五年级奥数题及答案:原分数是多少问题
- 格式:doc
- 大小:0.36 KB
- 文档页数:1
小学五年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留三位小数。
)3、分数和小数比较大小:一般把分数变成小数后比较更简便。
六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。
一、 知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、 怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相知识框架分数、百分数应用题当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
第八讲分数计算与比较大小前面我们学习了分数计算的基本方法,这一讲我们来学习一些常见巧算方法在分数计算中的应用.在分数加减法的算式中,如果分数的分母不同,我们需要先通分才能继续计算.如果在计算之前我们适当的分下组,把分母相同的分数放在一起算,就可以减少通分的次数,使计算变得简便例题1.计算:12317 36182434320⎛⎫⎛⎫+++⨯-⎪ ⎪⎝⎭⎝⎭.「分析」这个算式有什么特点呢?你能发现前面括号里四个数分母的规律吗?怎样利用这个规律简算呢?计算:2451727482757515⎛⎫⎛⎫+++÷-⎪ ⎪⎝⎭⎝⎭.例题2.计算:111222333889 23103410451091010⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L L L.「分析」对于第一个括号中的分数,如果把它们加起来通分后的分母会非常大.有没有能避免通分的方法?计算:1238127126121 2349349459899⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L L L.例题3.计算:111111111111 133557799111113 484848484848⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+-⨯+-⨯+-⨯⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.「分析」这个问题的特点是什么呢?我们发现六个括号中的减数都含有1136,那么能不能把这些含有1136的部分放在一起计算呢? 计算:131313131313215487111014131716515151515151⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+-⨯+-⨯+-⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭接下来我们学习如何比较分数的大小.我们知道分数的意义是:把“1”平均分成若干份,表示这样的一份或几份的数.易知:如果两个分数分母相同,分子越大分数越大.如果两个分数分子相同,分母越大分数越小.如果两个分数分子和分母都不同,我们应该怎么比较它们的大小呢?最常用的方法是利用分数的基本性质把它们化成分母相同或分子相同的分数.例如我们要比较1316和2127的大小,可以先把它们通分,变成分母相同的分数:13271627⨯⨯和21162716⨯⨯,然后再比较分子的大小:13272116⨯>⨯,所以13211627>. 因为最后比较的是两个乘积,因此这个方法也被称为交叉相乘法.要比较两个分数,只需要将这两个分数的分子分别与另 一个分数的分母相乘,比较两个乘积的大小.分子所在....的乘积大....,则分数就大......例如比较58和813的大小,因为51388⨯>⨯,58的分子所在的乘积大,所以58813>. 除了我们介绍的方法外,比较分数大小还有许多其它的巧妙方法,但这些巧妙方法都需要我们多观察,看出题目中分数的特点,针对分数的特点来使用.例题4.比较下列分数的大小:(1)37与819;(2)827与1241;(3)把5个数1017,1219,1523,2033,60101由小到大排列起来.「分析」这里的分数分子分母都不相同,我们就应该观察分数的特点,来选择最适当的方法来比较它们的大小.大家能找出这些分数的特别之处吗?比较下列分数的大小:(1)717与512;(2)1223与1528;(3)把5个数311、514、1528、2539、75151由小到大排列起来.例题5.计算:363636636636363363636363.「分析」363636和636363看起来是不是很相似?它们都是谁的倍数呢?例题6.(1)把3个数1312,3635,6259由小到大排列起来;(2)把3个数45,79,1113由小到大排列起来.「分析」注意到这几个分数都与1很接近,能不能通过与1作比较来确定它们的大小?分数的历史在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年.西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》.在这本数学经典的《方田》章中,提出了完整的分数运算法则.从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同.另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作.分数运算,大约在15世纪才在欧洲流行.欧洲人普遍认为,这种算法起源于印度.实际上,印度在七世纪婆罗摩笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同.而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,印度也要比我们晚400年左右.刘徽(约公元225年—295年)作业1.计算:9398 136212 13111311+-+.作业2.计算:323324 7575⨯+⨯.作业3.比较下列分数的大小(填>=<或或):(1)417___519;(2)445___665;(3)67___78.作业4.将下列分数按照从小到大的顺序排列起来:57,79,34,23.作业5.计算:215222 392372375⎛⎫⎛⎫+⨯÷-+⨯⎪ ⎪⎝⎭⎝⎭.第八讲 分数计算与比较大小例题1. 答案:33详解:1231736182434320⎛⎫⎛⎫+++⨯- ⎪ ⎪⎝⎭⎝⎭ =1321407316844332020⎡⎤⎛⎫⎛⎫⎛⎫+++⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=()3351520+⨯ =33例题2. 