七年级数学上册第三章 一元一次方程教案
- 格式:doc
- 大小:486.84 KB
- 文档页数:36
2024年浙教版初中数学一元一次方程教案一、教学内容本节课选自2024年浙教版初中数学七年级上册第三章“一元一次方程”的第一节,详细内容包括方程的概念、一元一次方程的定义及其解法。
重点掌握如何求解一元一次方程,并运用方程解决实际问题。
二、教学目标1. 知识目标:理解方程的概念,掌握一元一次方程的定义及其解法。
2. 能力目标:能够运用一元一次方程解决生活中的实际问题,提高分析问题和解决问题的能力。
3. 情感目标:培养学生的学习兴趣,激发学生主动探究的欲望。
三、教学难点与重点教学重点:一元一次方程的定义及解法。
教学难点:如何将实际问题转化为方程,并求解。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:练习本、铅笔、直尺。
五、教学过程1. 导入:通过一个实践情景引入,如小明去超市购物,购买3个苹果和2个香蕉共花费20元,问每个苹果和香蕉的价格是多少?2. 新课讲解:(1)引导学生理解方程的概念,介绍一元一次方程的定义。
(2)讲解一元一次方程的解法,包括移项、合并同类项等步骤。
(3)通过例题讲解,让学生学会如何将实际问题转化为方程,并求解。
3. 随堂练习:布置一些一元一次方程的题目,让学生独立完成,并及时给予反馈。
六、板书设计1. 方程的概念2. 一元一次方程的定义3. 一元一次方程的解法(1)移项(2)合并同类项4. 实际问题转化为方程的步骤七、作业设计1. 作业题目:(1)解方程:2x + 5 = 15(2)解方程:3(x 2) = 12(3)实际问题:小华比小明大6岁,小华的年龄是小明年龄的2倍。
问小明和小华各多少岁?2. 答案:(1)x = 5(2)x = 6(3)小明:3岁,小华:9岁八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,让学生了解方程在实际生活中的应用,提高学生的学习兴趣。
2. 拓展延伸:布置一道拓展题目,如求解二元一次方程组,让学生在课后尝试,培养学生的探究能力。
新人教版七年级数学上册第三章一元一次方程的解法教案设计一、教学目标1. 了解一元一次方程的定义与性质。
2. 研究解一元一次方程的基本步骤和方法。
3. 掌握使用逆运算解一元一次方程的技巧。
4. 运用所学知识解决实际问题。
二、教学准备1. 教材:新人教版七年级数学上册。
2. 教具:黑板、粉笔、教学PPT、题练册。
三、教学过程1. 导入- 通过简单的问题引入一元一次方程的概念,激发学生的兴趣。
- 用生活中的例子说明一元一次方程的应用场景。
2. 知识讲解- 结合教材内容,讲解一元一次方程的定义和性质。
- 介绍解一元一次方程的基本步骤和方法,包括两边加减同一个数、两边乘除同一个非零数等。
- 强调使用逆运算解一元一次方程的重要性和技巧。
3. 案例演练- 提供一些简单的实例,引导学生通过运用所学方法解一元一次方程。
- 让学生积极参与,提供解题思路,讲解解题过程。
4. 讲解技巧与方法- 教授一些解一元一次方程的常见技巧与方法,如整理方程、消元法等。
- 指导学生如何有效地应用这些技巧解决较复杂的方程。
5. 综合练- 提供一些综合性的题,要求学生将所学知识灵活运用解决实际问题。
- 强调解题过程的合理性和正确性,鼓励学生多思考,多尝试。
6. 运用扩展- 引导学生思考一元一次方程在实际生活中的应用,例如用于解决购物、旅行等问题。
- 鼓励学生运用所学知识解决更复杂的实际问题。
7. 总结归纳- 对本节课所学内容进行总结概括,强调解一元一次方程的重要性和应用价值。
四、教学评价1. 教师实时检查学生课堂表现,观察他们对知识的掌握情况。
2. 针对学生的理解程度和解题能力,进行个别辅导和巩固训练。
3. 提供题练册,让学生课后进行自主练,发现问题并及时解决。
五、教学反思本课设计以简单明了的步骤和方法为主线,通过案例演练和综合练习,培养学生解一元一次方程的能力和运用能力。
同时,引导学生思考方程在实际生活中的应用,激发学生学习数学的兴趣。
七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。
七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法讲练结合、注重师生互动。
四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
二、教学重难点重点:一元一次方程的解法。
难点:实际问题中的一元一次方程的应用。
三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。
2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。
(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。
2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。
(2)引导学生模仿:解方程3x+4=7。
(3)学生独立完成:解方程5x9=2。
3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。
(2)小组讨论,给出解决方案。
4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。
(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。
3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。
(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。
(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。
(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。
