2015八下19章〈一次函数〉导学案
- 格式:doc
- 大小:775.50 KB
- 文档页数:18
《一次函数》复习导教案班级: ___________姓名 :___________座号: __________ 抽测成绩: ____________(一)复习目标1、理解一次函数的观点;2、掌握一次函数的图像与性质;3、会用待定系数法求一次函数的表达式;4、掌握一次函数与一次方程、不等式的关系。
(二)教课过程一、活动一:一次函数的观点1、形如函数 y=_______(k、b 为常数, k___)叫做一次函数。
当b___时,函数 y=____(k____)叫做正比率函数。
2、理解一次函数观点应注意下边两点:(1)分析式中自变量 x 的次数是 ___次,( 2)比率系数 k_______。
针对训练:1、以下函数:①y=-3x②y x1③y3④y 3 x 2;此中是一3x2次函数的有。
(填序号)二、活动二:一次函数的图像与性质( 1)形状:一次函数y=kx+b 的图象是一条;( 2)平移:直线 y=kx 沿平移个单位长度获得y=kx+b 的图象,当 b>0 时,向平移;当b<0时,向平移。
( 3)一次函数 y=kx+b 中, k 与 b 的作用;k 的作用是决定: ____________________________________当 k>0 时,图像经过 _________象限, y 随 x 的增大而 ______,图像从左往右_______;当 k<0 时,图像经过 _________象限, y 随 x 的增大而 ______,图像从左往右_______;b 的作用是决定: _______________________________________当 b>0 时,一次函数图像交 y 轴的 ________________;当 b=0 时,一次函数图像交 y 轴的 ________________;当 b<0 时,一次函数图像交 y 轴的 ________________;针对训练:1、将直线 y=-3x 向上平移 4 个单位所得的直线的分析式是,y 随 x 的增大而;2、直线 y= -2x-3 向平移个单位长度获得直线y= -2x+6。
八年级数学下册一次函数 复习课导学案(一)设计者: 一、【知识体系】:1. 主要知识点回顾(1) 一次函数的定义是:若 =0,则一次函数化为了(2)一次函数y kx b =+(0k ≠ )的图象是经过点( , )和点( , )的一条直线(3)一次函数y kx b =+(0k ≠ )中k 叫 ,b 叫当0k >时 从左向右看,图象是 ,也可以说成图象向 倾斜 当0k <时 从左向右看,图象是 ,也可以说成图象向 倾斜当0b >时,图象与y 轴交点在 当0b <时,图象与y 轴交点在 (4)当0k >,0b >一次函数y kx b =+的图象过第 象限 当0k >,0b <一次函数y kx b =+的图象过第 象限 当0k <,0b >一次函数y kx b =+的图象过第 象限 当0k <,0b <一次函数y kx b =+的图象过第 象限 (5)一次函数y kx b =+(0k ≠ )中 当0k >时,y 随x 的增大而 当0k <时,y 随x 的增大而(6)已知直线1111:(0)l y k x b k =+≠和2222:(0)l y k x b k =+≠ 若:1l //2l 则 若:1l 与2l 重合 则 若:1l 与2l 相交 则 ,其交点坐标可由方程组 求得例1:已知一次函数y=kx+b(k ≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
例2:.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .例3:.已知一次函数的图象经过点A (-3,2)、B (1,6). ①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.例4:某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,•求此函数的关系式.例5业务类别 月租费 市内通话费 说明:1分钟为1跳次,不足1分钟按1跳次计算,如3.2分钟为4跳次.全球通 50元 0.4元/跳次神州行 0元 0.6元/跳次①写出z 、y 与x 之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?例6.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B 市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,•求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?例7:如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出该图象的函数关系式;②某人乘坐2.5km,应付多少钱?③某人乘坐13km,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?。
