+ax -a +1x +1令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,此时f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点.②当a >0时,Δ=a 2-8a (1-a )=a (9a -8).a .当0<a ≤时,Δ≤0,g (x )≥0,f ′(x )≥0,89函数f (x )在(-1,+∞)上单调递增,无极值点.b .当a >时,Δ>0,89设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=-,所以x 1<-,x 2>-.121414由g (-1)=1>0,可得-1<x 1<-.14所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,函数f (x )单调递增.因此函数f (x )有两个极值点.③当a <0时,Δ>0,由g (-1)=1>0,可得x 1<-1<x 2.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点;当0≤a ≤时,函数f (x )无极值点;89当a >时,函数f (x )有两个极值点.89命题点3 根据极值(点)求参数例3 已知函数f (x )=-k ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值e x x 2(2x +ln x )范围为________.答案 (-∞,e]解析 因为函数f (x )=-k ,e x x 2(2x +ln x )所以函数f (x )的定义域是(0,+∞),所以f ′(x )=-k =.e x x 2-2x e x x 4(-2x 2+1x )(e x x -k )(x -2)x 2因为x =2是函数f (x )的唯一一个极值点,所以x =2是y =f ′(x )的唯一变号零点.所以y =-k 在(0,+∞)上无变号零点,e x x设g (x )=-k ,则g ′(x )=.e x x (x -1)e xx 2当x ∈(0,1)时,g ′(x )<0,当x ∈(1,+∞)时,g ′(x )>0,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以g (x )min =g (1)=e -k ,若g (x )在(0,+∞)上无变号零点,则需要g (x )≥0在(0,+∞)上恒成立,所以g (x )min ≥0,即e -k ≥0,即k ≤e ,所以若x =2是函数f (x )的唯一一个极值点,则应需k ≤e.思维升华 函数极值的两类热点问题(1)求函数f (x )极值的一般解题步骤①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号.(2)根据函数极值情况求参数的两个要领①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.②验证:求解后验证根的合理性.跟踪训练1 已知函数f (x )=ax -1-ln x (a ∈R ).(1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解 (1)f (x )的定义域为(0,+∞).f ′(x )=a -=,1x ax -1x当a ≤0时,f ′(x )<0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,∴f (x )在(0,+∞)上没有极值点;当a >0时,由f ′(x )<0得0<x <,1a由f ′(x )>0,得x >,1a∴f (x )在上单调递减,在上单调递增,即f (x )在x =处有极小值,无极大值.(0,1a )(1a ,+∞)1a ∴当a ≤0时,f (x )在(0,+∞)上没有极值点,当a >0时,f (x )在(0,+∞)上有一个极值点.(2)∵函数f (x )在x =1处取得极值,∴a =1,∴f (x )≥bx -2,即1+-≥b ,1x ln x x令g (x )=1+-,则g ′(x )=,令g ′(x )=0,得x =e 2,则g (x )在(0,e 2)上单调递减,1x ln x x ln x -2x 2在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-,即b ≤1-,1e 21e 2即实数b 的取值范围为.(-∞,1-1e 2]题型二 用导数求函数的最值例4 已知函数f (x )=+k ln x ,k <,求函数f (x )在上的最大值和最小值.1-x x 1e [1e ,e ]解 f ′(x )=+=.-x -(1-x )x 2k x kx -1x 2①若k =0,则f ′(x )=-,在上恒有f ′(x )<0,1x 2[1e ,e ]所以f (x )在上单调递减.[1e ,e ]②若k ≠0,则f ′(x )==.kx -1x 2k (x -1k )x 2(ⅰ)若k <0,则在上恒有<0.[1e ,e ]k (x -1k)x 2所以f (x )在上单调递减,[1e ,e ](ⅱ)若k >0,由k <,1e得>e ,则x -<0在上恒成立,1k 1k [1e ,e ]所以<0,k (x -1k )x 2所以f (x )在上单调递减.[1e ,e ]综上,当k <时,f (x )在上单调递减,1e [1e ,e ]所以f (x )min =f (e)=+k -1,1ef (x )max =f =e -k -1.(1e)引申探究 若例题条件中的k <改为“k ≥”,则函数f (x )在上的最小值是多少?1e 1e [1e ,e )解 f ′(x )==,kx -1x 2k (x -1k )x 2∵k ≥,∴0<≤e ,1e 1k若0<≤,即k ≥e 时,f ′(x )≥0恒成立,f (x )在上为增函数,f (x )min =f =e -k -1.1k 1e [1e ,e )(1e)若>,即≤k <e 时,f (x )在上为减函数,1k 1e 1e [1e ,1k ]在上为增函数,f (x )min =f =k -1-k ln k .[1k ,e )(1k )综上,当≤k <e 时,f (x )min =k -1-k ln k ,1e当k ≥e 时,f (x )min =e -k -1.思维升华 (1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值;(2)若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成;(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.跟踪训练2 已知常数a ≠0,f (x )=a ln x +2x .当f (x )的最小值不小于-a 时,求实数a 的取值范围.解 因为f ′(x )=,a +2x x所以当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在(0,+∞)上单调递增,没有最小值;当a <0时,由f ′(x )>0得,x >-,a 2所以f (x )在上单调递增;(-a 2,+∞)由f ′(x )<0得,0<x <-,a 2所以f (x )在上单调递减.