2018年高三数学高考复习:不等式的综合应用
- 格式:doc
- 大小:322.00 KB
- 文档页数:5
2018年高考数学总复习不等式的综合命题趋势探究1.从内容上看,不等式经常作为一种工具与函数和方程结合在一起,去研究函数和方程的有关题目;或利用函数和方程的理论研究不等式.如根的分布、恒成立、解析几何中参数的取值范围问题等都是高考命题的热点内容,在高考试题中往往以综合题出现.另外,高考试题中还常以应用题的形式考查函数、方程和不等式的综合问题.2.从考查形式上看,选择题主要考查实数的大小比较及简单的综合问题;填空题主要考查含参数问题中参数的取值范围及函数的最值等;解答题主要是考查不等式与函数、数列、解析几何等知识的综合题目.知识点精讲不等式经常作为一种研究函数和方程有关命题的工具,反之,利用函数和方程的理论也可研究不等式,如恒成立和根的分布问题等.这些都是高考命题中的重点内容,往往以综合题形式出现.题型归纳及思路提示题型不等式恒成立问题中秋参数的取值范围思路提示解答不等式恒成立问题的基本思想是借助函数思想,通过不同的角度构造函数,借助函数图像来解决,其方法大致有:(1)借助函数图像或利用一元二次方程判别式来求解.将原不等式通过移项后转化为某个函数值恒正(或非负)、恒负(或非正)的问题,再借助图像或判别式来求解.(2)分离自变量和参变量,利用等价转化思想将其转化为求函数的最值问题.(3)变更主元,利用函数与方程的思想求解.(4)借助两个函数图像比较两函数值的大小.构造两个函数,并画出它们的图像,通过图像来比较两个函数值的大小,即用数形结合思想来解决恒成立问题.一、利用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化为二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到很好解决.例对于x R,不等式2230x x m,求实数m的取值范围.解析不妨设2f x x x m,其函数图像是开口向上的抛物线,为了使()0()23f x(xR ),只需0,即2(2)4(3)0m,解得2m,故实数m 的取值范围(,2].变式1 若对于xR ,不等式2230mxmx,求实数m 的取值范围.例已知函数2()22f x xkx 在1x 时恒有()f x k ,求实数k 的取值范围.解析令2()()22F x f x k xkx k ,则()0F x 对一切1x恒成立,()F x 的图像是开口向上的抛物线,对称轴为xk .①当对称轴1xk 时,()F x 在(1,)上单调递增,故只需(1)F 122k 0k ,得31k;②当对称轴1x k 时,()F x 在(1,)上的最小值为()F k ,故只需()F k 22220kkk ,得11k.由①②知k 的取值范围是[3,1]. 评注为了使()f x k 在[1,)上恒成立,构造一个新函数()()F x f x k 是解题的关键,再利用二次函数的图像和性质进行分类讨论,使问题得到圆满解决.变式 1 已知函数2()lg(1)f x x xx ,若不等式(3)(392)0xxxf m f 对任意xR 恒成立,求实数m 的取值范围.二、分离自变量和参变量,利用等价转化思想将其转化为求函数的最值问题通过等价变形,将变量与参变量从整体式中分离出来,转化为()(f x 或,,)a恒成立问题:(1)若()f x 在定义域内存在最大值m ,则()(())f x a f x a 恒成立a m (或am );(2)若()f x 在定义域内存在最小值m ,则()(())f x a f x a 恒成立a m (或a m );(3)若()f x 在定义域内不存在最值,只需找到()f x 在定义域上的最小上界(或最大下界)m ,即()f x 在定义域上增大(或减少)时无限接近但永远取不到的那个值,来代替上述两种情况下的m ,只是等号均可取到.例当(1,2)x时,不等式240x mx恒成立,则m 的取值范围是 .解析解法一:构造函数2()4f x xmx ([1,2]x ).由于当(1,2)x时,不等式240xmx 恒成立,则(1)0f ,(2)0f ,即140m 且4240m,解得5m.解法二:分离参数法.(1,2)x 时,不等式240x mx 2(4)mxx21xmx,令214()()xf x xxx,因为22244()10x f x xx在区间(1,2)上恒成立,故函数()f x 在区间(1,2)上单调递增,故5()4f x ,所以5m,因此m 的取值范围是(,5]. 评注若本题中的条件改为[1,2]x,则m 的取值范围是(,5),希望同学们认真、仔细地体会其中的不同.变式1 设函数2()1f x x对任意的3[,)2x ,2()4()(1)x f m f x f x m4()f m 恒成立,则实数m 的取值范围是 .变式2 不等式2|3||1|3x x aa 对任意实数x 恒成立,则实数a 的取值范围为()A.(,1][4,) B.(2][5,)C.[1,2]D. (,1][2,)变式3 若不等式lg(2)1lg()ax ax 在[1,2]x时恒成立,试求a 的取值范围.变式4 已知不等式11112log (1)122123a a n nn对于一切大于1的自然数都成立,试求实数a 的取值范围.三、变更主元例若不等式221(1)x m x,对满足22m的所有m 都成立,求x 的范围.分析欲求x 的范围,将x 视为参数,将m 视为主元,那么关于x 的二次不等式转化为关于m 的一次不等式的形式进行求解,非常简捷.解析原不等式可化为2(1)(21)0m xx .令2()(1)(21)f m m xx (22)m,它是关于m 的一次函数. 