七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
新人教版初中七年级数学上册第三章《一元一次方程》精品教案一、教学目标:知识与技能:1.通过本节知识的学习,使学生清楚了方程、一元一次方程的概念。
2.体会字母表示数的好处,画示意图有利于分析问题、找相等关系是列方程的重要一步,从算式到方程(从算式到代数)是数学的一大进步。
过程与方法:1.会将实际问题抽象为数学问题,通过列方程解决问题;2.认识列方程解决问题的思想以及用字母表示未知数、用方程表示相等关系得符号化方法;3.能结合具体例子认识一元一次方程的定义,体会设未知数、列方程的过程,会用方程表示简单实际问题的相等关系。
情感态度与价值观:增强用数学的意识,激发学习数学的热情。
二、教学重点:会根据实际问题列出一元一次方程。
三、教学难点:会根据实际问题列出一元一次方程。
四、教学过程设计:一、选择题1.在①2x+3y-1;②1+7=15-8+1;③1-12x=x+1④x+2y=3中方程有( )个. ( ) A.1 B.2 C.3 D.42.若方程3ax -4=5(a 已知,x 未知)是一元一次方程,则a 等于( ) A.任意有理数 B.0 C.1 D.0或13.x=2是下列方程( )的解.A.2x=6B.(x-3)(x+2)=0C.x 2=3 D.3x-6=04.x 、y 是两个有理数,“x 与y 的和的13等于4”用式子表示为( ) A.1()43x y += B.143x y += C.143x y ++= D.以上都不对 二、填空题5.在方程①732-=-x ②32=-b a ③963-=+y y ④212=x ⑤y y 31421=-中是一元一次方程的是 。
三、解答题6.王浩妈妈买了6千克香蕉和3千克苹果,共花去51元钱,但她忘了香蕉的价格,只记得苹果每千克5元,她想考一考正上七年级的王浩,你能替王浩得出香蕉的价格吗? 附答案:1.B 2.C 3.D 4.A 5.①③⑤6.解:设香蕉的单价为x 元,根据题意,得51356=⨯+x七年级数学(上册)第 2 课 3.1.2 等式的性质一、教学目标:知识与技能:1.会利用等式的两条性质解方程.过程与方法:2.利用天平,通过观察、分析得出等式的两条性质.情感态度与价值观:培养学生参与数学活动的自信心、合作交流意识.二、教学重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程.三、教学难点:由具体实例抽象出等式的性质.四、教学过程设计:达标测评题(时间约5分钟,题目、题型要根据本节内容灵活把握)一、选择题1.下列方程的解是x=2的有().A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0 2.下列各组方程中,解相同的是().A .x=3与2x=3B .x=3与2x+6=0C .x=3与2x-6=0D .x=3与2x=5 二、填空题3.在等式2x-1=4,两边同时________得2x=5. 4.在等式5x=5y ,两边都_______得x=y . 5.在等式-13x=4的两边都______,得x=______. 三、解答题6.用等式的性质解方程(1)x+2=5; (2)-3x=15; (3)23x-1=5. 附答案:1.A2.C3. 加14. 除以55.乘-3 , x=-12 6.解:(1)两边减2,得x+2-2=5-2 ,于是 x=3(2)两边同除以-3,得31533-=--x ,于是 x=-5 (3)两边加1,得23x-1+1=5+1,化简,得23x=6,两边同乘23,得x=9。
人教版七年级数学上册《第三章一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生继初中代数初步知识学习之后,进一步深化对数学概念的理解和运用的关键章节。
本章通过引入一元一次方程,让学生掌握方程的解法,提高解决实际问题的能力。
教材内容主要包括一元一次方程的概念、解法以及应用。
二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、有理数等基础知识,具备了一定的逻辑思维能力。
但对于一元一次方程这一概念,可能还存在一定的难度,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够应用一元一次方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一元一次方程的概念。
2.一元一次方程的解法。
3.一元一次方程在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过案例分析,让学生理解和掌握一元一次方程的解法;通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.教材、教案、课件。
2.练习题、测试题。
3.教学工具(如黑板、粉笔、多媒体设备等)。
七. 教学过程1.导入(5分钟)利用实例引入一元一次方程的概念,让学生思考和讨论,引导学生发现一元一次方程的特点。
2.呈现(10分钟)讲解一元一次方程的定义,通过示例演示一元一次方程的解法。
让学生跟随老师一起解方程,确保学生能够掌握解法。
3.操练(10分钟)让学生独立完成练习题,老师巡回指导。
针对学生出现的问题进行讲解和解答。
4.巩固(10分钟)通过案例分析,让学生应用一元一次方程解决实际问题。
让学生分组讨论,分享解题过程和心得。
5.拓展(10分钟)引导学生思考:如何判断一个方程是否是一元一次方程?如何求解一元一次方程?让学生进行小组讨论,老师点评并总结。
6.小结(5分钟)对本节课的内容进行总结,强调一元一次方程的概念和解法。
课题解一元一次方程
【教材分析】
教材是把解一元一次方程分成了两节内容约8个课时.以较为简单的实际问题为作为讨论方程解法的背景,一方面,可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面,可根据实际问题列方程贯穿于全章,将列方程的教学拉长.从而达到由简单问题到复杂问题逐步提高学生列方程的能力的教学效果.