(0,-a 2)所以当a <0时,f (x )的最小值为f =a ln +2×.(-a 2)(-a 2)(-a 2)根据题意得f =a ln +2×≥-a ,即a [ln(-a )-ln 2]≥0.(-a 2)(-a 2)(-a 2)因为a <0,所以ln(-a )-ln 2≤0,解得-2≤a <0,所以实数a 的取值范围是[-2,0).题型三 函数极值、最值的综合问题例5 已知函数f (x )=(a >0)的导函数y =f ′(x )的两个零点为-3和0.ax 2+bx +c e x(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.解 (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=.-ax 2+(2a -b )x +b -c e x令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有Error!解得a =1,b =5,c =5,所以f (x )=.x 2+5x +5e x因为f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞),所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者,而f (-5)==5e 5>5=f (0),5e -5所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.思维升华 (1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.跟踪训练3 (2018·南通模拟)已知函数f (x )=(x -k -1)e x (k ∈R ).(1)当x >0时,求f (x )的单调区间和极值;(2)若对于任意x ∈[1,2],都有f (x )<4x 成立,求k 的取值范围.解 (1)因为f ′(x )=(x -k )e x ,x >0.①当k ≤0时,f ′(x )>0恒成立,所以f (x )的单调增区间是(0,+∞),无单调减区间,无极值.②当k >0时,由f ′(x )>0,得x >k ;由f ′(x )<0,得0<x <k ,所以f (x )的单调减区间是(0,k ),单调增区间是(k ,+∞),f (x )的极小值为f (k )=-e k ,无极大值.(2)由f (x )<4x ,可得(x -k -1)e x -4x <0,因为e x >0,所以x -k -1<,4x e x 即k >x -1-对任意x ∈[1,2]恒成立.4x e x 记g (x )=x -1-,x ∈[1,2],4x e x 则g ′(x )=1-=,4(1-x )e x e x +4(x -1)e x因为x ∈[1,2],所以g ′(x )>0,即g (x )在[1,2]上单调递增,所以g (x )max =g (2)=1-=.8e 2e 2-8e 2所以实数k 的取值范围为.(e 2-8e 2,+∞)利用导数求函数的最值例 (16分)已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.规范解答 解 (1)f ′(x )=-a (x >0),1x①当a ≤0时,f ′(x )=-a >0,即函数f (x )的单调增区间为(0,+∞).[2分]1x②当a >0时,令f ′(x )=-a =0,可得x =,1x 1a当0<x <时,f ′(x )=>0;1a 1-ax x当x >时,f ′(x )=<0,1a 1-ax x故函数f (x )的单调增区间为,(0,1a)单调减区间为.[6分](1a,+∞)综上可知,当a ≤0时,函数f (x )的单调增区间为(0,+∞);当a >0时,函数f (x )的单调增区间为,单调减区间为.[7分](0,1a )(1a,+∞)(2)①当≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .1a[8分]②当≥2,即0<a ≤时,函数f (x )在[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[9分]1a 12③当1<<2,即<a <1时,函数f (x )在上是增函数,在上是减函数.1a 12[1,1a ][1a,2]又f (2)-f (1)=ln 2-a ,[10分]所以当<a <ln 2时,最小值是f (1)=-a ;12当ln 2≤a <1时,最小值为f (2)=ln 2-2a .[13分]综上可知,当0<a <ln 2时,函数f (x )的最小值是f (1)=-a ;当a ≥ln 2时,函数f (x )的最小值是f (2)=ln 2-2a .[16分]用导数法求给定区间上的函数的最值问题的一般步骤第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求f (x )在给定区间上的单调性和极值;第三步:(求端点值)求f (x )在给定区间上的端点值;第四步:(求最值)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值;第五步:(反思)反思回顾,查看关键点,易错点和解题规范.1.函数f (x )=x 3-4x +4的极大值为________.13答案 283解析 f ′(x )=x 2-4=(x +2)(x -2),f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减,在(2,+∞)上单调递增,所以f (x )的极大值为f (-2)=.2832.已知a 为函数f (x )=x 3-12x 的极小值点,则a =________.答案 2解析 由题意得f ′(x )=3x 2-12,由f ′(x )=0得x =±2,当x ∈(-∞,-2)时,f ′(x )>0,函数f (x )单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2.3.函数y =x e x 的最小值是________.答案 -1e解析 因为y =x e x ,所以y ′=e x +x e x =(1+x )e x .当x >-1时,y ′>0;当x <-1时,y ′<0,所以当x =-1时,函数取得最小值,且y min =-.1e 4.函数f (x )=x 2-ln x 的最小值为________.12答案 12解析 f ′(x )=x -=且x >0.1x x 2-1x 令f ′(x )>0,得x >1.令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=-ln 1=.12125.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为________________.