由题意知22(2)2(1)(21)(2)2(1)(21)f x x f xx ,解得171322x,所以x 的取值范围是1713(,)22.评注利用函数思想,确定主元,根据一次函数的性质求解.变式 1 对于满足04p 的所有实数p ,使不等式243xpx x p 都成立的x 的取值范围是()A.(,1)(3,) B. (1][3,)C.(1,3)D.[1,3]例7.37 已知()f x 是定义在[1,1]上的奇函数,且(1)1f .若,[1,1]a b ,0a b ,有()()0f a f b a b.(1)判断函数()f x 在[1,1]上是增函数还是减函数;(2)解不等式11()(2)22f xf x;(3)若2()21f x ma m 对所有[1,1]x ,[1,1]a 恒成立,求实数m 的取值范围.分析本题亮点在于利用主元变更和等价转化的思想逐步消去参数,从而求得实数m 的取值范围.解析(1)设1211x x ,则1212()()()()f x f x f x f x 121212()()()0f x f x x x x x ,可知12()()f x f x ,所以()f x 在[1,1]上是增函数.(2)由()f x 在[1,1]上是增函数知11121121211222xx xx,解得1142x,故不等式的解集为11[,]42. (3)因为()f x 在[1,1]上是增函数,所以()(1)1f x f ,则函数()f x 在[1,1]上的最大值为1,依题意有2211mam 对[1,1]a恒成立,即220mam 恒成立,令2()2g a ma m ,[1,1]a ,函数()g a 是关于a 的一次函数,若[1,1]a 时,()g a 恒成立,则22(1)20(1)20g m m g mm,解得(,2]{0}[2,)m .评注对于(1),抽象函数单调性的证明往往借助定义,利用所给条件,判断差的符号;对于(2),后一步解不等式往往是上一步单调性的继续,通过单调性,将函数值的大小转换到自变量的大小上来;对于(3),确认主元,把22mam 看为关于a 的一次函数,即2()2g a ma m 在[1,1]a 上大于对于0,利用()g a 是一条直线这一图像特征,数形结合得关于m 的不等式组,从而得m 的范围.变式 1已知22()2x a f x x(x R )在区间[1,1]上是增函数.(1)求实数a 的值所组成的集合A ;(2)设关于x 的方程1()f x x的两根为1x ,2x ,试问:是否存在实数m ,使得不等式2121||mtm x x 对任意aA 及[1,1]t恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.题型函数与不等式综合思路提示对于函数不等式,要注意从函数观点出发,转化为利用函数的图像和性质来解不等式.例若不等式29(2)2xk x 的解集为区间[,]a b ,且2ba ,则k.解析如图7-21所示,直线(2)2y k x 过定点(2,2),因为原不等式的解集为[,]a b ,且3b,又2ba,所以1a,则直线与圆的交点为(1,22)A ,代入直线方程(2)2y k x ,得2k .变式 1已知函数()f x 的定义域为[2,),部分对应值如表7-3,()f x 为()f x 的导函数,函数()y f x 的图像如图7-22所示,若两正数a ,b 满足(2)1f ab ,则33b a的取值范围是()表7-3x20 1 ()f x 111A.64(,)73B.37(,)53C.26(,)35D.1(,3)3例设函数1()ln xf x x ax在[1,)上为增函数.(1)求正实数a 的取值范围;(2)当1a时,求证*1111111ln 1(234231n nN nn 且2)n.分析由已知函数是给定区间上的增函数,则()0f x ,由此求参数a 的取值范围. 解析(1)由已知21()(0)ax f x aax,依题意得210ax ax对[1,)x 恒成立,又*a R ,所以10ax 对[1,)x 恒成立,所以1ax对[1,)x恒成立,故max 1()ax ,又因为101x,所以只需1a,所以正实数a 的取值范围是[1,). (2)当1a ,当1x 时,1()ln (1)0x f x xf x,即1ln (1)x x xx,故ln(1)1x x x,0x.取1x n*()nN ,得11ln(1)1n n *()n N .所以有11ln(1)1n n,11ln(1)21n n ,,11ln(1)12,将以上1n 个不等式相加,得2111lnln1123n n n,即111ln 23nn.构造函数()ln(1)([0,1])g x x x x ,由1()1011x g x x x ,得函数()g x 在区间[0,1]上单调递减.故当01x时,()(0)0g x g ,令1x n,则11ln(1)n n.所以有11ln(1)11n n ,11ln(1)22n n ,,11ln(1)11,将以上1n 个不等式相加,得2311ln ln ln112121n n n ,即111ln 1231nn .综上可得*1111111ln 1(234231n nN nn 且2)n.变式1已知函数2()2ln f x x x a x .(1)若函数()f x 在区间(0,1)上恒为单调函数,求实数a 的取值范围;(2)当实数1t时,不等式(21)2()3f t f t 恒成立,求实数a 的取值范围.有效训练(限时45分钟)1.不等式2||20xx 的解集是()A.{|22}x x B. {|2x x 或2}x C. {|11}x xD.{|1x x或1}x 2.已知不等式210axbx 的解集是11[,]23,则不等式20xbx a 的解集是()A. (2,3)B. (,2)(3,) C.11(,)32D. 11(,)(,)323.