【学情分析】
已经会解一些简单的一元一次方程,根据自己现有知识,部分学生能够解出含分母的一元一次方程,所以我从学生的角度出发,由生活中的简单问题列出带有分母的一元一次方程.然后让学生尝试解这样的一元一次方程,在学生交流展示的基础上总结出解一元一次方程的一般步骤.
【教学目标】
1会解一元一次方程
2理解解一元一次方程的一般步骤
3体会解法中蕴含的化归思想
【教学重难点】
教学重点:解一元一次方程的一般步骤
教学难点:解一元一次方程的一般步骤
【教学流程】。
第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程【教学目标】1.能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程.2.理解方程、一元一次方程的定义及解的概念.3.掌握检验某个数值是不是方程的解的方法.一、自主预习阅读教材P78~80,完成下列内容.1.含有未知数的等式叫方程.2.只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.4.判断下列各题是不是一元一次方程,是打“√”,不是打“×”.(1)x +3=4;(√)(2)42x +13=6-y ;(×)(3)1x=6;(×) (4)2x -8>-10.(×)5.根据下面实际问题中的数量关系,设未知数列出方程:(1)练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?解:设小明买了x 本,列方程得:0.8x =10-4.4.(2)长方形的周长为24 cm ,长比宽多2 cm ,求长和宽分别是多少.解:设长为x cm ,则宽为(x -2)cm ,依题意得方程:2(x +x -2)=24.二、例题精讲例1 (教材补充例题)下列方程是一元一次方程的是(B)A .x 2+x =5B .x +x 3=4C .x +y =7 D.5x -9=2 【点拨】 一元一次方程的四个组成要素:(1)含有一个未知数;(2)未知数的次数是1;(3)是方程;(4)等号两边都是整式.【跟踪训练1】 (《名校课堂》3.1.1习题)已知式子:①3-4=-1;②2x -5y ;③1+2x =0;④6x +4y =2;⑤3x 2-2x +1=0,其中是等式的有①③④⑤,是方程的有③④⑤.例2 (教材补充例题)检验下列方程后面括号内的数是不是方程的解.(1)3x -1=2(x +1)-4;(x =-1)(2)6x -53=3(x -2).(x =13) 解:(1)把x =-1代入方程,左边=-3-1=-4,右边=2(-1+1)-4=-4,则左边=右边.故x =-1是方程的解.(2)把x =13代入方程,左边=6×13-53=2-53=-1, 右边=3(13-2)=-5, 左边≠右边,则x =13不是方程的解. 【点拨】 判断一个数是不是某个方程的解的方法:根据方程的解的定义,只要用这个数代替方程中的未知数,看方程左右两边的值是否相等即可,如果左边=右边,那么这个数就是方程的解;否则,这个数就不是方程的解.【跟踪训练2】 (《名校课堂》3.1.1习题)检验下列各题括号内的值是否为相应方程的解:(1)2x -3=5(x -3){x =6,x =4};解:x =6不是方程的解,x =4是方程的解.(2)4x +5=8x -3{x =3,x =2}.解:x =3不是方程的解,x =2是方程的解.例3 (教材P79例1)根据下列问题,设未知数并列出方程:(1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h ,预计每月使用150 h ,经过多少月这台计算机的使用时间达到规定的检修时间 2 450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?解:(1)设正方形的边长为x cm.列方程 4x =24.(2)设x 月后这台计算机的使用时间达到2 450 h ,那么在x 月里这台计算机使用了150x h.列方程 1 700+150x =2 450.(3)设这个学校的学生数为x ,那么女生数为0.52x ,男生数为(1-0.52)x.列方程 0.52x -(1-0.52)x =80.【点拨】设未知数,找等量关系,用方程表示简单实际问题中的相等关系.【跟踪训练3】(《名校课堂》3.1.1习题)根据题意列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方程,得0.5x+0.4(15-x)=7.(2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得10x+60%×10×(128-x)=912.三、巩固训练1.下列方程的解为x=2的是(C)A.5-x=2 B.3x-1=4-2xC.3-(x-1)=2x-2 D.x-4=5x-22.在2+1=3,4+x=1,y2-2y=3x,x2-2x+1中,一元一次方程有(A)A.1个B.2个C.3个D.4个3.“一个数比它的相反数大-4”,若设这个数是x,则可列出关于x的方程为(B)A.x=-x+4 B.x=-x+(-4)C.x=-x-(-4) D.x-(-x)=44.小丁今年5岁,妈妈今年30岁,几年后,妈妈的年龄是小丁的2倍?设x年后,妈妈的年龄是小丁的2倍,则x年后小丁的年龄为(x+5)岁,妈妈的年龄为(x+30)岁.根据题意列出方程为2(x+5)=(x+30).四、课堂小结1.方程及一元一次方程的定义.2.