答案 ∪(-∞,-32)(32,+∞)解析 若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两个不等实根,故Δ=(-4c )2-12>0,解得c >或c <-.3232所以实数c 的取值范围为∪.(-∞,-32)(32,+∞)6.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件.答案 3解析 y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0.故当x =3时,该商品的年利润最大.7.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.答案 (22,+∞)解析 f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减;当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增,∴f (x )的极大值为f (-a ),极小值为f (a ).∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0,解得a >.22∴a 的取值范围是.(22,+∞)8.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ,当x ∈(-2,0)时,f (x )的最小(a >12)值为1,则a =________.答案 1解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1.令f ′(x )=-a =0,得x =,1x 1a 当0<x <时,f ′(x )>0;1a 当x >时,f ′(x )<0.1a ∴f (x )max =f=-ln a -1=-1,解得a =1.(1a)9.(2018·苏北四市检测)设直线y =a 与曲线y 2=x 和y =e x 分别交于点M ,N ,则当线段MN 的长度取得最小值时,a 的值为________.答案 22解析 由题意得点M (a 2,a ),N (ln a ,a ),故MN 的长度l =|a 2-ln a |=a 2-ln a (a >0),则l ′=2a -==.1a 2a 2-1a2(a +22)(a -22)a令l ′>0,得l =a 2-ln a 在上单调递增;(22,+∞)令l ′<0,得l =a 2-ln a 在上单调递减,(0,22)所以当a =时,线段MN 的长度取得极小值,也是最小值.2210.(2018·江苏)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.答案 -3解析 f ′(x )=6x 2-2ax =2x (3x -a )(x >0).①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,又f (0)=1,∴f (x )在(0,+∞)上无零点,不合题意.②当a >0时,由f ′(x )>0,解得x >,a3由f ′(x )<0,解得0<x <,a3∴f (x )在上单调递减,在上单调递增.(0,a 3)(a3,+∞)又f (x )只有一个零点,∴f =-+1=0,∴a =3.(a 3)a 327此时f (x )=2x 3-3x 2+1,f ′(x )=6x (x -1),当x ∈[-1,1]时,f (x )在[-1,0]上单调递增,在(0,1]上单调递减.又f (1)=0,f (-1)=-4,f (0)=1,∴f (x )max +f (x )min =f (0)+f (-1)=1-4=-3.11.设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-相切.12(1)求实数a ,b 的值;(2)求函数f (x )在上的最大值.[1e,e ]解 (1)f ′(x )=-2bx ,ax∵函数f (x )在x =1处与直线y =-相切,12∴Error!解得Error!(2)由(1)知,f (x )=ln x -x 2,12f ′(x )=-x =,1x 1-x 2x当≤x ≤e 时,令f ′(x )>0,得≤x <1,1e 1e 令f ′(x )<0,得1<x ≤e ,∴f (x )在上单调递增,[1e,1)在(1,e]上单调递减,∴f (x )max =f (1)=-.1212.已知函数f (x )=Error!(1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.解 (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =.23当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,0)0(0,23)23(23,1)f ′(x )-0+0-f (x )↘极小值↗极大值↘故当x =0时,函数f (x )取得极小值f (0)=0,函数f (x )的极大值点为x =.23(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和上单调递减,在上单调递增.[23,1)[0,23]因为f (-1)=2,f=,f (0)=0,(23)427所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增,则f (x )在[1,e]上的最大值为f (e)=a .故当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.13.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是________.答案 20解析 因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,可知-1,1为函数的极值点.又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,所以在区间[-3,2]上,f (x )max =1,f (x )min =-19.由题设知在区间[-3,2]上,f (x )max -f (x )min ≤t ,从而t ≥20,所以t 的最小值是20.14.(2018·江苏省泰兴中学检测)已知a ,b ∈R ,直线y =ax +b +与函数f (x )=tan x 的图象在x =π2-处相切,设g (x )=e x +bx 2+a ,若在区间[1,2]上,不等式m ≤g (x )≤m 2-2恒成立,则实数m π4的取值范围为________.答案 (-∞,-e]∪[e ,e +1]解析 由f ′(x )=,可得f ′=2,1cos 2x (-π4)又f =-1,所以直线y =ax +b +与函数f (x )=tan x 的图象的切点为,因此a =(-π4)π2(-π4,-1)2,b =-1,g (x )=e x -x 2+2,所以当x ∈[1,2]时,g ′(x )=e x -2x >0,g (x )=e x -x 2+2单调递增,所以g (x )min =e +1,g (x )max =e 2-2.