答案:452详解:11122233388923103410451091010⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L L L =112123128129233444999101010⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L L =13914222+++++L =1238922222+++++L =452例题3. 答案:25详解:原式=()111111111111135791135791113484836484848⎛⎫+++++-⨯+⨯+⨯+⨯+⨯+⨯ ⎪⎝⎭=()11363579111348-⨯+++++ =11364848-⨯ =3611-=25.例题4. 答案:(1)38719>;(2)8122741>;(3)106020121517101331923<<<< 详解:(1)37与819的分子、分母都比较小,我们可以直接通分比较:3319577719719⨯==⨯⨯,8785619719719⨯==⨯⨯.因为5756719719>⨯⨯,所以38719>. (2)观察两个分数,我们发现它们的分母比较复杂,但分子之间的关系非常简单.由于24既是8的3倍又是12的2倍,我们可以通分子来计算:8242781=,12244182=,因为8182<,所以24248182>,即8122741>. (3)通过观察我们发现,这些数的分子是有联系的:每个分数都可以化成分子为60的分数.101066017176102⨯==⨯;12125601919595⨯==⨯;15154602323492⨯==⨯;20203603333399⨯==⨯. 几个分数分子相同时,分母越大,分数就越小,因此我们知道6060606060102101999592<<<<.即106020121517101331923<<<<.例题5. 答案:848847详解:整体约分,形如abcabc 的6位数是1001的倍数,形如ababab 的6位数是10101的倍数.例题6. 答案:(1)366213355912<<.(2)74119513<< 详解:(1)13111212=,36113535=,62315959=.因为13111236=,131135105=,所以131111355912<<,于是366213355912<<. (2)与1作比较,41155=-,72199=-,11211313=-.因为2121359<<,所以74119513<<.练习1. 答案:15 简答:245172327482231575751515⎛⎫⎛⎫+++÷-=÷= ⎪ ⎪⎝⎭⎝⎭.练习2. 答案:18简答:原式=1238182222++++=L .练习3. 答案:44简答:原式()()13258171471657134451=++++-⨯+++=-=LL .练习4. 答案:(1)751712<;(2)12152328<;(3)3575152511141512839<<<< 简答:同例4的方法.作业1. 答案:30简答:提示,凑整,将分母相同的分数一起算.作业2. 答案:3简答:提示,提取公因数.作业3. 答案:(1);(2);(3)简答:(1)交叉相乘;(2)通分子;(3)看分差或与1做比较.作业4. 答案:简答:采用通分差的方法较为方便,即变为,,,.分差相同的真分数,分46 68 79 57 25373749<<< < < <母越大则分数越大.作业5.答案:45简答:提示,注意运用提取公因数,凑整等巧算方法.。
小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。
思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。
2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。
思路:5×6=30(米)。
3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。
思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。
4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。
思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。
5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。
思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。
6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。
思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。
7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。
思路:设公路长x 米,1/2x-2/5x=60,解得x=300。
8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。
思路:设全书有x 页,1/5x+25=3/10x,解得x=125。
小学五年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。
②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。
③由整数部分和分数部分组成的分数叫做带分数。
2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。
②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。
二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。
③异分母分数,先化成同分母分数(分数单位相同),再进行比较。
(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。
2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。
五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留三位小数。
)3、分数和小数比较大小:一般把分数变成小数后比较更简便。
六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。
五年级奥数题及答案-成绩分数
奥数学习有利于训练孩子的思维能力,让孩子在解题的过程中能够从不同的角度进行思考。
下面是小编整理的小学五年级奥数题及解析,大家可以看下。
某次数学考试,满分是100 分。
6 位同学的平均分是91 分。
这6 人成绩各不相同,其中有一人得65 分,那么,分数居第三位的同学至少得多少分?