如何列方程,什么是方程的解.3.1.2等式的性质【教学目标】1.了解等式的两条性质.2.会用等式的性质解简单的一元一次方程.一、自主预习阅读教材P81~82,完成下列内容.1.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.如果a=b,那么a±c=b±c.2.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a=b,那么ac=bc;如果a=b(c ≠0),那么a c =b c. 3.已知a =b ,请用“=”或“≠”填空:(1)3a =3b ; (2)a 4=b 4; (3)-5a =-5b. 4.利用等式的性质解下列方程:(1)x -9=6; (2)-0.2x =10.解:(1)x =15. (2)x =-50.二、例题精讲例1 (教材补充例题)(1)若m +2n =p +2n ,则m =p ,依据等式的性质1等式两边都减去2n ;(2)若2a =2b ,则a =b ,根据等式的性质2,等式两边都除以2.【点拨】 利用等式的性质对等式进行恒等变形的“三点注意”:(1)等式性质1和等式性质2是等式恒等变形的重要依据;(2)利用等式的性质1,等式的两边必须同加或同减一个数(或式子);(3)利用等式的性质2,等式两边必须同乘或同除以一个不为0的数.【跟踪训练1】 (《名校课堂》3.1.2习题)说出下列各等式变形的依据:(1)由x -5=0,得x =5;解:根据等式的性质1,等式两边同时加5.(2)由-y 3=10,得y =-30; 解:根据等式的性质2,等式两边同时乘-3.(3)由2=x -3,得-x =-3-2.解:根据等式的性质1,等式两边同时减(x +2).例2 (教材P82例2)利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)-13x -5=4. 分析:要使方程x +7=26转化为x =a(常数)的形式,需去掉方程左边的7,利用等式的性质1,方程两边减7就得出x 的值,你可以类似地考虑另两个方程如何转化为x =a 的形式.解:(1)两边减7,得x +7-7=26-7.于是x =19.(2)两边除以-5,得-5x -5=20-5. 于是x =-4.(3)两边加5,得-13x -5+5=4+5. 化简,得-13x =9. 两边乘-3,得x =-27.【点拨】 利用等式的性质解一元一次方程ax +m =n 的步骤:(1)利用等式性质1将已知方程化为ax =b 的形式(即方程左边只含未知项,右边是常数);(2)利用等式的性质2将方程ax =b(a ≠0)化为x =b a的形式(即方程左边未知数的系数是1,右边是常数). 【跟踪训练2】 (《名校课堂》3.1.2习题)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.三、巩固训练1.方程-6x =3的两边都除以-6,得(C)A .x =-2B .x =12C .x =-12D .x =2 2.下列结论中,正确的是(B)A .在等式3a -6=3b +5的两边都除以3,可得等式a -2=b +5B .如果2=-x ,那么x =-2C .在等式5=0.1x 的两边都除以0.1,可得等式x =0.5D .在等式7x =5x +3的两边都减去x -3,可得等式6x -3=4x +63.如果am =an ,那么下列等式不一定成立的是(C)A .am -3=an -3B .5+am =5+anC .m =nD .0.5am =0.5an4.利用等式的性质解下列方程:(1)-a 2-3=5; (2)3x +6=31+2x. 解:(1) a =-16.(2)x =25.四、课堂小结1.等式有哪些性质?2.应用等式的性质对等式进行变形时的注意点:(1)等式两边都要参加运算,并且是做同一种运算;(2)等式两边加、减、乘、除的数或式子一定相同;(3)0不能作除数;(4)不能像算式那样写连贯的等号.3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程【教学目标】经历把方程等号两边分别合并同类项的过程,能用合并同类项解一元一次方程.一、自主预习阅读教材P86~87“问题1及例1”,完成下列内容.1.形如“ax +bx =c ”的方程,先合并同类项,再把未知数系数化为1.2.补全下列解方程的过程:(1)6x -x =4;解:合并同类项,得 5x =4.系数化为1,得x =45. (2)-4x +6x -0.5x =-0.3. 解:合并同类项,得1.5x =-0.3.系数化为1,得x =-15. 二、例题精讲例 (教材P87例1变式)解下列方程:(1)x 2+x +2x =140; (2)3x -1.3x +5x -2.7x =-12×3-6×4.解:(1)x =40. (2)x =-15.【点拨】 用合并同类项解一元一次方程的步骤:(1)合并同类项,把原方程化为ax =b(a ≠0)的形式;(2)系数化为1,若合并后未知数的系数是1,则没有这个步骤.系数化为1的技巧:①若未知数的系数是不等于0和1的整数,则方程两边除以这个整数;②若未知数的系数是分数m n ,则方程两边乘它的倒数,即乘n m; ③若未知数的系数是带分数(小数),则先化为假分数(分数),再按情形②处理.总之,不要一律地除以未知数的系数,要视具体情况灵活处理.