章末复习(1)——一次函数的意义、图象与性质一、复习导入1.导入课题为了更好地加深对一次函数的认识,学会一次函数的应用,本节课我们来一起梳理本章的知识结构、重要知识点和数学思想方法.(板书课题)2.复习目标(1)复习与回顾本章的重要知识点和知识结构.(2)总结本章的重要思想方法.3.复习重、难点重点:一次函数的定义、图象和性质.难点:一次函数的应用.4.复习指导(1)复习内容:P71到P109.(2)复习时间:15分钟.(3)复习要求:通过阅读课本和学习笔记梳理本章的重要知识点,查找遗漏和不足,补充完善学习笔记.(4)复习参考提纲:①确定自变量取值范围的依据有哪些?②举例说明函数的意义.③列表说明一次函数的图象及性质与k,b的符号的关系.④说明用待定系数法确定一次函数解析式的方法与步骤.⑤说出两直线l1:y1=k1x+b1与l2: y2=k2x+b2平行的条件及求两直线交点的方法.⑥说明直线的平移规律.⑦举例说明一次函数与方程(组)、不等式的关系.⑧举例说明建立一次函数模型解决实际问题的一般步骤.二、自主复习学生可参考复习参考提纲进行自学.三、互助复习1.师助生:(1)明了学情:关注学生在复习时的方法,有哪些易忘、易漏和易混点及存在的疑惑.(2)差异指导:针对不同层次的学生进行针对性指导.2.生助生:同桌之间相互研讨疑难之处.四、强化1.一次函数的定义、图象和性质.2.一次函数解析式的求法.3.一次函数与方程、不等式的联系.4.强调本章的数学思想方法.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的复习方法、收获和不足之处.2.教师对学生的评价:(1)表现性评价:对学生的复习方法和新的收获进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).一次函数是初中非常重要的一章,也是以后函数学习的基础.因此要注重章末的复习,先引导学生回顾本章知识,画出知识结构图,然后精选部分例题,巩固本章的知识点.教师要引导学生避免用孤立的眼光去看一道题,而要学会观察和思考,能举一反三地用联系的眼光去解决新的问题.评价作业(时间:12分钟满分:100分)一、基础巩固(70分)1.(15分)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为(D)A B C D2.(15分)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是(A)A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校共用时间20分钟D.自行车发生故障时离家距离为1000米3.(20分)已知一次函数y=ax+b(a、b为常数,a≠0),x与y的部分对应值如下表:那么方程ax+b=0的解是x=1,不等式ax+b>0的解集是x<1.4.(20分)“五一”劳动节某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款480或528元.二、综合应用(20分)5.衬衫系列大都采用国家5.4标准号、型(通过抽样分析取的平均值).“号”指人的身高,“型”指人的净胸围,码数指衬衫的领围(领子大小)(单位:厘米).下表是男士衬衫的部分号、型和码数的对应关系:(1)设男士衬衫的码数为y,净胸围为x,试探索y与x之间的函数关系式;(2)若某人的净胸围为108厘米,则该人应买多大码数的衬衫?解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),任取两组数代入关系式中,得:924010042k bk b+=+=⎧⎨⎩解得1417kb⎧==⎪⎨⎪⎩∴y与x之间的函数关系式为y=14x+17;(2)当x=108时,y=14×108+17=44,∴该人应该买44码衬衫.三、拓展延伸(10分)6.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求a,b的值.解:(1)点M不是和谐点,点N是和谐点.理由如下:过点M作x轴,y轴的垂线与坐标轴围成矩形的周长=1×2+2×2=6,面积=1×2=2,∴点M不是和谐点.过点N作x轴,y轴的垂线与坐标轴围成矩形的周长=4×4=16,面积=4×4=16.∴点N是和谐点.(2)∵点P是和谐点,∴2|a|+3×2=3|a|,解得a=±6,∴P(6,3)或P(-6,3).又∵直线y=-x+b过点P,∴-a+b=3,∴b=a+3.∴当a=6时,b=9;当a=-6时,b=-3.章末复习(2)——一次函数图象与性质的应用一、复习导入1.导入课题上节课我们一起复习了一次函数的有关知识,这节课我们通过上节课复习的知识要点和思想方法,进一步体验它们的应用功能(板书课题).2.复习目标(1)学会用等量关系列函数的关系式.(2)总结本章的重要知识点的应用.3.复习重、难点重点:一次函数的定义、图象和性质的应用.难点:运用函数思想解决生产、生活中的实际问题.4.复习指导(1)复习内容:典例剖析,考点跟踪.(2)复习时间:20分钟.(3)复习指导:完成所给的例题,也可查阅资料或与其他同学研讨.(4)复习参考提纲:【例1】函数的自变量x的取值范围是(C)A.x>2B.x≤2C.x<2D.x<2且x≠0【例2】一次函数y=3x-4的图象不经过(B)A.第一象限B.第二象限C.第三象限D.