层次分析法在全日制硕士研究生招生计划分配中的应用
- 格式:pdf
- 大小:407.70 KB
- 文档页数:5
层次分析法的一个应用摘要关键词:AbstractKeywords:前言1层次分析法理论概述1.2层次分析法的概念层次分析法是由美国运筹学家匹兹堡大学的 T.L.saaty教授于20世纪70年代提出的一种决策方法。
它是将评价对象或问题视为一个系统,根据问题的性质和想要达到的总目标将问题分解成不同的组成要素,并按照要素间的相互关联度及隶属关系将要素按不同层次聚集组合,从而形成一个多层次的分析结构系统,把问题条理化、层次化。
层次分析法的结构符合人们思维的基本特征分解、判断、综合,把复杂的问题分解为各组成要素,再将这些要素按支配关系分组,从而形成有序的递阶层次结构,通过两两比较判断的方式确定每一层次中要素的相对重要性,然后在递阶层次结构内进行合成得到相对于目标的重要程度的总排序。
因此,层次分析法从出现开始就受到了理论界广泛的支持和认可,并得到了不断的改进和完善。
1.3 AHP法下优点(1)AHP对于解决多层次、多指标的递阶结构问题行之有效。
保险公司绩效评价各指标之间相互作用,相互制约,且绩效受到多种因素的影响,可以分解成不同的子指标,例如我们从财务维度可将保险公司的绩效分解为增加盈利能力、偿付能力和发展能力三个层面,而各个层面又可以从多个角度来衡量,从而构成关联保险公司绩效评价指标体系的递阶结构体系。
这样,我国上市保险公司绩效评价指标体系的递阶结构为层次分析法提供了“结构”基础。
(2)把定性分析和定量分析有机地结合起来,避免了单纯定性分析的主观臆断性和单纯利用定量分析时对数据资料的严格要求。
(3)层次分析法思路简单明了,将人们的思维数字化、系统化,便于接受并容易计算;同时,层次分析法是一种相对比较成熟的理论,有大量的是实践经验可以借鉴,这就避免了在保险公司绩效评价指标权重的确定过程中由于缺乏经验而产生的不足。
当然层次分析法也存在着缺陷:首先,其结论是建立在判断矩阵是一致性矩阵的基础上的,而在实际应用中所建立的判断矩阵,由于各方面的原因,往往不能一次性得到具有一致性的判断矩阵,而需要对其一致性进行检验,并进行多次的修改。
层次分析法的原理及应用层次分析法(Analytic Hierarchy Process,简称AHP)是一种定量分析方法,用于解决决策问题,其原理主要基于层次结构和逐级比较的思想。
AHP通过将决策问题分解为多个层次,设立目标层、准则层和方案层,并通过对层次中各元素进行两两比较和权重计算,从而得出最优方案。
AHP的基本原理如下:1.定义层次结构:将复杂的决策问题分解为目标、准则和方案三个层次。
目标是最终要达到的结果,准则是达到目标所需要满足的条件,方案是实现准则的具体行动或选择。
2.建立判断矩阵:通过两两比较的方式,将每个准则和方案与其他准则和方案进行比较,得出相对重要性的判断矩阵。
在比较过程中,根据专家判断,使用1到9的尺度进行评分。
例如,如果A相对于B很重要,则评分为9,如果A和B相等重要,则评分为13.计算权重:根据判断矩阵,通过特征向量法或特征值法计算每个准则和方案的权重。
特征向量法是将判断矩阵的每一列的平均值作为权重,特征值法是通过计算判断矩阵的最大特征值和特征向量得到权重。
4.一致性检验:通过计算判断矩阵的一致性比率和一致性指标,判断专家意见的一致性。
一致性比率越接近0,说明意见越一致,一致性指标小于0.1时才认为专家意见具有可接受的一致性。
5.综合评价:根据权重和准则的得分,计算每个方案的综合得分,从而选择出最优方案。
1.投资决策:在投资决策中,可以将投资目标、收益预期、风险、投资周期等因素作为准则,不同投资方案作为方案,通过层次分析法计算出最优投资方案。
2.供应商选择:在供应链管理中,可以将供货能力、产品质量、价格等因素作为准则,不同供应商作为方案,通过层次分析法评估供应商的综合能力,选择最合适的供应商。
3.项目评估:在项目管理中,可以将项目目标、成本、资源需求等因素作为准则,不同项目方案作为方案,通过层次分析法评估项目的可行性和优劣。
4.策略制定:在战略管理中,可以将市场需求、竞争优势、组织能力等因素作为准则,不同战略方案作为方案,通过层次分析法制定最佳战略。
第36卷第12期2020年12月商丘师范学院学报JOURNAL OF SHANGQIU NORMAL UNIVERSITY Vol.36No.12Dec.2020收稿日期:2020-03-20;修回日期:2020-03-29基金项目:教育部2018年第二批产学合作协同育人项目(201802123039);安徽省教育厅质量工程项目(2017mooc240);安庆师范大学校级教研项目(2019aqnujyzc110)作者简介:江健生(1982—),男,安徽安庆人,安庆师范大学讲师,硕士,主要从事数字图像处理、智能算法的研究.层次分析法和模糊综合评判法在研究生学业评价中的应用江健生1,吴洋2,陈飞3,钱坤1(1.安庆师范大学计算机与信息学院,安徽安庆246133;2.安庆师范大学现代教育技术中心,安徽安庆246133;3.铜陵学院数学与计算机学院,安徽铜陵244061)摘要:针对研究生学业评价过程中的复杂性、多层次性和模糊性,提出基于层次分析法和模糊综合评判法的研究生学业评价方法.首先合理确定研究生学业评判指标,接着利用层次分析法和模糊综合评判法对研究生学业进行指标权重量化及综合评价.通过应用验证,表明该方法的客观性和有效性,为研究生学业奖学金评选提供了重要参考依据.