【跟踪训练】 (《名校课堂》3.2第1课时习题)解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9; 解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.三、巩固训练1.对于方程8x +6x -10x =6进行合并正确的是(C)A .3x =6B .2x =6C .4x =6D .8x =62.方程18x -3x +5x =11的解是(C)A .x =2611B .x =-2011C .x =1120D .x =11103.方程10x -2x =6+1两边合并后的结果为8x =7,其解为x =78. 4.解下列方程:(1)-10x -6x =-7+15; (2)23x -56x =-67; (3)14x -12x =-7-6; (4)-32y -3y =52-2. 解:(1)x =-12. (2)x =367. (3)x =52. (4)y =-19. 四、课堂小结1.你今天学习的解方程有哪些步骤?合并同类项,系数化为1(等式的性质2).2.合并同类项即是将方程中含未知数的项和常数项分别合并,系数化为1的依据是等式的性质2.第2课时 利用合并同类项解一元一次方程的实际问题【教学目标】经历用“总量=各部分量的和”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.一、自主预习阅读教材P86“例1”,完成下列内容.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,求今年购置计算机的数量.解:设今年购置计算机x 台,则去年购置计算机13x 台.根据题意,得x +13x__=100,解得x =75. 答:今年购置计算机75台.二、例题精讲例 (教材P86例1变式)中国某明星与麦当劳公司签约,该明星作为麦当劳的形象代言人,三年获酬金1 400万美元,若前一年的酬金是后一年的一半,且不考虑税金,则他第一年应得酬金多少万美元?解:设该明星第一年的酬金为x 万美元,则第二年的酬金为2x 万美元,第三年的酬金为4x 万美元,由题意,得 x +2x +4x =1 400,即7x =1 400.等式两边都除以7,得x =200.答:该明星第一年应得酬金200万美元.【点拨】【跟踪训练】 (《名校课堂》3.2第2课时习题)麻商集团三个季度共销售冰箱2 800台,第一个季度销售量是第二个季度的2倍,第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?解:设麻商集团第二个季度销售冰箱x 台,则第一个季度销售量为2x 台,第三个季度销售量为4x 台.根据总量等于各分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二个季度销售冰箱400台.三、巩固训练1.已知某数的3倍与这个数的2倍的和是30,求这个数.解:设这个数是x.根据题意,得3x +2x =30.解得x =6.答:这个数是6.2.据某统计数据显示,在我国的700座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数是严重缺水城市数的4倍,一般缺水城市数是严重缺水城市数的2倍,求严重缺水的城市有多少座?解:设严重缺水的城市有x 座.根据题意,得4x +2x +x =700.解得x =100.答:严重缺水的城市有100座.3.蜘蛛有8条腿,蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x 只,则蜻蜓有2x 只,根据题意,得8x +6×2x =120.解得x =6.所以蜻蜓有:6×2=12(只).答:蜘蛛有6只,蜻蜓有12只.四、课堂小结如何列方程?分哪些步骤?(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程.第3课时 利用移项解一元一次方程【教学目标】1.经历利用等式的性质解一元一次方程的过程,通过观察、比较、归纳出移项的法则.2.能用移项解一元一次方程.一、自主预习阅读教材P88~89“问题2及例3”,完成下列内容.1.把等式一边的某项变号后移到另一边,叫做移项.2.补全下列解方程的过程:(1)5x -8=-3x -2;解:移项,得5x +3x =-2+8.合并同类项,得8x =6.系数化为1,得x =34. (2)3x +7=32-2x.解:移项,得3x +2x =32-7.合并同类项,得5x =25.系数化为1,得x =5.二、例题精讲例1 (教材P89例3变式)解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)x -2x =1-23x ; (4)x -3x -1.2=4.8-5x.解:(1)x =52. (2)x =1. (3)x =-3. (4)x =2. 【点拨】 移项时要改变项的符号,通常把含未知数的项移到方程的左边,而常数项移到方程的右边.【跟踪训练】 (《名校课堂》3.2第3课时习题)解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7; 解:移项,得-35m =7-4. 合并同类项,得-35m =3. 系数化为1,得m =-5.(3)4x +5=3x +3-2x ;解:移项,得4x -3x +2x =-5+3.合并同类项,得3x =-2.系数化为1,得x =-23. (4)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.