第四象限【例3】若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是(A)A.-4<b<8B.-4<b<0C.b<-4或b>8D.-4≤b≤8【例4】如果点P1(3,y1),P2(2,y2)在一次函数y=2x-1的图象上,则y1>y2.(填“>”“<”或“=”)【例5】已知点A(6,0)及在第一象限的动点P(x,y),且2x+y=8,设△OAP的面积为S.(1)试用x表示y,并写出x的取值范围;(2)求S关于x的函数解析式;(3)△OAP的面积是否能够达到30?为什么?解:(1)y=-2x+8.∵动点P在第一象限,∴0<x<4.(2)S关于x的函数解析式为:S=12OA·|y P|=12×6×(-2x+8)=-6x+24.(0<x<4)(3)当S=30时,-6x+24=30,解得x=-1, 又∵0<x<4,∴△OAP的面积不能达到30.【例6】在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是③、①(填序号);(2)请你为剩下的函数图象写出一个合适的情境.答案:小芳星期天早上从家出发去图书馆看书,看完书后回家吃午饭.(答案不唯一)二、自主复习学生完成复习参考提纲中的例题.三、互助复习1.师助生:(1)明了学情:关注学生在完成提纲例题时遇到的困难或解答中存在的错误.(2)差异指导:针对不同层次的学生存在的问题进行分类指导.2.生助生:相互交流,帮助矫正错误.四、强化1.点三位学生口答例1、例2、例4;点两位学生板演例3、例5;共同解答例6,共同查找问题,总结经验.2.点评其中的易错点.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己在复习一次函数应用中,所采用的分析问题和解决问题的思路、方法,交流复习收获和存在的疑点.2.教师对学生的评价:(1)表现性评价:对学生的学习方法及收获进行点评;(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时内容是对一次函数有关知识的进一步巩固.教学时注重一次函数图象和性质的应用,教学过程辅以典型例题,学生自主完成后,教师重点讲解思路及其中易错点.教学中以学生回忆为主,教师引导学生总结本章重要知识及其应用.评价作业(时间:12分钟满分:100分)一、基础巩固(70分)1.(15分)下列图象中,表示y是x的函数的个数有(B)A.1个B.2个C.3个D.4个2.(15分)某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是(C)A.汽车在高速公路上的行驶速度为100km/hB.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为60km/hD.该记者在出发后4.5h到达采访地3.(20分)若点A (2,-4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是(C )A.(1,1)B.(-1,1)C.(-2,0)D.(2,-2) 4.(20分)直线y=(3-a)x+b-2在直角坐标系中的图象如图所示,化简:|b-a |-|2-b |=1.二、综合应用(20分)5.某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方的售价增加40元;反之,楼层每下降一层,每平方的售价减少20元.已知商品房每套面积为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交首付金额(商品房总价的30%),再办理分期付款(即贷款). 方案二:购买者若一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a 元).(1)请写出每平方售价y (元/米2)与楼层x(2≤x ≤23,x 是正整数)之间的函数解析式; (2)小张已筹款120000元,若用方案一购房,他可以购买哪些楼层的商品房呢? (3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.解:(1)y 与x 之间的函数关系式为:y=()()300082028300083000840823x x x x x --⨯⎧⎪⎨⎪⎩≤=+-⨯≤,<,,,,< 即y=20284028402680823x x x x ⎧⎨++⎩≤≤≤,,,<.(2)由题意得:120y ×30%≤120000, ∴120×(40x+2680)×30%≤120000,∴x≤16.∴小张可以买第二层至第十六层任何一层.(3)设使用方案二时的优惠和直接享受9%的优惠的差额为z元.z=120y×8%+60a-120y×9%=-1.2y+60a∵购买楼层为第十六层,∴y=40×16+2680=3320.∴z=60a-3984.当z≥0时,a≤66.4;当z<0时,a>66.4.∴当每月物业管理费不超过66.4元时,方案二更优惠,∴老王的说法不正确.三、拓展延伸(10分)6.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且S△PAB=24,求P点的坐标.解:∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(-2,0),B(0,4).当点P在x轴上时:S△PAB=12·y B·|x P-x A|=12×4×|x P-(-2)|=24,∴x P=10或x P=-14.∴点P的坐标为(10,0)或(-14,0)当点P在y轴上时:S△PAB.=12·|x A|·|y P-y B|=12×2×|y P-4|=24.∴y P=28或y P=-20.∴点P的坐标为(0,-20)或(0,28).。