所以e ≤m ≤e +1或m ≤-e.15.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.答案 (-1e,0)解析 f (x )=x ln x +m e x (x >0),∴f ′(x )=ln x +1+m e x (x >0),由函数f (x )有两个极值点可得y =-m 和g (x )=在(0,+∞)上有两个交点,ln x +1e xg ′(x )=(x >0),令h (x )=-ln x -1,1x -ln x -1e x 1x 则h ′(x )=--<0,1x 21x∴h (x )在(0,+∞)上单调递减且h (1)=0,∴当x ∈(0,1]时,h (x )≥0,即g ′(x )≥0,g (x )在(0,1]上单调递增,g (x )≤g (1)=,1e 当x ∈(1,+∞)时,h (x )<0,即g ′(x )<0,g (x )在(1,+∞)上单调递减,故g (x )max =g (1)=,1e而当x →0时,g (x )→-∞,当x →+∞时,g (x )→0;若y =-m 和g (x )的图象在(0,+∞)上有两个交点,只需0<-m <,故-<m <0.1e 1e16.已知函数f (x )=ax -ln x ,x ∈(0,e]的最小值是2,求正实数a 的值.解 因为f ′(x )=a -=,所以当0<<e 时,f (x )在上单调递减,在上单调递1x ax -1x 1a (0,1a )(1a ,e ]增,所以f (x )min =f =1+ln a =2,解得a =e ,满足条件;(1a)当≥e 时,f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=2,解得a =(舍去).1a 3e 综上,正实数a 的值为e.。
【关键字】反映第三章导数及其应用 3.1 导数的概念及运算教师用书理苏教版1.导数与导函数的概念(1)设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),若Δx无限趋近于0时,比值=无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数(derivative),记作f′(x0).(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式4.若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[]′=(g(x)≠0).5.复合函数的导数若y=f(u),u=ax+b,则y′x=y′u·u′x,即y′x=y′u·a.【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[]′=-(f(x)≠0).3.[af(x)+bg(x)]′=af′(x)+bg′(x).4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ×)(2)f′(x0)与[f(x0)]′表示的意义相同.( ×)(3)曲线的切线不一定与曲线只有一个公共点.( √)(4)与曲线只有一个公共点的直线一定是曲线的切线.( ×)(5)函数f(x)=sin(-x)的导数是f′(x)=cos x.( ×)1.(教材改编)若f(x)=x·ex,则f′(1)= .答案2e解析f′(x)=ex+x·ex,∴f′(1)=2e.2.(教材改编)①(cos x)′=sin x;②若y=,则y′=-;③(-)′=.其中正确的个数是 .答案 1解析因为(cos x)′=-sin x,所以①错误;()′=(x-2)′=-2x-3,所以②错误;(-)′=()′==,所以③正确.3.(教材改编)曲线y=-5ex+3在点(0,-2)处的切线方程为 .答案5x+y+2=0解析因为y′|x=0=-5e0=-5,所以曲线在点(0,-2)处的切线方程为y-(-2)=-5(x -0),即5x+y+2=0.4.(教材改编)若过曲线y=上一点P的切线的斜率为-4,则点P的坐标为 . 答案(,2)或(-,-2)解析∵y′=(x-1)′=-=-4,∴x2=,x=±.∴切点坐标为(,2)或(-,-2).5.(教材改编)函数f(x)=x3的斜率等于1的切线有条.答案 2解析∵y′=3x2,设切点为(x0,y0),则3x=1,得x0=±,即在点(,)和点(-,-)处有斜率为1的切线.题型一导数的计算例1 求下列函数的导数.(1)y=x2sin x;(2)y=ln x+;(3)y=;(4)y =sin(2x +);(5)y =ln(2x -5). 解 (1)y ′=(x2)′·sin x +x2·(sin x)′ =2xsin x +x2cos x.(2)y ′=(ln x +)′=(ln x)′+()′ =1x -1x2.(3)y ′=(cos xex )′=cos x ′·e x -cos x e x′e x 2=-sin x +cos x ex. (4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2即y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u ,则y ′=(ln u )′·u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0= .(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)= . 答案 (1)1 (2)-2解析 (1)f ′(x )=2 016+ln x +x ×1x=2 017+ln x ,故由f ′(x 0)=2 017,得2 017+lnx 0=2 017,则ln x 0=0,解得x 0=1.(2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2016·南通一调)在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值为 .(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 答案 (1)43(2)x -y -1=0解析 (1)方法一 由题设可知曲线y =x 2在A (x 1,y 1)处的切线方程为y =2x 1x -x 21,曲线y=x 3在B (x 2,y 2)处的切线方程为y =3x 22x -2x 32,所以⎩⎪⎨⎪⎧2x 1=3x 22,x 21=2x 32,解得x 1=3227,x 2=89,所以x 1x 2=43.方法二 由题设得⎩⎪⎨⎪⎧2x 1=3x 22,x 32-x 21x 2-x 1=2x 1,解得x 1=3227,x 2=89,所以x 1x 2=43.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=1+ln x 0x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值例3 (1)(2016·徐州模拟)函数y =e x的切线方程为y =mx ,则m = .