三、巩固训练1.下列变形过程中,属于移项的是(C)A .由3x =-1,得x =-13B .由x 4=1,得x =4C .由3x +5=0,得3x =-5D .由-3x +3=0,得3-3x =02.对方程2x -3+x =6进行移项,下列正确的是(C)A .2x -x =6+3B .2x -x =6-3C .2x +x =6+3D .2x +x =6-33.方程3x +1=2x 的解是(A)A .x =-1B .x =1C .x =-2D .x =24.解下列方程:(1)5x =3x -12;(2)8x -5=7x +2;(3)12x -7=8x -3;(4)7y +8=2y -5-3y.解:(1)x =-6.(2)x =7.(3)x =1.(4)y =-138. 四、课堂小结1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?2.移项的“两注意”:(1)“两变”,即一变位置(从方程的一边移到另一边),二变符号,不要只变位置而不变符号;(2)要与交换律加以区别,在方程的同一边交换项的位置时,符号不变.第4课时 利用移项解一元一次方程的实际问题【教学目标】经历用“表示同一个量的两个不同的式子相等”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.一、自主预习阅读教材P90“例4”,完成下列内容.某果园12的面积种植了苹果树,14的面积种植了葡萄树,其余40 000 m 2的面积种植了桃树.求这个果园的面积. 解:设这个果园的面积是x m 2,根据题意,得12x +14x +40 000=x .解得x=160__000.答:这个果园的面积是160__000__m2.二、例题精讲例(教材P90例4变式)将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友?解:设这个班共有x名小朋友.根据题意,得2x+8=3x-12,解得x=20.答:这个班共有20名小朋友.【点拨】用“表示同一个量的两个不同的式子相等”列一元一次方程解决实际问题的步骤:(1)设两个未知量中的一个为未知数x;(2)用含x的两个不同式子表示另一个未知量;(3)建立一元一次方程;(4)解方程;(5)检验,作答.【跟踪训练】(《名校课堂》3.2第4课时习题)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x个小组.由题意,得7x+3=8x-5.解得x=8.则7x+3=7×8+3=59.答:该班共有59名同学.三、巩固训练1.用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?解:设小拖拉机每小时耕地x亩.根据题意,得30-x=1.5x.解得x=12.答:小拖拉机每小时耕地12亩.2.学校举办秋季田径运动会,八年级(1)班班委会为班上参加比赛的运动员购买了8箱饮料,如果每人发2瓶,那么剩余16瓶;如果每人发3瓶,那么少24瓶.问该班有多少人参加比赛?解:设该班有x人参加比赛.依题意,得2x+16=3x-24.解得x=40.答:该班有40人参加比赛.3.根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在高x m.根据题意,得3x+1=x+4.解得x=1.5.所以x+4=5.5.答:梅花鹿现在高1.5 m,长颈鹿现在高5.5 m.四、课堂小结1.学生试述本节课学了哪些内容?2.本节课讨论的问题中的相等关系又有何共同特点?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程【教学目标】1.经历从实际问题中抽象出一元一次方程,且用去括号法则化简、求解方程的过程.2.会解含有括号的一元一次方程.一、自主预习阅读教材P93~94“问题1及例1”,完成下列内容.1.要去括号,就要根据去括号法则及乘法分配律,特别是当括号前是“-”号时,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.2.补全下列解方程的过程:(1)2(x-2)=-(x+3);解:去括号,得2x-4=-x-3.移项,得2x+x=-3+4.合并同类项,得3x=1.系数化为1,得x =13. (2)2(x -4)+2x =7-(x -1).解:去括号,得2x -8+2x =7-x +1.移项,得2x +2x +x =7+1+8.合并同类项,得5x =16.系数化为1,得x =165. 二、例题精讲例 (教材P94例1变式)解方程:(1)4x +2(x -2)=12-(x +4);(2)6(12x -4)+2x =7-(13x -1); (3)3(x -2)+1=x -(2x -1).解:(1)x =127. (2)x =6. (3)x =32.【点拨】【跟踪训练】 (《名校课堂》3.3第1课时习题)解下列方程:(1)3(x -4)=12;解:去括号,得3x -12=12.移项,得3x =12+12.合并同类项,得3x =24.系数化为1,得x =8.(2)2(3x -2)-5x =0;解:去括号,得6x -4-5x =0.移项,得6x -5x =4.合并同类项,得x =4.(3)5-(2x -1)=x ;解:去括号,得5-2x +1=x.移项,得-2x -x =-5-1.合并同类项,得-3x =-6.系数化为1,得x =2.