一次函数(第1 课时)导学案【学习目标】1.掌握一次函数解析式的特点及意义.2.理解一次函数与正比例函数的关系.【重点难点】重点:理解和掌握一次函数解析式特点难点:一次函数与正比例函数关系的正确理解.【学习过程】一、自主学习:【问题1】问题:某登山队大本营所在地的气温为15℃,海拔每升高1km 气温下降6℃.登山队员由大本营向上登高xkm 时,他们所处位置的气温是y ℃.(1)试用解析式表示y•与x 的关系.(2)当登山队员由大本营出发向上登高0.5km 是,气温是多少?二、合作探究:【问题2】在下列问题中的变量间的对应关系可用怎样的函数表示?(1)有人发现,在20:50℃时蟋蟀每分鸣叫的次数c 与温度t(单位:℃)有关,即c 的值约是t 的7倍与35的差;(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h ,再减去常数105,所得差是G 的值;(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拔打电话x 分的计时费(按0.1元/分收取);(4)把一个长10cm 、宽5cm 的长方形的长减少xcm,宽不变,长方形的面积y(单位:2cm )随x 的值而变化.【问题3】请你认真观察我们得到的这几个函数解析式,看看它们有什么共同的特点?完成下列填空:共同特点: .【形成概念】一般地,形如 的函数,叫做一次函数.【问题4】一次函数b k b kx y ),0(≠+=能等于零吗?b=0时,解析式变成了什么?正比函数与一次函数有什么关系?三、例题探究:例1.下列哪些函数是一次函数,哪些又是正比例函数?(1)y=-3x-4 (2)x y 7-= (3)y=9x (4)y=4x 2+1例2. 汽车油箱中原有汽油50升,如果行驶中每小时用油5升,求油箱中的汽油y(单位:升)随行驶时间x(单位:时)变化的函数关系式,并写出自变量x 的取值范围,y 是x 的一次函数吗?四、尝试应用1.下列说法正确的是( )A.一次函数是正比例函数B.正比例函数不是一次函数C.不是正比例函数就不是一次函数D.正比例函数是一次函数。
第 19 章《一次函数》一、教材分析:本单元教学的主要内容:函数的概念与图像;一次函数;课题学习:选择方案。
二、学情分析:根据八年级下学期,学生易浮躁,厌学情绪比较高,加上函数概念涉及运动变化,抽象性较强,因此,在目前的学生的状态下,并且初次学习,接受并理解它是有一定的难度;突破这个难度的办法是由具体例子逐步过渡到抽象定义,教学中开始阶段不应急于给出定义,而需要让学生经历分析具体问题中变量之间存在什么样的具体对应关系的过程,并引导学生发现这些关系的共同之处为:都是单值对应。
三、教学目标:1.知识与技能(1)了解常量、变量的意义和函数的概念,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象数形结合地分析简单的函数关系.(2)能确定简单实际问题中函数自变量的取值范围,并会求函数值.(3)能根据已知条件确定它们的表达式,会画它们的图像,能结合图像讨论这些函数的增减变化,能利用这些函数分析和解决简单实际问题.(4)以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分和解决实际问题的能力.2.过程与方法(1)结合实例,对事物的运动变化进行数量化讨论,先引出常量和变量的意义,再从描述变量之间对应关系的角度刻画了一般函数的基本特征,从而初步建立函数的概念,给出函数的解析式的意义.(2)以实际问题为情境,引出正比例函数和一次函数的概念、图像和增减变化规律.(3)通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对方程等内容的认识,构建和发展相互联系的知识体系.3.情感、态度与价值观以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立函数模型表示变量之间的单值对应关系,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.四、教学重点1.变化与对应下的函数定义,函数的解析式和自变量的取值范围;2.正比例函数和一次函数的概念、解析式、图形和性质.五、教学难点:对于函数中的“运动变化”的理解六、教学关键:1.重视数学概念中蕴含的思想,引导学生从“运动变化和联系对应”的角度认识函数.2.借助实际问题情境,引导学生由具体到抽象地认识函数;通过函数应用举例,体现数学建模思想.3.引导学生重视数形结合的研究方法.八、单元课时划分本单元教学时间约需 24 课时,具体分配如下: 19.1 函数 7 课时19.2 一次函数 12 课时19.3 课题学习选择方案 1 课时教学活动、习题课、小结 4 课时五、达标检测1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()A.Q=8x B.Q=8x-50 C.Q=50-8x D.Q=8x+502.