(2)(2016·苏州暑假测试)已知函数f (x )=x -1+1e x ,若直线l :y =kx -1与曲线y =f (x )相切,则实数k = . 答案 (1)e (2)1-e解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x, 得00|e xx x y '==,从而切线方程为000e e ()xxy x x -=-, 又切线过定点(0,0),从而000e e ()xxx -=-,解得x 0=1,则m =e.(2)设切点为(x 0,y 0).因为f ′(x )=1-1e x ,则f ′(x 0)=k ,即1-01e x =k ,且kx 0-1=x 0-1+01e x , 所以x 0=-1,所以k =1-1e-1=1-e. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x ,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的 . 答案 ④解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的; 当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面 (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f ′x 1x 0-x 1求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)(2016·泰州模拟)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为 .(2)(2016·昆明模拟)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a = . 答案 (1)3 (2)-1解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3.(2)∵y ′=-1-cos xsin 2x ,∴2|x y π='=-1. 由条件知1a=-1,∴a =-1.3.求曲线的切线方程典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示 现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =0|x x y '==3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况. 1.(2016·天津)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 . 答案 3解析 因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3.2.已知曲线y =ln x 的切线过原点,则此切线的斜率为 . 答案 1e解析 y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则0|x x y '==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为 . 答案 1或134解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎪⎨⎪⎧x 0=32,p =134.4.若f (x )=2xf ′(1)+x 2,则f ′(0)= . 答案 -4解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.5.(2016·江苏扬州中学期中)若x 轴是曲线f (x )=ln x -kx +3的一条切线,则k = . 答案 e 2解析 由f (x )=ln x -kx +3,得f ′(x )=1x-k ,设点M (x 0,y 0)是曲线f (x )上的一点,则曲线f (x )=ln x -kx +3在点M 处的切线方程为y -(ln x 0-kx 0+3)=(1x 0-k )(x -x 0),∵x 轴是曲线f (x )=ln x -kx +3的一条切线, ∴⎩⎪⎨⎪⎧ln x 0-kx 0+3=0,1x 0-k =0,解得k =e 2.6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为 . 答案 14解析 由题意可知f ′(x )=1212x -,g ′(x )=ax ,由f ′(14)=g ′(14),得12×121()4-=a 14,可得a =14,经检验,a =14满足题意.7.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a = . 答案 1解析 f ′(x )=3ax 2+1,f ′(1)=1+3a ,f (1)=a +2.所以函数在(1,f (1))处的切线方程为y -(a +2)=(1+3a )(x -1). 将(2,7)代入切线方程,得7-(a +2)=1+3a , 解得a =1.8.(2016·南京模拟)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于 . 答案12ln 2解析 y ′=1x ln 2,∴k =1ln 2, ∴切线方程为y =1ln 2(x -1).∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是 .答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.*10.已知曲线f (x )=xn +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为 . 答案 -1解析 f ′(x )=(n +1)x n,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 =log 2 016(x 1x 2…x 2 015)=-1.11.(2016·江苏五校联考)已知曲线y =x 与y =8x的交点为P ,两曲线在点P 处的切线分别为l 1,l 2,则切线l 1,l 2与y 轴所围成的三角形的面积为________. 答案 6解析 由⎩⎪⎨⎪⎧y =x ,y =8x, 解得⎩⎪⎨⎪⎧x =4,y =2,即P (4,2),由y =x ,得y ′=(x )′=12x ,则直线l 1的斜率k 1=14,∴l 1:y =14x +1.同理可得l 2:y =-12x +4,如图,易知S △PAB =12×3×4=6,即所求的面积为6.12.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________. 答案 -1解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.13.