答案:
其他5 位学生得分总和为:91×6-5=481(分)
要想使第三位学生得“至少”分数,就要使比他分数高的两位同学的分数尽量高,也就是得100 分和99 分;同时又要使分数比他低的两位同学的分数也尽量高(分数尽可能与他接近,即他的分数要尽量接近后三人的平均分)。
(481-100-99)÷3=94分数居第四位和第五位的两位同学至多得94 分和93 分,分数居第三位的同学至少得95 分。
第五讲五年级奥数(巧求分数)例1、 有一个分数约成最简分数是511,约分前分子分母的和是48,约分前的分数是多少?例2、 一个分数的分子、分母之和是100,将分子、分母都减去6,约分得到的最简分数是35。
求原来的分数。
例3、 一个分数,分子加2等于35 ,分子减去2等于13,求这个分数。
例4、 分数5564的分子减去一个数,而分母同时加上这个数后,所得的新分数化简后是413,减去的这个数是多少?例5、 有一个分数,分子加1,这个分数等于12 ,分母加1,这个分数等于13,求这个分数。
拓展练习1、 一个分数约成最简分数是713,约分前分子分母的和是200,约分前的分数是多少?2、 一个分数约分后等于57,已知原分数的分子、分母之和是72,求原分数。
3、一个分数约分后等于411,已知原分数的分子、分母之差是63,求原分数。
4、一个最简分数的分子、分母之和是23,分子增加5后,得到的最简分数的分子、分母之和是4。
求原来的分数。
5、 一个分数的分子、分母之和是21,分母增加19后,得到的最简分数是14。
求原来的分数。
6、、一个分数,分子加1等于23 ,分子减去4等于14,求这个分数。
7、有一个分数,分母加2等于25 ,分母减去3等于12,求这个分数。
8、分数823 的分子分母都加上同一个质数,分数变成58,这个质数是多少?9、 将分数1755的分子加上一个自然数,、同时分母减去这个自然数,约分得到另一个分数为35。
求这个自然数。
10、有一个分数,分母加1等于12 ,分子减去1等于25,求这个分数。
星级擂台有一个最简分数,将它得分子、分母同时加上它得分母,分数值将变为原来分数的10倍,求原来得分数。
一、分数加减如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。
第1题第2题第3题第4题第5题第6题第7题第8题试题答案第1题:正确答案:B 答案解析第2题:正确答案:D 答案解析第3题:正确答案:C 答案解析第4题:正确答案:D 答案解析第5题:正确答案:A 答案解析第6题:正确答案:B 答案解析第7题:正确答案:A 答案解析第8题:正确答案:C 答案解析二、分数乘除第1题第2题第3题第4题第5题第7题试题答案第1题:正确答案:A 答案解析第2题:正确答案:C第3题:正确答案:B 答案解析第4题:正确答案:B 答案解析第5题:正确答案:D 答案解析第6题:正确答案:A 答案解析第7题:正确答案:D 答案解析三、分数应用题第1题第2题第3题第4题第5题第6题第7题试题答案第1题:正确答案:B 答案解析第2题:正确答案:D 答案解析第3题:正确答案:C 答案解析第4题:正确答案:D 答案解析第5题:正确答案:B 答案解析第6题:正确答案:C答案解析第7题:正确答案:B答案解析四、列分数系数方程解应用题第1题第2题第3题第4题第5题第6题试题答案第1题:正确答案:A 答案解析第2题:正确答案:A 答案解析第3题:正确答案:B 答案解析第4题:正确答案:C 答案解析第5题:正确答案:D 答案解析第6题:正确答案:D 答案解析。
五年级奥数:分数问题(含答案)一、填空题1.在4136、8372、2924、1312四个分数中,第二大的是 . 2.有一个分数,分子加1可以约简为31,分子减1可约简为51,这个分数是 . 3.已知51154%75%90321÷=⨯=÷=⨯=⨯E D C B A .把A 、B 、C 、D 、E 这五个数从小到大排列,第二个数是 .4.所有分母小于30并且分母是质数的真分数相加,和是 .5.三个质数的倒数和为231a ,则a = . 6.计算,把结果写成若干个分母是质数的既约分数之和:199519511919591-+-+= . 7.将8473、5746、10089、3625和6251分别填入下面各( )中,使不等式成立. ( )<( )<( )<( )<( ). 8.纯循环小数0.abc 写成最简分数时,分子与分母之和是58,请你写出这个循环小数 .9.()()()2413111=++ .(要求三个加数的分母是连续的偶数). 10.下式中的五个分数都是最简真分数,要使不等式成立,这些分母的和最小是 .()()()()()54321>>>>. 11.我们把分子为1,分母为大于1的自然数的分数称为单位分数.试把61表示成分母不同的两个单位分数的和.(列出所有可能的表示情况).12.试比较2⨯2⨯…⨯2与5⨯5⨯…⨯5的大小.301个2 129个513.已知两个不同的单位分数之和是121,求这两个单位分数之差的最小值. 14.(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如. .果不好分,为什么?———————————————答 案—————————————————————— 1. 4136 提示,将分子“通分”为72,再比较分母的大小. 2.154 事实上,所求分数为31和51的平均数,即(31+51)÷2=154. 