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量3.在一个变化过程中,__________________的量是变量,•________________的量是常量.4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.x与y___________.5.长方形相邻两边长分别为x、•y•,面积为30•,•则用含x•的式子表示y•为y=_______,则这个问题中,___________常量;_________是变量.6.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨)五、达标检测1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x之间的关系是()A.Q=8x B.Q=8x-50 C.Q=50-8x D.Q=8x+502.甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量3.在一个变化过程中,__________________的量是变量,•________________的量是常量.4.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.x与y___________.5.长方形相邻两边长分别为x、•y•,面积为30•,•则用含x•的式子表示y•为y=_______,则这个问题中,___________常量;_________是变量.6.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨)五、达标检测写出下列函数的解析式.(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.五、达标检测写出下列函数的解析式.(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.(2)汽车加油时,加油枪的流量为10L/min.①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明在食堂吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多长时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?五、达标检测1.若点p在第二象限,且p点到x轴的距离为3,到y轴的距离为1,则p点的坐标是()A.(-1,3) B.(-3,1) C.(3,-1) D.(1,-3)2.下列函数中,自变量取值范围选取错误的是()A.中,x取全体实数 B.中,C.中, D.中,3、下列各曲线中哪些表示y是x的函数?(提示:当x=a时,x的函数y只能有一个函数值)4.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用15分钟返回家里.图中表示小明的父亲离家的时间与距离之间的关系是().5.某运动员将高尔夫球击出,描绘高尔夫球击出后离原处的距离与时间的函数关系的图像可能为().五、达标检测甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数解析式,并画出函数图象.五、达标检测甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数解析式,并画出函数图象.四、达标测试:1、汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为___________________.y是x的_______函数。
第十九章函数的增大而 .O(0, )和点( ,的图象平移个单位长度得到.的增大而.① 直线经过第象限;② b<0时,直线经过第象限.例2 P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y=-0.5x+3图象上的两点,下列判断中,正确的是( )A.y 1>y 2 C.当x 1<x 2时,y 1<y 2B.y 1<y 2 D.当x 1<x 2时,y 1>y 2方法总结:比较函数值的大小,先要确定函数的增减性,再根据自变量的大小关系,得到函数值的大小关系.例3 已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m 的值: (1)函数值y 随x 的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限;已知函数 y = kx 的图象在二、四象限,那么函数y = kx-k 的图象可能是( )1.一次函数y=x-2的大致图象为( )2.下列函数中,y 的值随x 值的增大而增大的函数是( )A.y=-2xB.y=-2x+1C.y=x-2D.y=-x-23.直线y =2x-3 与x 轴交点的坐标为________;与y 轴交点的坐标为_______;图象经过第_________象限, y 随x 的增大而________.4.若直线y=kx+2与y=3x-1平行,则k=________.5.点A(-1,y 1),B(3,y 2)是直线y=kx+b(k<0)上的两点,则y 1-y 2_______0(填“>”或“<”).6.已知一次函数y =(3m-8)x +1-m 图象与 y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数,求m 的值 .。