(4)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.三、巩固训练1.将方程3(x -1)=6去括号,正确的是(D)A .3x -1=6B .x -3=6C .3x +3=6D .3x -3=62.方程2(x -1)=x +2的解是(D)A .x =1B .x =2C .x =3D .x =43.解方程:3(3x +5)=2(2x -1).解:去括号,得9x +15=4x -2.移项,得9x -4x =-2-15.合并同类项,得5x =-17.系数化为1,得x =-175. 4.解下列方程:(1)2-(1-x)=-2; (2)4(2-x)-4(x +1)=60.解:(1)x =-3. (2)x =-7.四、课堂小结用去括号解一元一次方程的步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.第2课时 利用去括号解一元一次方程的实际问题【教学目标】经历解决在水中航行的问题的过程,会列含括号的一元一次方程解决实际问题.一、自主预习阅读教材P94“例2”,完成下列内容.学校团委组织65名团员为学校建花坛搬砖,初一的同学每人搬6块,其他年级的同学每人搬8块,总共搬了400块,问初一的同学有多少人参加了搬砖?解:设初一的同学有x人参加了搬砖.根据题意,得6x+8(65-x)=400.去括号,得6x+520-8x=400.移项,得6x-8x=400-520.合并同类项,得-2x=-120.系数化为1,得x=60.答:初一的同学有60人参加了搬砖.二、例题精讲例(教材P94例2变式)一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知水流的速度是3 km/h,求甲、乙两码头之间的距离.解:设船在静水中的速度为x km/h,则,顺流速度为(x+3)km/h,逆流速度为(x-3)km/h,依题意,得2(x+3)=2.5(x-3),解得x=27,2(x+3)=60.答:甲、乙两码头之间的距离为60 km.【点拨】解决水中航行问题的关键:(1)弄清以下数量关系:①路程=速度×时间.②顺流行驶速度=静水中的速度+水的速度,即v顺=v静+v水;逆流行驶速度=静水中的速度-水的流速,即v逆=v静-v水.③v顺-v水=v逆+v水.(2)确定建立方程的根据:①求速度时,根据往返的路程相等列方程.②求两码头间的距离时,既可设间接未知数,也可设直接未知数,若是前者,则根据往返路程相等列方程;若是后者,则根据“表示静水中速度的两个不同的式子相等”列方程.【跟踪训练】(《名校课堂》3.3第2课时习题)丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?解:设装运香菇的汽车需x辆.根据题意,得1.5x+2(6-x)=10.解得x=4.所以6-x=2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.三、巩固训练1.一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知船在静水中的平均速度为27 km/h,求水流的速度.解:设水流的速度为x km/h.根据题意,得2(27+x)=2.5(27-x)解得x =3.答:水流的速度为3 km/h.2.甲粮仓存粮1 000吨,乙粮仓存粮798吨,现要从两个粮仓中共运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?解:设从甲粮仓运出x 吨,则从乙粮仓运出(212-x)吨.由题意,得1000-x =798-(212-x).解得x =207.212-207=5(吨).答:从甲仓库运出207吨,从乙仓库运出5吨.3.杭州新西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?解:设可坐4人的小船租了x 条.根据题意,得4x +6(8-x)=40.解得x =4,所以8-x =4.答:可坐4人的小船租了4条,可坐6人的小船租了4条.四、课堂小结通过这节课,你在用一元一次方程解决实际问题方面又有哪些收获?第3课时 利用去分母解一元一次方程【教学目标】1.经历利用等式的性质2,将方程中系数都化为整数并求解的过程,会解含有分母的一元一次方程.2.经历用一元一次方程解决实际问题的过程,会列含分母的一元一次方程解决实际问题.一、自主预习阅读教材P95~97“问题2及例3”,完成下列内容.1.解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等.通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等.2.解方程:3x +x -12=x +14-2x -13. 解:两边都乘12,去分母,得12×3x +6(x -1)=3(x +1)-4(2x -1).去括号,得36x +6x -6=3x +3-8x +4.移项,得36x +6x -3x +8x =3+4+6.合并同类项,得47x =13.系数化为1,得x =1347. 3.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢”.请问这群大雁有多少只? 解:设这群大雁有x 只.由题意,得2x +12x +14x +1=100. 解得x =36.答:这群大雁有36只.