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________. 答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.14.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为____________.答案 ⎝ ⎛⎭⎪⎫32,134解析 设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g 1+g 22×1=-x 20+3x 0+1=-⎝⎛⎭⎪⎫x 0-322+134,∴P点坐标为⎝ ⎛⎭⎪⎫32,134时,S 普通梯形最大.15.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为y ′|0x x ==x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0), 即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.*16.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧ a =1,b =3.故f (x )=x -3x . (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3 x 20(x -x 0), 即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3 x 20(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
第2课时导数与函数的极值、最值题型一用导数解决函数极值问题命题点1 根据函数图象判断极值例1 (1)(2016·淮安模拟)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是________.(2)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是________.①函数f(x)有极大值f(2)和极小值f(1);②函数f(x)有极大值f(-2)和极小值f(1);③函数f(x)有极大值f(2)和极小值f(-2);④函数f(x)有极大值f(-2)和极小值f(2).答案(1)③(2)④解析(1)由f′(x)图象可知,x=0是函数f(x)的极大值点,x=2是f(x)的极小值点. (2)由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.命题点2 求函数的极值例2 设a为实数,函数f(x)=-x3+3x+a.(1)求f(x)的极值;(2)是否存在实数a,使得方程f(x)=0恰好有两个实数根?若存在,求出实数a的值;若不存在,请说明理由.解(1)令f′(x)=-3x2+3=0,得x1=-1,x2=1.又因为当x∈(-∞,-1)时,f′(x)<0;当x∈(-1,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.所以f(x)的极小值为f(-1)=a-2,f(x)的极大值为f(1)=a+2.(2)因为f(x)在(-∞,-1)上单调递减,且当x→-∞时,f(x)→+∞;又f(x)在(1,+∞)上单调递减,且当x →+∞时,f (x )→-∞;而a +2>a -2,即函数的极大值大于极小值, 所以当极大值等于0时,有极小值小于0, 此时曲线f (x )与x 轴恰好有两个交点, 即方程f (x )=0恰好有两个实数根,所以a +2=0,a =-2,如图1.当极小值等于0时,有极大值大于0,此时曲线f (x )与x 轴恰有两个交点,即方程f (x )=0恰好有两个实数根,所以a -2=0,a =2.如图2. 综上,当a =2或a =-2时方程恰好有两个实数根. 命题点3 已知极值求参数例3 (1)若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.(2)(2016·南京学情调研)已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________. 答案 (1)3 (2)(32,4)解析 (1)∵f ′(x )=(x 2+ax +1)′=x 2+a ′x +1-x 2+a x +1′x +12=x 2+2x -ax +12,又∵函数f (x )在x =1处取极值, ∴f ′(1)=0. ∴1+2×1-a =0,∴a =3.验证知a =3符合题意.(2)方法一 令f ′(x )=x 2+2x -2a =0, 得x 1=-1-1+2a ,x 2=-1+1+2a , 因为x 1∉(1,2),因此则需1<x 2<2, 即1<-1+1+2a <2, 即4<1+2a <9,所以32<a <4,故实数a 的取值范围为(32,4).方法二 f ′(x )=x 2+2x -2a 的图象是开口向上的抛物线,且对称轴为x =-1,则f ′(x )在(1,2)上是单调递增函数,因此⎩⎪⎨⎪⎧f ′1=3-2a <0,f ′2=8-2a >0,解得32<a <4,故实数a 的取值范围为(32,4).思维升华 (1)求函数f (x )极值的步骤: ①确定函数的定义域; ②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.(1)函数f (x )=(x 2-1)2+2的极值点是______________.(2)函数y =2x -1x2的极大值是________.答案 (1)x =1或-1或0 (2)-3 解析 (1)∵f (x )=x 4-2x 2+3,∴由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0, 当-1<x <0时,f ′(x )>0. 当0<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,∴x =0,1,-1都是f (x )的极值点. (2)y ′=2+2x3,令y ′=0,得x =-1.当x >0或x <-1时,y ′>0;当-1<x <0时,y ′<0. ∴当x =-1时,y 取极大值-3. 题型二 用导数求函数的最值例4 已知a ∈R ,函数f (x )=a x+ln x -1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x+ln x -1,x ∈(0,+∞),所以f ′(x )=-1x 2+1x =x -1x2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14.又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2-12)=14(x -2),即x -4y +4ln 2-4=0.(2)因为f (x )=a x+ln x -1,所以f ′(x )=-a x2+1x=x -ax2,x ∈(0,e].