)))一,新课标人教版八年级数学下第十九章一次函数专题训练导学案一、求x 的系数与次数[形如y kx b =+(,k b 为常数,0k ≠)的函数称为一次函数,x 的指数为1,系数0k ≠]:已知函数2(1)2k y k x m =-+-,①若它是一个正比例函数,则k = ,m = ,②若它是一个一次函数,则k = ,m = 。
二、求直线的位置:一次函数的图象在平面直角坐标系中的位置情况:(1)两条直线的位置关系:1111:(0)l y k x b k =+≠, 2222:(0)l y k x b k =+≠,①12k k =且1212b b l l ≠⇔∥,②12k k ≠(12=b b 或12b b ≠)⇔1l 与2l 相交,(2)直线经过的象限:①k 确定两个象限,b 确定一个象限,②0k >一三象限,0k <二四象限,③0b >正半轴,0b <负半轴,④熟记下列四种图像,直线y kx b =+(k ,b 为常数,k ≠0),在坐标平面内的位置与k ,b 的关系:①00k b >>⇔且直线过 象限(不过 象限),②00k b ><⇔且直线过 象限(不过 象限),③00k b <>⇔且直线过 象限(不过 象限),④00k b <<⇔且直线过 象限(不过 象限)。
三、求交点:(1)一次函数的图象与两条坐标轴的交点坐标:一般地,一般一次函数(0)y kx b k =+≠的图象是经过点(0, )和( ,0)的一条直线,特殊的一次函数正比例函数(0)y kx k =≠的图象是经过(0,0)和(1, )的一条直线。
一次函数24y x =-的图像与x 轴的交点坐标是 ,与y 轴的交点坐标是 ,(2)两条直线的交点坐标:直线1l :111(0)y k x b k =+≠和直线2l :222(0)y k x b k =+≠的交点坐标,就是相应二元一次方程组{112200k x y b k x y b -+=-+=的解,若二元一次方程组{450230x y x y --=-+=的解是{411x y ==,则直线45y x =-与直线23y x =+的交点坐标为 。
八年级数学下册第十九章一次函数19.2 一次函数19.2.2.1 一次函数的概念导学案(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第十九章一次函数19.2 一次函数19.2.2.1 一次函数的概念导学案(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第十九章一次函数19.2 一次函数19.2.2.1 一次函数的概念导学案(无答案)(新版)新人教版的全部内容。
19.2。
2.1 一次函数的概念导学案学习目标能利用一次函数解决简单的实际问题。
重点:掌握一次函数的概念。
难点:能利用一次函数解决简单的实际问题.一、自学释疑一次函数与正比例函数之间是什么联系?二、合作探究探究点1:一次函数的概念问题1:一次函数的定义是什么?它与正比例函数又有何联系?典例精析例1 已知函数y=(m—1)x+1—m2(1)当m为何值时,这个函数是一次函数?(2)当m为何值时,这个函数是正比例函数?要点归纳:1.一次函数y=kx+b的特点如下:(1)解析式中自变量x的次数是次;(2)比例系数k ;(3)常数项:通常不为0,但也可以等于0。
2.(1)当b 时,y=kx+b 即y= (k≠0),此时该一次函数是正比例函数。
(2)正比例函数是一种特殊的一次函数。
例2 已知一次函数 y=kx+b,当 x=1时,y=5;当x=-1时,y=1.求 k 和b 的值.方法总结:将两组自变量及对应的函数值代入函数解析式中,得到关于k,b的方程组,解方程即可.针对训练1。
已知函数y=2x|m|+(m+1)。
第19章一次函数
年级八年级课题课型新授教学媒体多媒体
教学目标知识
技能
1.掌握一次函数解析式的特点及意义.
2.知道一次函数与正比例函数关系.
3.理解一次函数图象特征与解析式的联系规律通过实例总结函数三种表示方法。
过程
方法
1.通过类比的方法学习一次函数,体会数学研究方法多样性.
2.进一步提高分析概括、总结归纳能力.
情感
态度
利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别
能力.
教学重点1.一次函数解析式特点.
2.一次函数图象特征与解析式联系规律.
教学难点
1.一次函数与正比例函数关系.
2.一次函数解析式的联系规律
教学过程设计
教学程序及教学内容师生行为设计意图一、情境引入
Ⅰ.提出问题,创设情境
问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm 时,他们所处位置的气温是y℃.试用解析式表示y•与x 的关系.