二、例题精讲例1 (教材P97例3变式)解方程:(1)5x -14=3x +12-2-x 3; (2)2x +13-x +26=1; (3)3x -2x -12=2-x -25. 解:(1)x =-17. (2)x =2.(3)x =1922. 【点拨】 解含分母的一元一次方程的注意点:(1)去分母时,如果分子是一个多项式,要将分子作为一个整体加上括号;(2)去分母时,整数项不要漏乘各分母的最小公倍数;(3)去括号时容易出现漏乘现象和符号错误.【跟踪训练1】 (《名校课堂》3.3第3课时习题)解下列方程:(1)2x -13=x +24; 解:去分母,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)2x -12=x +24-1; 解:去分母,得4x -2=x +2-4.移项,得4x -x =2+2-4.合并同类项,得3x =0.系数化为1,得x =0.(3)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.例2 (教材补充例题)书正和子轩两人登一座山,书正每分钟登高10米,并且先出发30分钟,子轩每分钟登高15米,两人同时登上山顶.这座山有多高?解:设这座山高x 米,依题意,有x -10×3010=x 15,解得x =900. 答:这座山高900米.【跟踪训练2】 某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的距离为10千米,求A 、B 两地之间的距离.解:设A 、B 两地之间的距离为x 千米,则B 、C 两地之间的距离为(x -10)千米,由题意,得x 8+2+x -108-2=7,解得x =32.5. 答:A 、B 两地之间的距离为32.5千米.三、巩固训练1.解方程3x -72-1+x 3=1,去分母后的方程为(D) A .3(3x -7)-2+2x =6 B .3x -7-(1+x)=1C .3(3x -7)-2(1-x)=1D .3(3x -7)-2(1+x)=62.如果式子1-2x 3的值等于5,那么x 的值是(B) A .-5 B .-7 C .3 D .53.解下列方程:(1)y -12=y +25; (2)2x -23-2x -36=1. 解:(1)y =3. (2)x =72. 4.一块金银合金重770克,金放在水中质量减轻119,银放在水中质量减轻110,这块合金放在水中质量一共减轻50克,这块合金中金、银各多少?解:设合金中含金x 克,则含银(770-x)克.根据题意,得119x +110×(770-x)=50. 解得x =570.所以770-x =770-570=200.答:这块合金中含金570克,含银200克.四、课堂小结1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘各分母最小公倍数的目的是什么?3.4 实际问题与一元一次方程第1课时 和差倍分问题【教学目标】能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列一元一次方程解决和差倍分问题.一、自主预习出青林场今年植树2 800棵,比去年植树的2倍还多400棵,去年植树多少棵?(1)这个题目中的已知量是今年植树棵树,未知量是去年植树棵树;(2)这个题目中的等量关系是今年植树棵树=2×去年植树棵树+400棵;(3)列出方程解答这个问题.解:设去年植树x 棵.根据题意,得2 800=2x +400.解得x =1 200.答:去年植树1 200棵.二、例题精讲例 清池中学少年宫为鼓励阳光少年自尊自爱,勤奋学习,准备对五名表现相当优秀的阳光少年进行奖励.通过了解,好乐多超市每支钢笔的价格比每本笔记本高8元,用124元恰好可以买到3支钢笔和2本笔记本.每支钢笔和每本笔记本的价格各是多少元?【分析】 设每支钢笔的价格为x 元,则每本笔记本的价格为(x -8)元.根据用124元恰好可以买到3支钢笔和2本笔记本,列一元一次方程求解.【解答】设每支钢笔的价格为x元,则每本笔记本的价格为(x-8)元.根据题意,得3x+2(x-8)=124.解得x=28.则x-8=20(元).答:每支钢笔的价格为28元,每本笔记本的价格为20元.【点拨】用“各分量之和等于总量”列一元一次方程.【跟踪训练】为促进教育均衡发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.解:设女生有x人,根据题意,得x+x+3=45.解得x=21.则x+3=24.答:该班男生有24人,女生有21人.三、巩固训练1.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完,设原有树苗x 棵,则根据题意列出方程正确的是(A)A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C.5(x+21-1)=6x D.5(x+21)=6x【点拨】用表示同一个量的两个不同的式子相等列一元一次方程.2.把300个苹果按4∶5∶6分给幼儿园的小、中、大三个班.小班、中班、大班各分得多少个苹果?解:设一份为x个苹果,则小班、中班、大班分别为4x、5x、6x.根据题意,得4x+5x+6x=300.解方程,得x=20.则4x=80,5x=100,6x=120.答:小班、中班、大班各分得80、100、120个苹果.四、课堂小结用一元一次方程解决实际问题的基本过程如下:这一过程一般包括设、列、解、检、答等步骤,即设未知数,列方程,解方程,检验所得结果,确定答案,正确分。