不等式22|log ||||log |x x x x 的解集是()A. (0,1)B. (1,) C.(0,) D. (,)4.若不等式210xax 对一切1(0,]2x成立,则a 的最小值为()A.0 B.2 C. 52D. 35.设函数246,0()6,0xx xf x x x,则不等式()(1)f x f 的解集是()A.(3,1)(3,) B. (3,1)(2,)C. (1,1)(3,) D.(,3)(1,3)6.若关于x 的不等式2(1)4m xxx 的解集为{|02}x x ,则实数m()A.12B.1 C.2 D.7.已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd的取值范围是 .8.关于x 的不等式组22202(25)54xx x kx 的整数解的集合为{2},则实数k 的取值范围是 .9.已知符号函数1,0sgn 0,01,0xxx x,则不等式(1)sgn 2x x 的解集是 .10.已知集合2{|540}A x xx ,2{|220}B x xax a ,若B A ?,求实数a的取值范围. 11.已知函数()||f x x a .(1)若不等式()3f x 的解集为{|15}x x,求实数a 的值.(2)在(1)的条件下,若()(5)f x f x m 对一切实数x 恒成立,且实数m 的取值范围.12.(1)解关于x 的不等式2(lg )lg 20x x ;(2)若不等式2(lg )(2)lg 10x m x m 对于||1m 恒成立,求x 的取值范围.最有效训练题291.B 解析不等式组1||31x yx y 所表示的平面区域如图7-54阴影部分所示,易知)1,0(A ,联立131x yx y ,得)2,1(B ,联立131x yx y ,得23)121(221),21,21(ABCS C ,.故选B .2.D 依题意,满足3,0)4)(1(x y x y x 的区域如图7-55阴暗部分所示,则22y x的最小值为10.故选D .3.B 解析依题意,若使目标函数)0(a y ax z ,取得最大值的最优解有无穷多个,则53ACk a,得53a.故选B .4.B 解析如图7-56所示,不等式组表示的可行域(阴暗部分),当直线zx y2过点),(a a A 时,取得最小值a 3,当直线z x y 2过点)1,1(B 时,取得最大值3.又最大值是小值3倍,则31,93aa .故选B .5.D 解析不等式组表示的可行域(阴暗部分)如图7-57所示,|42|y x z 表示区域内动点),(y x P 到直线042y x的距离的5倍.当P 点位于点A 时,z 取得最大值.联立,05202y xy x 解得)9,7(A ,故215|4187|5max z .故选D .6.D 解析不等式组表示的可行域如图7-58所示,其面积为)1(2|1|21a a ,解得3a,故选D .7.)24,7(解析因为点)1,3(和)6,4(在直线023a y x 的两侧,所以0)24)(7(a a,得247a .8.2解析依题意,约束条件表示的平面区域如图7-59所示,当直线z xy过点)0,2(A 时,z 取最小值,此时2z.所以2min z .9.32解析)1(84421kk k S,则1618)1(818)1(8188818122kk kk kkkk kkS 321618)1(82k k .当且仅当2k 时,取“=”号),故1kkS 的最小值为32.10.52解析作出可行域,如图607所示的阴影部分,经分析,当y x z2向上平移至与圆422yx相切位置时,z 取最大值.则52||,25||z z d,又因z 取最大值,所以52maxz .11.解析依题意,0,01491003003020504yxy x y x 求y x P32131的最小值.如图7-61所示,作出可行域,平移直线032yx ,当直线经过点)10,4(时,z 取最小值93,故当30,5.12w v 时所需经费最少,此时所花的经费为93元.12. 解析不等式组的解集为3条直线032:1y x l .01553:3.0632:2y x l y x l 所围成的三角形内部(不含边界);如图7-62所示,设1l 与2l ,1l 与3l ,2l 与3l 交点分别为A 、B 、C ,则坐标分别为A )43,,815(,B(0,-3),C )1912,,1975(,作一组平行线t yxl :平行于0:0yxl ,当t 往0l 右上方移动时,t 随之增大,所以当l 过C 点是y x 最大值为,,1963但不是整数解,又有其19750x知x 可取1,2,3,当1x 时,代入原不等式组的2y,所以,1:0yxl 当2x时,得0y或-1,所以2:0y x l 或1当3x 时,1y,所以2:0yxl 故y xz的最大整数解为2yx 或13yx。
高三数学理科复习28-不等式的综合应用
【学习难点疑点】
1.不等式功能:不等式的知识已渗透到函数、三角、数列、解析几何、立体几何等内容中,
体现不等式广泛运用的工具功能.
2.建立不等关系的途径:运用不等式知识解题的关键是建立不等式关系,其建立的途径有:
利用几何意义;利用判别式;应用变量的有界性;应用函数的有界性;应用均值不等式等.
【知识复习与自学质疑】
1.设点在直线位于第一象限内的图象上运动,则的最大值是 .
2.已知,且都是正数,则的最小值是 .
3.已知,则的取值范围为,的取值范围为 .
4.给出下列四个不等式:
①②③④其中正确的不等式有 .(填序号)
【例题精讲】
1.若关于的方程有实数解,求实数的取值范围.
2.已知关于的方程的两根为,试问:是否存在实数,使得不等式对任意实数及恒成立?
若存在,求的取值范围,若不存在,说明理由.