令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,则当x ∈(0,a )时,f ′(x )<0,函数f (x )在区间(0,a )上单调递减;当x ∈(a ,e]时,f ′(x )>0,函数f (x )在区间(a ,e]上单调递增, 所以当x =a 时,函数f (x )取得最小值ln a .③若a ≥e,则当x ∈(0,e]时,f ′(x )≤0,函数f (x )在区间(0,e]上单调递减, 所以当x =e 时,函数f (x )取得最小值ae.综上可知,当a ≤0时,函数f (x )在区间(0,e]上无最小值; 当0<a <e 时,函数f (x )在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f (x )在区间(0,e]上的最小值为ae .思维升华 求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.设函数f (x )=x 3-x 22-2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值范围是________________.答案 (-∞,72)解析 由题意知,f ′(x )=3x 2-x -2, 令f ′(x )=0,得3x 2-x -2=0, 解得x =1或x =-23,又f (1)=72,f (-23)=15727,f (-1)=112,f (2)=7,故f (x )min =72,∴a <72.题型三 函数极值和最值的综合问题例5 已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2x <1,a ln x x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值点; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值. 解 (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘故当x =0时,函数f (x )取得极小值f (0)=0,函数f (x )的极大值点为x =3.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0)和[23,1)上单调递减,在[0,23]上单调递增.因为f (-1)=2,f (23)=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x , 当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, 则f (x )在[1,e]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2.思维升华 求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是________. 答案 [-3,0)解析 由题意,得f ′(x )=x 2+2x =x (x +2),故f (x )在(-∞,-2),(0,+∞)上是增函数, 在(-2,0)上是减函数,作出其图象如图所示, 令13x 3+x 2-23=-23,得x =0或x =-3, 则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得a ∈[-3,0).3.利用导数求函数的最值典例 (16分)已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)两小问中,由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调递增区间为(0,+∞).[2分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.[6分]综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.[7分](2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a . [9分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[11分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . [14分]综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . [16分]用导数法求给定区间上的函数的最值问题一般可用以下几步答题 第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求f (x )在给定区间上的单调性和极值; 第三步:(求端点值)求f (x )在给定区间上的端点值;第四步:(求最值)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; 第五步:(反思)反思回顾,查看关键点,易错点和解题规范. 1.函数f (x )=13x 3-4x +4的极大值为________.答案283解析 f ′(x )=x 2-4=(x +2)(x -2),f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减,在(2,+∞)上单调递增,所以f (x )的极大值为f (-2)=283.2.(2016·四川改编)已知a 为函数f (x )=x 3-12x 的极小值点,则a =________. 答案 2解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减, ∴f (x )的极小值点为a =2.3.若函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________.答案 -71解析 f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0,得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27,f (-1)=k +5,f (4)=k -20.由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71.4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是________________.答案 (-∞,-3)∪(6,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.*5.(2016·扬州模拟)函数f (x )=ax 3+bx 2+cx -34(a ,b ,c ∈R )的导函数为f ′(x ),若不等式f ′(x )≤0的解集为{x |-2≤x ≤3},f (x )的极小值等于-115,则a 的值是________. 