分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因教师出示问题,学生讨
论。
教师根据问题设计引
导学生写出函数解析
式。
数学来源于生活
又去指导生活。
第六章:一次函数19.01 函数导学案1.常量与变量(1)在某一个变化过程中,数值发生变化的量,我们称之为变量. (2)数值始终不变的量,我们称之为常量. 2. 函数定义【剖析】一般地,如果在一个变化过程中,有两个变量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,我们称y 是x 的函数.其中x 是自变量,y 是因变量. 1.常量与变量【例1】写出下列各问题中的关系式,并指出其中的常量与变量: (1)圆的周长C 与半径r 的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s (千米)和所用时间t (时)的关系式; (3)n 边形的内角和S 与边数n 的关系式.2.根据图像确定两个变量之间的关系【例2】如图是某地一天内的气温变化图. 看图回答: (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?3.会判断一个表达式是不是函数关系【例3】下列表达式是函数吗?若是函数,指出自变量与函数,若不是函数,请说明理由:【例4】求下列函数当时的函数值:(1) (2) (3) (4)【例1】一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量)(3m v 与时间)(h t 之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是( ) A .乙>甲 B . 丙>甲 C .甲>乙D .丙>乙【例2】函数y =x 的取值范围是( ).A .2x >-B .2x -≥C .2x ≠-D .2x -≤【例1】如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A.乙比甲先到终点B.乙测试的速度随时间增加而增大C.比赛进行到29.4秒时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快 【例2】如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( ) A .3 B .4 C .5 D .6【例3】如图,△ABC 和的△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2.DE=4.点B 与点D 重合,点A,BD.,E 在同一条直线上,将△ABC 沿D E →方向平移,至点A 与点E 重合时停止.设点B,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( ) 【例1】如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s【例2】2009年重庆)如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是()A .B .C .D .D C B A例2图图1C PD 图2A .B .C .D .19.02 函数分层题型训练导学案一、选择题1. 某同学在做电学实验时,记录下电压(伏特)与电流(安培)有如下对应关系:请你估计,若电流是5安培时,电压为( )伏特. A 、10.5 B 、6 C 、80 D 、182.三角形的一条边长为a ,这条边上的高为h ,h 为常量,已知当a=6时,三角形面积S=12,则当a=4时,S 的值为( ).A 、4B 、6C 、8D 、103. 某中学要在校园内划出一块面积是100cm 2的矩形土地做花圃,设这个矩形的相邻两边的长分别为xm 和ym ,那么y 关于x 的函数关系式可表示为( ).A 、y=100xB 、y= 100 – xC 、y=50 – xD 、4.一个正方形的周长p (cm )与这个正方形的面积S (cm 2)之间的关系为( ).A 、S=4p 2B 、S= p 2C 、162p s =D 、42p s =二、填空题1. 用总长为80m 的篱笆围成一个矩形场地,若矩形的面积和一边的长分别用y 与x 来表示,那么它们之间的关系式为y=x(40-x),在这个式子中,常量是 ,变量是 .2. 无线市话小灵通的通话收费标准为:前3分钟(不足3分钟按3分钟计)为0.2元,3分钟后每分钟收0.1元,则一次通话时间x 分钟(x>3)与这次通话的费用y (元)之间的关系式为 .3.把方程xy=3x-5y 改成用x 的代数式表示y 的函数形式为 ,当x=5时,y 的值为 .4.当x=2时,函数y=kx+10与函数y=3x+3k 的值相等,则k 的值等于 . 三、解答题1.分别指出下列各关系式中的常量与变量:(1)如果等腰三角形的顶角的度数为α,那么底角的度数β与α之间的的关系式是a 2190-= β. (2)如果某种报纸的单价为a 元,x 表示购买这种报纸的份数,•那么购买报纸的总价y (元)与x 之间的关系式是y=ax .(3)n 边形的内角和的度数S 与边数n 的关系式是S=(n-2)×180.2.如图,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分面积y cm 2与MA 长度x cm 之间的函数关系式.(B 层)拓展知识训练一、选择题1. 一个长方形的周长为8cm ,若长是xcm ,宽是ycm ,则y 关于x 的函数关系式是 . A 、y = 4 +x B 、y= 4 – x C 、y = 8+ x D 、y = 8/x2.函数x y 215+=中,自变量x 的取值范围( ). A 、x ≥-2 B 、x ≥-10 C 、x ≤-10 D 、x ≤-53.半径是R 的圆的周长C=2πR ,下列说法正确的是( ).A 、C 、π、R 是变量B 、C 是变量,2、π、R 是常量 C 、R 是变量,2、π、C 是常量D 、C 、R 是变量,2、π是常量4.半径为R ,圆心角为n 时扇形面积的计算公式是3602R n s π=,用这个公式计算半径为1,2,3,4,5,圆心角为n 的扇形面积,变量是( ).A .nB .n ,SC .R ,SD .n ,R ,S 二、填空题1. 每个同学购一本代数教科书,书的单价是2元,总金额Y (元)与学生数n (个)的关系式为 .2. 