3.某渔业公司年初用了98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年
都增加4万元,每年捕鱼收益为50万元.
(1)问从第几年起开始获利?
(2)若干年后,有两种处理方案:一是,平均获利最大时,以26万元出售该船;二是,总收入获利最大时,以8万元出售该船.问:哪种方案合算?(注:取)
【矫正反馈】
1.如果正数满足那么的取值范围是 .
2.已知直角三角形的周长为定值,求这个三角形面积的最大值.
【迁移应用】
1.若均为正数,且,则大小为____ .
2.如果函数的最小值是,那么的值为 .
3.若对于中的实数,不等式均成立,则的取值范围 .
4.已知集合,函数的定义域为.
(1)若,求实数的取值范围;
(2)若方程在内有解,求实数的取值范围。
不等式的性质及解法知识要点:不等式与等式有许多不同,主要包括:1、等式两边同乘(或除)以一个数(或式),等式仍然成立;不等式两边同乘(或除)以一个数(或式),不等式能否成立,要考虑该数(式)的符号,即2、解方程时允许出现不等价转化,出现增根时以验根弥补;解不等式要求必须是等价转化。
3、解方程组时,方程组中的方程之间允许进行加、减等运算,以达到消元目的;解不等式组时,不等式组中的不等式之间只能独立求解,再求交集。
不等式的性质可分为:1)、公理这也是将不等式问题——比较两个实数a、b的大小,转化为恒等变形问题的依据。
2)、基本性质:(1)对称性这个性质等式中也存在,即,对称性说明了每一个已知的不等式都有两种形式,如:这个基本不等式本身就有及两种形式,要能灵活运用。
当然若进行等价转化还会有许多变式。
(2)传递性这个性质是媒介法比较两个实数大小的依据,是放缩法证明不等式的依据。
(3)移项法则如:,相当于在这个不等式两边同时加上-3得到的。
3、运算性质:(1)加法运算:(2)减法运算:统一成加法运算(3)乘法运算:(4)除法运算:统一成乘法运算(由在(0,+)上是减函数,)(5)乘方运算:(6)开方运算:4、函数的单调性:(1)()(2)()诸如此类:上是减函数)已知幂函数、指数函数、对数函数等函数的单调性可做为不等式的性质运用。
我们知道,求不等式的解集叫做解不等式,如果两个不等式的解集相等,那么这两个不等式就叫做同解不等式。
一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式那么这种变形叫做不等式的同解变形。
解不等式的每一步都要求是同解变形。
一元一次不等式(组)和一元二次不等式的解法,是解其它各种不等式(组)的基础。
高次不等式、分式不等、无理不等式、指数对数不等式的解法都是通过等价转化为一元一次不等式(组)和一元二次不等式后求解。
在解不等式的过程中,要注意保持字母的允许值范围不发生变化。
为此,要注意不等式两边同乘以一个数或式对不等式所产生的影响,要注意不等式两边同次乘方、开方或取对数等运算的可行性。
第三节不等式选讲(选修4-5)考纲解读1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值.2.了解柯西不等式与其几何意义,会用它来证明不等式和求最位.3.了解基本不等式,会用它来证明不等式和求最值.4.会用综合法、分析法、反证法与数学归纳法证明不等式.命题趋势探究本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档.知识点精讲一、不等式的性质1.同向合成(1);(2);(3).(合成后为必要条件)2.同解变形(1);(2);(3).(变形后为充要条件)3.作差比较法二、含绝对值的不等式(1);(2)(3)零点分段讨论三、基本不等式(1)(当且仅当等号成立条件为)(2)(当且仅当等号成立条件为);(当且仅当时等号成立)(3)柯西不等式(当且仅当时取等号)①几何意义:②推广:.当且仅当向量与向量共线时等号成立.四、不等式的证明(1)作差比较法、作商比较法.(2)综合法——由因到果.(3)分析法——执果索因.(4)数学归纳法.(5)构造辅助函数利用单调性证明不等式.(6)反证法.(7)放缩法.题型归纳即思路提示题型201 含绝对值的不等式一、解含绝对值的不等式思路提示对于含绝对值的不等式问题,首先要考虑的是根据绝对值的意义去掉绝对值.常用的去绝对值方法是零点分段法.特别用于多个绝对值的和或差不等式问题.若单个绝对值的不等式常用以下结论:;;.有时去绝对值也可根据来去绝对值.例16.14 在实数范围内,不等式的解集为 .解析由于,即,即,所以,所以.所以不等式的解集为.变式1 不等式的解集是()A. B. C. D.变式2 已知函数.(1)证明:;(2)求不等式的解集.二、含绝对值不等式恒成立,求参数问题例16.15 (2012辽宁理24)已知,不等式的解集为.(1)求的值;(2)若恒成立,求的取值范围.解析(1)由得,又的解集为,所以当时,不合题意.当时,得.(2)记,则,所以,因此,即的取值范围是.变式1 (2012新课标理24)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.变式 2 (2013重庆理16) 若关于实数的不等式无解,则实数的取值范围是 .变式 3 (2013全国新课标I理24) 已知函数,.(1)当时,求不等式的解集;(2)设,且当时,,求的取值范围.三、含绝对值(方程)不等式有解,求参数问题例16.16 若关于的不等式存在实数解,则实数的取值范围是 .解析不等式有解,则,故实数的取值范围是.变式1 (2012陕西理15)若存在实数使成立,则实数的取值范围是 .变式2 已知,关于的方程有实根,求的取值范围.