3. C 因为655434109321⨯=⨯=⨯=⨯=⨯E D C B A ,又321341096554<<<<,所以D >E >B >C >A ,故从小到大第二个数是C . 4. 2159 分母是n 的所有真分数共有n -1个,这n -1个分数的分子依次为1~n-1, 和为2)1(-n n ,所以分母n 的所有真分数之和等于21-n .本题的解为 212-+212921232119211721132111217215213-+-+-+-+-+-+-+-+- =21+1+2+3+5+6+8+9+11+14=2159. 5. 131因为231=3⨯7⨯11,易知这3个质数分别为3,7和11,又31+11171+=231131,故a =131. 6. 19174+. 原式=13383399249399173219958532199512110596==-=-=+--,令19713383b a +=,则19⨯a +7⨯b =83,易见a =4,b =1,符合要求. 7. 100898473625157463625<<<<.提示:各分数的倒数依次为73111,46111,89111,25111,89111. 8. 0.567 0.abc 化为分数时是999abc ,当化为最简分数时,因为分母大于分子,所以分母大于58÷2=29,即分母是大于29的两位数,由999=3⨯3⨯3⨯37,推知999大于29的两位数约数只有37,所以分母是37,分子是58-37=21.因为999567273727213721=⨯⨯=,所以这个循环小数是0.567. 9. 4,6,8.令241341211=++++a a a (a 为偶数).由a a a a 3412112413<++++=,得1375<a ,故a =2或4,a =2时,2413614121>++,不合题意,因此,4=a . 10. 40提示:145114835221>>>>. 11. 令6111=+b a ,则a a a b 661611-=-=.所以636666-+=-=a a a b . 由a 、b 为整数,知636-a 为整数,即a -6为36的约数,所以16=-a ,2,3,4,6,9,12,18,36.所以a =7,8,9,10,12,15,18,24,42,相应地b =42,24,18,15,12,10,9,8,7.注意到b a ≠,所有可能情况为10115171421812419118161+=+=+=+=. 12. 因为301=43⨯7,129=43⨯3,11251285252434337129301>⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=,所以3012>1295.13. 令b a 11121+=,且a <b ,由121=241+241知a <24<b .依题意, a 尽可能大. 注意到121=281211301201+=+=22,23不合要求,所以差的最小值为841281211=-. 14. (1)把9块中的三块各分为两部分:43411+=,42421+=,43411+=. 每个孩子得412块: 甲:1+1+41;乙:1+4243+;丙: 1+42+43;丁:1+1+41. . .. .. .(2)好分,每人分721块: 甲:1+72;乙:7475+;丙:7673+;丁:71171++;戊:7376+;己:7574+;庚:172+.。
第四单元 分数意义和性质 模块一 分数的意义【例题1】填空:有一块布长5米,正好可以做6条童裤。
每条童裤用这块布的( ),每条童裤用布( )米。
【练习1】填空:把18个桃子平均分给2只小猴,每只猴子分得桃子总数的( ),每只猴子分得( )个桃子。
【例题2】填空:7米的91和1米的( )相等,1千克的( )和3千克的41相等。
【练习2】(1)填空:85kg 表示把( )kg 平均分成( )份,取这样的( )份;也表示把( )kg 平均分成( )份,取其中的( )份。
(2)判断:8kg 的91和1kg 的98一样重。
( )【例题3】填空:五年级人数的61与六年级人数的71相等。
( )年级人数多一些。
【练习3】选择:下面两根彩带露出部分同样长,两根相比( )。
A.甲长B.乙长C.同样长D.无法比较长短3甲 7【例题4】选择:一班和二班各有21的人参加合唱比赛。
那么,比较参加合唱比赛的人数, ( )。
A.一班人多B.二班人多C.两班一样多D.无法确定【练习4】选择:(1)小红与小兰放学回家后,小红喝了一杯水的21,小兰也喝了一杯水的21。
那么,比较她们 的喝水量,( )。
A.小红多B.小兰多C.两人一样多D.无法确定 (2)妈妈买了一个西瓜,爸爸吃了它的21,明明吃了剩下的21。
( )吃得多。
A.爸爸 B.明明 C.两人一样多 D.无法确定 (3)在为希望工程捐款活动中,小明捐零花钱的41,小芳捐了零花钱的43,( )捐的多。
A.小明B.小芳C.两人一样多D.无法确定 【例题5】有两根同样长的电线,第一根剪去12米,第二根剪去它的12,哪根电线剩下的长?【练习5】两堆同样重的沙子,第一堆运走31吨,第二堆运走31。
哪堆沙子运走的质量多?【例题6】选择:将一根绳子剪成两段,第一段长74米,第二段占全长的74,两段绳子相比较,( )。
A. 一样长B. 第一段长C. 第二段长D.无法确定【练习6】选择:将一根铁丝剪成两段,第一段长52米,第二段占全长的52,两段铁丝相比较,( )。