计划购买50元的乒乓球,所能购买的总数n (个)与单价a (元)的关系式为 .3. 声音在空气中传播的速度v (m/s )与温度t(℃)之间的关系式是v =331+0.6t ,其中常量是___________,变量是__________________.4. 给定了火车的速度v =60km/h ,要研究火车运行的路程s 与时间t 之间的关系.在这个问题中,常量是_____,变量是________;若给定路程s =100km ,要研究速度v 与t 之间的关系.在这个问题中,常量是______,变量是________.由这两个问题可知,常量与变量是_______的.三、解答题 1. 某商店售货时,在进价的基础上加一定的利润,其数量与售价如下表:(1)请写出y 与x 的关系式,并指出常量和变量; (2)求出当数量为6.5千克、8千克时的售价分别是多少?2. 如图,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化.(1)指出问题中的变量与常量; (2)当高为7cm 时,棱柱的体积;棱柱的高由1cm 变化到50cm 时,它的体积由 变化成 .19.03 一次函数导学案1.正比例函数【剖析】(1)一般地,形如y=kx(k是常数且k≠0)的函数,叫做正比例函数,其中k叫比例系数.2. 一次函数【剖析】(1)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数.(2)当b=0时, y=kx+b即为y=kx,所以说正比例函数是特殊的一次函数.【例1】下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).2.一次函数、正比例函数的定义【例3】已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.【例4】已知函数y=(5m-3)x2-n2+(n+1),当m、n为何值时,这个函数(1)是一次函数;(2)是正比例函数.【例5】为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费.设每户每月用水量为x米3,应缴水费y元.(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数.(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.【例7】已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.【例6】由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图Array所示,则下列说法正确的是( ).A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1 200万米3【例7】我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税……如某人某月收入1160元,他应缴个人工资薪金所得税为(1160-800)×5%=18(元)①当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。
②某人某月收入为960元,他应缴所得税多少元?③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?【例8】.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.【例9】.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.【例10】.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.19.03 一次函数导分层练习学案(A 层)夯实基础训练一、选择题1.油箱有油40升,油从管道中匀速流出,100秒可流完,油箱中剩油量Q (升)与流出时间t (秒)间的函数关系式是( ) A 、Q=40-52t B 、Q=40+25t C 、Q=40-25t D 、Q=25t 2.已知等腰三角形周长20cm ,将底边长y (cm )表示成腰长x (cm )的函数关系式是y=20-2x ,则自变量x 取值范围是( ) A 、0<x <10 B 、5<x <10 C 、一切实数 D 、x >03.下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个 4.一次函数y=kx+b 中,k 为( )A 、非零实数B 、正实数C 、非负实数D 、任意实数 二、填空题1. 某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在租出的第n 天(n 是大于2的自然数)应收租金 元.2.已知某种商品买入价为x 元,销售价为y 元,毛利率为45%(毛利率=100%⨯销售价-买入价买入价),则y关于x 的函数解析式为 . 3. 已知y=28(3)mm x --,y 是x 的正比例函数,则m 的值为 .4.如果等腰三角形顶角为x 度,底角为y 度,则y 关于x 的函数关系式为 .三、解答题1.已知y -3与x 成正比例,且x =2时,y =7 (1)写出y 与x 之间的函数关系. (2)y 与x 之间是什么函数关系. (3)计算y =-4时x 的值.2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资.(B 层)拓展知识训练一、选择题1. 如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x 之间的函数关系式是 ( )A 、y=1.5x(x 为自然数)B 、y=23x(x 为自然数) C 、y=12x(x 为自然数) D 、y=18x(x 为自然数)2.正方体的棱长是a ,表面积为S ,那么S 与a 之间的函数解析式是( )A 、S=4a 2B 、S=a 3C 、S=6a 2D 、S=8a 23.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t (小时)(0≤t ≤4)之间的函数解析式是 ( )A 、h=4tB 、h=5tC 、h=20-4tD 、h=20-5t4.已知下列函数:①y=2x-1;②y=-x ;③y=4x ;④y=x/2。