四、已知含绝对值不等式的解集,求参数的值或范围例16.17 (2013福建理23)设不等式的解集为,且 .(1)求的值;(2)求函数的最小值.分析先根据不等式的情况求出字母取值,在利用不等式求解最值.解析(1)因为且,所以,且,解得.又,所以.(2)因为,当且仅当,即时取等号,所以的最小值为.变式1 设函数,其中.(1) 当时,求不等式的解集;(2)若不等式的解集为,求的值.变式2 (2013辽宁理24) 已知函数,其中.(1) 当时,求不等式的解集;(2) 已知关于的不等式的解集为,求的值.变式 3 (2012山东理13) 若不等式的解集为,则实数= .题型202 不等式的证明一、比较法(差值法和比值法)思路提示将待比较的两个代数式通过作差或作商,与与进行比较,得到大小关系.例16.18 已知均为正实数,且,求证:.分析比较与的大小可通过作差法.解析.因为,,所以,,.故.所以.评注作差比较的基本步骤为:(1)作差.(2)变形.(3)判断符号.变式 1 已知,且,. 求证:.二、利用函数的单调性证明思路提示使用对象:在某区间成立的函数不等式、数值不等式的证明通常是通过辅助函数完成的.解题程序:(1)移项(有时需要作简单的恒等变形),使不等式一端为,另一端为所作辅助函数.(2)求并验证在指定区间上的单调性.(3)求出区间端点的函数值(或极限值),其中至少有一个为或已知符号,作比较即得所证.例16.19 已知,求证:.分析属于在某区间上成立的不等式,通过移项使得一端为,另一端为所作的辅助函数,利用函数的单调性证明.解析原不等式等价于.令,.令,则,故在上是减函数,所以当时,,故. 故,所以在上是增函数.又,所以当时,成立.于是成立.变式1 证明:当时,.三、综合法与分析法思路提示字母分别表示一组不等式,其中为已知不等式,为待证不等式.若有,综合法是由前进式地推导,分析法是由倒退式地分析到.用分析法时,必须步步可逆.1.综合法(由因到果)例16.20 证明:.分析观察到与是负数,被开方数分别为,显然满足,这样可以考虑将分子有理化.解析,,,故,即.评注类似的问题可以总结为d的形式或者更广泛的形式.变式1 设,求证:.2.分析法(由果索因)例16.21 设,求证:.分析利用分析法将证明的不等式进行恒等变形,从而探寻证明的突破口.解析要证明,只要证,即证.因为,所以.故原不等式成立.评注在证明不等式时,经常用分析法探寻证明思路,再用综合法表述证明过程,有些不等式的证明需要一边分析,一边综合,在使用分析法证明时,要注意分析过程步步可逆.变式1 若,且,求证:.四、反证法思路提示从否定结论出发,经过逻辑推理导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的.它的依据是原命题与逆否命题同真假.例16.22 已知为不小于的正数,求证:不可能同时大于.分析假设三式都大于,经过推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论的正确性.解析假设三式都大于,即,有①同理②③三式相加得,矛盾,故原命题成立.评注对于从正面证明不易着手,但从反面证明相对简单的命题,利用反证法解题会很方便.这也体现了数学中“正难则反”的思想.变式1 已知,,求证:.五、放缩法思路提示预证,可通过适当放大或缩小,借助一个或多个中间量,使得或,再利用传递性,达到证明目的,常见的放缩途径有“添舍”放缩、“分母”放缩和“单调”放缩.例16.23 已知正数满足,求证:.分析采用“添项”放缩法解析①同理②③①+②+③得.评注放缩法的主要依据是不等式的传递性,通常,若所证不等式两边形式差异较大,则应考虑用放缩法.本题也可用柯西不等式证明:,所以.变式1 证明:.例16.24 求证:.分析采用“分母”放缩法证明.解析由题意,,则,.所以原不等式成立.例16.25 设,且满足,问取何值时,以为边可构成三角形,并判断该三角形的形状.解析由幂函数性质可知,,要构成三角形,只需,故,即证明,只需证明,即. ①由,且,由指数函数单调递减可知,要使得式①成立,只需.因此可知,要成立.只需成立.当时,,三角形为直角三角形;当时,即,此时三角形为钝角三角形;当时,即,此时三角形为锐角三角形.六、三角换元法思路提示若,等为已知条件,求证不等式时,利用三角换元法较容易,但是务必注意换元前后参数的范围变化.例16.26 设实数满足,,求证:.分析由,联想到三角换元.解析令,,.当,即时,取得最大值,证毕.评注三角换元在不等式证明以与求函数的最值、解析几何中参数的范围与最值方面有着极大的作用,常常可化难为易.变式1 设,,求证:.七、构造法思路提示一般说来,用构造法证明不等式,常见的构造方法如下:(1)构造辅助函数.(2)构造辅助数列.(3)构造几何图形.例16.27 设,,若,求证:.分析构造一次函数证明.解析即.若视为未知数,并用代替,即证明时,.即证.设,即证时,.而是关于的一次函数,且,,因此当时,成立,从而原不等式成立.评注本题也可利用如下解法:,,即证,,即证,即,由,得,故成立.例16.28 已知为三角形的三边长,求证:.分析不等式左右两边的个式子具有相同的结构形式,故考虑构造函数.解析,,说明函数在上单调递增,又为三角形的三边长,故,则.变式1 证明:.变式2 已知且,,求证:.例16.29 证明:当且时,有.分析本题通过构造辅助数列证明.解析构造数列,因为,所以数列为单调递减数列.所以,即.评注本题将看作参数构造辅助数列,判断数列的单调性从而证明结论.例16.30 设,求证:.分析根据已知式的形式特征联想勾股定理,构造几何图形证明.解析如图16-34所示,构造正方形,设,则,则.