答案 2解析 由已知可得f ′(x )=3ax 2+2bx +c ,由3ax 2+2bx +c ≤0的解集为{x |-2≤x ≤3}可知a >0, 且-2,3是方程3ax 2+2bx +c =0的两根, 则由根与系数的关系知2b 3a =-1,c3a =-6,∴b =-3a2,c =-18a ,此时f (x )=ax 3-3a 2x 2-18ax -34,当x ∈(-∞,-2)时,f ′(x )>0,f (x )为增函数; 当x ∈(-2,3)时,f ′(x )<0,f (x )为减函数; 当x ∈(3,+∞)时,f ′(x )>0,f (x )为增函数,∴f (3)为f (x )的极小值,且f (3)=27a -27a2-54a -34=-115,解得a =2.6.(2016·南京模拟)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =________. 答案 1解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f (1a)=-ln a -1=-1,解得a =1.7.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)=________. 答案 18解析 ∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,f ′(x )=3x 2+2ax +b , ∴f (1)=10,且f ′(1)=0,即⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0,解得⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.而当⎩⎪⎨⎪⎧a =-3,b =3时,函数在x =1处无极值,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.8.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________. 答案 (22,+∞) 解析 f ′(x )=3x 2-3a 2=3(x +a )(x -a ), 由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数递减; 当x >a 或x <-a 时,f ′(x )>0,函数递增.∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是(22,+∞). 9.(2016·徐州模拟)已知函数f (x )=13x 3-x 2-x +m 在[0,1]上的最小值为13,则实数m 的值为________. 答案 2解析 由f (x )=13x 3-x 2-x +m , 可得f ′(x )=x 2-2x -1,令x 2-2x -1=0,可得x =1± 2.当x ∈(1-2,1+2)时,f ′(x )<0,即函数f (x )在(1-2,1+2)上是减函数,即f (x )在[0,1]上的最小值为f (1),所以13-1-1+m =13,解得m =2. 10.(2016·南京模拟)已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.答案 -4解析 f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0.即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4. f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴对m ∈[-1,1]时,f (m )min =f (0)=-4.11.已知函数f (x )=x ln x .若对于任意x ∈[1e,e],不等式2f (x )≤-x 2+ax -3恒成立,则实数a 的取值范围为__________________.答案 [-2+1e+3e ,+∞) 解析 由题意知,2x ln x ≤-x 2+ax -3,则a ≥2ln x +x +3x .设h (x )=2ln x +x +3x(x >0),则h ′(x )=2x +1-3x 2=x +3x -1x 2.当x ∈[1e,1)时,h ′(x )<0,h (x )单调递减;当x ∈(1,e]时,h ′(x )>0,h (x )单调递增.由h (1e )=-2+1e +3e ,h (e)=2+e +3e ,h (1e )-h (e)=2e -2e -4>0,可得h (1e )>h (e).所以当x ∈[1e ,e]时,h (x )的最大值为h (1e )=-2+1e+3e.故a ≥-2+1e+3e. 12.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)因为f (x )=a (x -5)2+6ln x ,所以f ′(x )=2a (x -5)+6x . 令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上,可得6-16a =8a -6,故a =12. (2)由(1)知,f (x )=12(x -5)2+6ln x (x >0), f ′(x )=x -5+6x =x -2x -3x .令f ′(x )=0,解得x =2或3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3. 综上,f (x )的单调递增区间为(0,2),(3,+∞),单调递减区间为(2,3),f (x )的极大值为92+6ln 2,极小值为2+6ln 3. *13.已知函数f (x )=ax 2+bx -ln x (a >0,b ∈R ).(1)设a =1,b =-1,求f (x )的单调区间;(2)若对任意的x >0,f (x )≥f (1),试比较ln a 与-2b 的大小.解 (1)由f (x )=ax 2+bx -ln x ,x ∈(0,+∞),得f ′(x )=2ax 2+bx -1x. ∵a =1,b =-1,∴f ′(x )=2x 2-x -1x =2x +1x -1x (x >0).令f ′(x )=0,得x =1.当0<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增.∴f (x )的单调递减区间是(0,1);单调递增区间是(1,+∞).(2)由题意可知,f (x )在x =1处取得最小值,即x =1是f (x )的极值点,∴f ′(1)=0,∴2a +b =1,即b =1-2a .令g (x )=2-4x +ln x (x >0),则g ′(x )=1-4x x. 令g ′(x )=0,得x =14. 当0<x <14时,g ′(x )>0,g (x )单调递增, 当x >14时,g ′(x )<0,g (x )单调递减, ∴g (x )≤g (14)=1+ln 14=1-ln 4<0,∴g (a )<0,即2-4a +ln a =2b +ln a <0,故ln a <-2b .。