变式 1 设,求证:.八、利用柯西不等式证明不等式思路提示柯西不等式不仅具有优美的代数表现形式与向量表现形式,而且有明显的几何意义,它与基本不等式具有密切的关系,其作用类似于基本不等式可用来求最大(小)值或证明不等式,不过它的特点更明显应用更直接.1.二维形式的柯西不等式设,.等号成立图.证明设,由,得,又,即,,故等号成立即.2.一般形式的柯西不等式设与为任意实数,则,当且仅当(规定时,)时等号成立.证法一:当全为时,命题显然成立.否则,考查关于的二次函数,显然恒成立.注意到,而恒成立,且,故的判别式不大于零,即,整理后得.证法二:向量的内积证法.令,,为与的夹角.因为,且,所以,即,等号成立或平行.柯西不等式提示了任意两组实数积之和的平方与平方和之间的关系,应用它可以简单地证明许多复杂的不等式,下面举例说明.例16.31 已知函数,且的解集为.①求的值;②若,且,求证:.解析①因为,等价于.由有解,得,且其解集为.又的解集为,故.②由①知,又,由柯西不等式得.变式 1 已知,,求证:.变式2 已知,.求证:.例16.32 设实数满足,求证:.解析由柯西不等式,.所以,所以.评注有些证明不等式的题,表面上看与柯西不等式无关,然而通过对原不等式作适当的变形改造后却可以应用柯西不等式加以解决,当然具体如何变形改造是关键,也是难点,这往往需要经过观察、直觉、猜测、推理等.变式1 已知,且,求证:.变式 2 已知正实数满足,求证:.最有效训练题61(限时45分钟)1.不等式的解集是()A. B. C. D.2.设,则()A. 都不大于B. 都不小于C. 至少有一个不大于D. 至少有一个不小于3.若,,则的大小关系是()A. B. C. D. 由的取值决定4.用数学归纳法证明某不等式,左边,“从到”应将左边加上()A. B. C. D.5. 的最大值为()A. B. C. D.6.若正数满足,则①的取值范围是;②的取值范围是 .7.在实数范围内,不等式的解集为 .8.若存在实数使成立,则实数的取值范围是 .9.已知,.求证:.10.已知函数.(1) 当时,求不等式的解集;(2)若的解集包含,求的取值范围.11. 已知函数,且的解集为.①求的值;②若,且,求证:.12.已知函数.设数列满足,,数列满足,.(1)用数学归纳法证明:;(2)证明:.。
不等式的综合运用(教案)复习目标:1.不等式的运用已渗透到函数,三角、解析几何、立体几何等内容,体现了不等式的重要性、思想方法的独特性2.函数性质、三角式、直线与圆锥曲线、数列的通项及部分和的变化等内容常与不等式的证明有密切的关系,要熟悉这方面问题的类型和思考方法.3.应用题中有一类是寻找最优化结果,通常是把问题转化为不等式模型,再求出极值课前预习:1.已知,,x y z R+∈且满足条件()1,xyz x y z ++=则()()x y y z ++的最小值为(A) 2 (B)3 (C)4 (D)12. 已知2()3(1)32,x x f x k =-++当x R ∈时, ()f x 恒为正值,则k 的取值范围是()(,1)A -∞-()(21)B -∞- ()(21)C --()(2221)D --- 3.一批货物随17列货车从A 市以vkm/h 匀速直达B 市,已知两地铁路路线为400km ,为了安全,两列货车的间距不得小于2()20v km ,那么这批货物全部运到B 市,最快需要(A )6h (B )8h (C )10h (D )12h4. 已知f(x)是实数集上的奇函数,且在区间(0,+∞)上单调递增,若f(1/2)=0,三角形的内角A 满足f(cosA)<0,则A 的取值范围是5.设220,0,1,2b a b a ≥≥+=则的最大值为6.若lgx+lgy=2,则11x y+的最小值为典型例题例1:已知a ∈R,数列{a n }是首项为a 2,公比为a 2的等比数列,令b n =a n lga n (n ∈N),问是否存在实数a,使得数列{b n }从第二项开始,任意一项都小于它后面的项?试证明你的结论。
例2. 有一块边长为36cm 的正三角形铁皮,从它的三个角上剪下三个全等的四边形之后做成一个无盖的正三棱柱容器,要使这个容器的容积最大,剪下的三个四边形的面积之和为多少?最大容积是多少?例3.若抛物线C :y=ax 2─1上存在关于直线l:x+y=0成轴对称的两点,试求实数a 的取值范围。
E 单元不等式E1 不等式的概念与性质 E2 绝对值不等式的解法 E3 一元二次不等式的解法 E4 简单的一元高次不等式的解法E5 简单的线性规划问题14.E5【2018·全国卷Ⅰ】 若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,,,则32z x y =+的最大值为 . 14.【答案】6【解析】不等式组表示的平面区域如图中阴影部分所示,当直线y=-32x+z2经过点A (2,0)时,z 最大,所以z max =3×2+2×0=6.14.E5【2018·全国卷Ⅱ】若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z=x+y 的最大值为 . 14.【答案】9【解析】作出不等式组表示的可行域如图中阴影部分所示.当直线y x z =-+过点A (5,4)时,直线的纵截距z 最大,所以max 549z =+=.15.E5【2018·全国卷Ⅲ】 若变量x ,y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,,则13z x y =+的最大值是 .15.3 【解析】 作出不等式组表示的可行域如图中阴影部分所示,由图易知目标函数在点A (2,3)处取得最大值,最大值为2+13×3=3.12.E5【2018·浙江卷】 若x ,y 满足约束条件0262x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,,,则z=x+3y 的最小值是 ,最大值是 . 12.【答案】2-;8【解析】 作出如图中阴影部分所示的可行域,易知A (2,2),B (4,-2),C (1,1),目标函数表示斜率为-13的一组平行直线.由图可知,当直线x+3y-z=0经过点A 时,z 取得最大值,最大值为2+3×2=8;当直线x+3y-z=0经过点B 时,z 取得最小值,最小值为()4322+⨯-=-.13.E5【2018·北京卷】 若x ,y 满足x+1≤y ≤2x ,则2y-x 的最小值是 .13.3 【解析】 x ,y 满足的可行域如图中阴影部分所示,联立{y =x +1,y =2x ,得交点坐标为(1,2),由图可知,当目标函数z=2y-x 过点(1,2)时,z 有最小值,z min =2×2-1=3.E6 2a b+≤13.E6【2018·天津卷】已知,a b ∈R ,且360a b -+=,则123ab+的最小值为 . 【解题提示】运用基本不等式求解. 【答案】14【解析】由已知得36a b -=-,由基本不等式得1122284a b +≥==(当且仅当a=-3b=-3时取等号).E7 不等式的证明方法E8 不等式的综合应用 E9 单元综合8.E9【2018·北京卷】 设集合A={(x ,y )|x-y ≥1,ax+y>4,x-ay ≤2},则( ) A.对任意实数a ,(2,1)∈A B.对任意实数a ,(2,1)∉A C.当且仅当a<0时,(2,1)∉A D.当且仅当a ≤32时,(2,1)∉A8.D 【解析】当a=0时,A 为空集,排除A ;当a=2时,(2,1)∈A ,排除B ;当a=32时,作出可行域如图中阴影部分所示,由x y 13x y 42-=⎧⎪⎨+=⎪⎩,,得P (2,1),又∵ax+y>4,取不到边界值,∴(2,1)∉A.故选D.1.【2018·北京通州区期末】 已知a ,b ∈R ,a>b>0,则下列不等式一定成立的是( ) A . 1a >1b B . tan a>tan b C . |log 2a|>|log 2b| D . a ·2-b >b ·2-a1.D 【解析】 对于A ,a>b>0,则1a <1b ,故不成立;对于B ,不妨设a=3π4>b=π4>0,则tan 3π4=-1,tan π4=1,故不成立;对于C ,不妨设a=2,b=14,则|log 2a |=1,|log 2b |=2,故不成立.故选D . 2.【2018·唐山五校联考】 已知不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},则不等式ax 2-bx-1>0的解集是( ) A .{x|2<x<3} B .{x |-12<x <-13} C .{x |13<x <12} D .{x |x <13或x <12}2.B 【解析】 ∵不等式x 2-bx-a ≥0的解集是{x|x ≤2或x ≥3},∴x 2-bx-a=0的解是x 1=2和x 2=3,∴{2+3=b ,2×3=-a ,解得{a =-6,b =5,则不等式ax 2-bx-1>0即为-6x 2-5x-1>0,解得{x |-12<x <-13}. 3.【2018·遵义联考】 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域{x +y ≥2,x ≤1,y ≤2上的一个动点,则OA ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的取值范围是 . 3.【0,2】【解析】设z=OA⃗⃗⃗ ·OM ⃗⃗⃗⃗ =-x+y.在直角坐标系内作出可行域如图所示.由图可知,当直线z=-x+y 经过可行域内点C (0,2)时,z 有最大值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )max =-0+2=2;当直线z=-x+y 经过可行域内点A (1,1)时,z 有最小值,即(OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ )min =-1+1=0.所以OA ⃗⃗⃗ ·OM ⃗⃗⃗⃗ 的取值范围为【0,2】.4. 【2018·衡水一中月考】 若x ,y 都是正数,且x+y=3,则4x+1+1y+1的最小值为 .4.95 【解析】 设m=x+1,n=y+1.∵x+y=3,∴{x =m -1,y =n -1,则m+n=5,∴4x+1+1y+1=4m +1n =(4m +1n )(m 5+n5)=45+4n 5m +m5n +15≥1+2√4n 5m·m 5n =95,当且仅当m=103,n=53,即x=73,y=23时取等号.。
高三数学不等式的综合应用
一、选择题 1. 若0<<b a ,则 A. b
a 11< B. 10<<
b a C. 2b ab > D. b a a b >
2. 若,,y x b a >>则下列不等式中不正确的是 A. y b x a +>+ B. b x a y -<-
C. y a x a ||||>
D. y b a x b a )()(->-
3. 下列命题中正确的是
A. 若b a >,则 22b a >
B. 若22b a >,则b a >
C. 若||b a >,则22b a >
D. 若b a >||,则22b a >
4. 设a b <<0,0<<c d ,则下列不等式一定成立的是
A. bd ac >
B.
d
b c a > C. d b c a +>+ D. d b c a ->-
5. 已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是
A. ab ac >
B. c b a ()-<0
C. cb ab 22<
D. 0)(<-c a ac
6. 若0,0><n m ,且0<+n m ,则下列不等式中成立的是
A. m n m n -<<<-
B. n m m n <-<<-
C. m n n m -<<-<
D. n m n m <-<-<
7. 以下四个命题中,正确命题有
①||||b a b a >⇒>; ② ||b a b a >⇒>; ③ b a b a >⇒>||; ④b a b a >⇒>||。
A. 1个 B. 2个 C. 3个 D. 4个
8. 若R b a ∈,, 且33b a >,则下列判断正确的是 A. b a
11< B.
b a
11
>
C. b a <
D. b a >
9. 若)(,,,,,11++++∈+=+=≠∈N k b a ab Q b a P b a R b a k k k k ,则 A. Q P < B. Q P > C. Q P = D. 不能确定
10. 若a 、b 为实数,则0)(>-b a ab 成立的一个充要条件是
A. b a <<0
B. 0<<a b
C. 0>>b a
D. b
a 1
1<
11. 设偶函数||log )(b x x f a -=在)0,(-∞上为增函数,则 A. )2()1(+=+b f a f B. )2()1(+<+b f a f C. )2()1(+>+b f a f
D. )1(+a f 和)2(+b f 的大小与,a b 值有关
12. 已知三个不等式:①0>ab ,②0>-ad bc ,③0>-
b
d
a
c (其中
d c b a ,,,均为实数),用其中两个不等式作为条件,余下一个不等式作
为结论组成命题,可以组成正确命题的个数为
A. 0个
B. 1个
C. 2个
D. 3个
二、填空题:
13. 如果条件A :“21<<x ”是条件B :“m x <2”的充分不必要条件,那么实数m 的取值范围是 。
14. 已知7个商品A 和2个商品B 的价格之和大于25元,而3个商品
A 和6个
B 商品的价格之和小于21元,则2个商品A 的价格为m ,3 个
商品B 的价格为n ,则m 和n 的大小关系为 。
15. 设,,,,222222)()()(0b a c z a c b y c b a x c b a ++=++=++=>>> 则z y x ,,的大小顺序是 。
16. 已知函数)0()(2>++=a c bx ax x f 的图象经过点)3,1(-和)1,1(,若
10<<c ,则a 的取值范围是 。
三、解答题:
17. 求不等式组⎪⎩⎪⎨
⎧+-≤-+≥1
11x y x y 所表示的平面区域的面积为。
18. 已知函数 2(),()f x ax bx c g x ax b =++=+, 当 ||1x ≤时,
|()|1f x ≤,
(Ⅰ)求证:||1c ≤;
(Ⅱ)求证:当 ||1x ≤时, |()|2g x ≤;
(Ⅲ)设0a >,当 ||1x ≤时, ()g x 的最大值为2,求 ()f x 。
参考答案
一、选择题
二、填空题
13. ()∞4,+;14. M >n ;15. z >y >x ; 16. (1,2).
三、解答题:
17.
解:不等式11-+≥x y 可化为)1(-≥≥x x y 或)1(2-<--≥x x y ;
不等式1+-≤x y 可化为)0(1≥+-≤x x y 或)0(1<+≤x x y . 在平面直角坐标系内作出四条射线:
)1(-≥=x x y AB :,)1(2-<--=x x y AC :)0(1≥+-=x x y DE :, )0(1<+=x x y DF :
则不等式组所表示的平面区域如图,由于AB 与AC 、DE 与DF 互相垂直,所以平面区域是一个矩形.
根据两条平行线之间的距离公式可得矩形的两条边的长度分别为2
2和
2
2
3。
所以其面积为23。
18. Ⅰ)证明:当 ||1x ≤时, |()|1f x ≤, |(0)|||1f c =≤。
(Ⅱ)证明∵()g x ax b =+在R 上是单调函数,
∴当 ||1x ≤时,()g x 在(1)g -,或(1)g 处取最大值, ∵|(1)||||(1)||(1)|||112g a b f c f c =+=-≤+≤+=, 又|(1)||||(1)||(1)|||112g a b f c f c -=-+=--+≤-+=+=。
∴|()|2g x ≤。
(Ⅲ)解:0a >,()g x 在[1,1]-上是增函数,
(1)(1)(0)2g a b f f =+=-=,
(0)(1)21211|(0)|1||111c f f c f c c ==-≤-=-⎫
⇒=-⎬≤⇒≤⇒-≤≤⎭
()1(0)f x c f ≥-==, 即当0x =时,()f x 取最小值,
即02b
a
-=,∴0b =,又2,a b +=∴2a =。