关键词:研究生培养;学业评价;层次分析法;模糊综合评判法中图分类号:TP273+.4文献标识码:A 文章编号:1672-3600(2020)12-0012-06Application of analytic hierarchy process and fuzzy comprehensive evaluationmethod in graduate students'academic evaluation JIANG Jiɑnshenɡ1,WU Yɑnɡ2,CHEN Fei 3,QIAN Kun 1(1.School of Computer and Information ,AnqinɡNormal University ,Anqinɡ246133,China ;2.Center of Modern Education Technology ,AnqinɡNormal University ,Anqinɡ246133,China ;3.School of Mathematics and Computer ,TonɡlinɡUniversity ,Tonɡlinɡ244061,China )Abstract :Aiming at the complexity ,multi-level and fuzziness in the process of graduate students'academicevaluation ,this paper proposes a method of postgraduate academic evaluation based on analytic hierarchy process and fuzzy comprehensive evaluation.Firstly the academic evaluation index of graduate students is reasonably determined.Then the analytic hierarchy process is used to quantify the weight of each index.And the comprehensive academic evaluation of graduate students is carried out by the fuzzy comprehensive evaluation method.Theapplication verification shows that the method is objective and effective ,and the experimental results provides an important reference for the selection of graduate scholarships.Key words :graduate student cultivation ;academic evaluation ;analytic hierarchy process ;fuzzy comprehensive evaluation研究生培养是高校高水平、多层次发展的重要环节,而学业发展是其中的核心和灵魂.学业贯穿整个研究生培养阶段,是根据研究生培养方案的要求,对研究生提出明确任务和发展方向,研究生通过一系列学习任务完成学业的过程[1].学业和每一位研究生密切相关,它能指导、激励、督促、约束每一位研究生健康成长.同时,学业水平与研究生的学业奖学金评选有着密切联系.所以有效评价研究生学业水平对促进研究生成长和高校发展具有重要的意义,是高校研究生管理工作者要积极思考的问题.研究生学业评价是指以教育目标为评价标准,通过完整收集研究生学习过程中的客观事实材料,以恰当、有效的评判方法,对研究生学习、科研和实践等多方面学业水平做出价值判断,为研究生学业水平的决策提供依据,进而促进研究生学业发展的评价活动[2].在实际学业评价过程中,根据研究生学业评价的复杂性、多层次性、模糊性等特点,利用层次分析法和模糊综合评判法,综合相关部门、研究生导师、研究生辅导员和所有研究生,制定一套具有合理评价指标、准确指标权重、科学评判方法的研究生学业评价模型.通过对不同年级研究生学业水平的综合评判,评价结果有效、客观.1层次分析法-模糊综合评判法的相关理论1.1层次分析法层次分析法是上世纪70年代中期由美国运筹学家萨蒂教授提出的一种决策分析法[3],该方法适合解决模糊、难以定量的决策问题,张万朋等[4]利用层次分析法和德尔菲法确定专业学习和通用学习的权重,完成研究生学习成果评判.张丽华等[5]基于层次分析法对高校学生职业能力评价体系展开研究,得到高校学生职业能力的最终评价.刘子建等[6]利用于SEEQ 与层次分析法,形成高校认证型评价体系.层次分析法为许多高校教育决策问题提供了简单、实用、有效的方法,本文将它运用到研究生学业评价中.运用层次分析法的主要步骤如下:(1)建立层次结构模型将一个复杂决策问题分解出各个因素,按其属性及关系从上到下层次化,上一层因素对下一层从属因素起支配作用,而下一层因素对上一层关联因素起影响作用.其中最上层为目标层,是一个问题的决策目标.中间层是实现目标需要的准则、指标等,又称准则层或指标层.一般当下一层因素多于9个则需要分解出子层,所以中间层可以有一至多个层次.最下层通常称为方案层,是针对目标的各种备选方案、措施等,因此又被称为措施层.(2)构造成对比较矩阵对从属于上层某一因素的下层中n 个因素X ={x 1,…,x n },按照两两比较构造如下对比矩阵A :A =(a ij )n ˑn其中a ij 是因素x i 和x j 的重要程度比,显然x j 和x i 的重要程度比为a ji =1/a ij ,另外当i =j 时有a ij =1,表示重要程度相等,a ij 可按1-9标度法进行取值,对应的重要程度含义见表1,其中2、4、6、8表示相邻程度的中间值.表11-9标度法a ij 123456789x i /x j 程度相等稍强强很强绝对强上述矩阵满足:a ij >0、a ji =1/a ij 、a ij =1(当i =j 时),所以可称为正互反矩阵.(3)层次单排序和一致性检验层次单排序是对上述矩阵A 求最大特征值λmax ,通过归一化对应特征向量W (各元素和为1),那么W 即为本层因素对上层某一因素重要程度的排序权值.由于满足a ij a jk =a ik , i ,j ,k =1,…,n 的正互反矩阵才是一致矩阵,只有在一定范围内的不一致性才可以接受,所以要进行一致性检验.按下式对A 一致性检验:CR =CI RI根据定理知λmax 比n (矩阵阶数)越大,矩阵A 的非一致性越严重,据此计算一致性指标CI 如下式:CI =λmax -n n -1萨蒂等人通过大量计算得到平均随机一致性指标RI ,n =1到9取值见表2:表2n 与RI 对应值n 123456789RI0.580.891.121.261.361.411.46图1层次总排序的分层示意只有一致性比例CR <0.1,矩阵A 才通过一致性检验,归一化的W 可作为单层权重向量,否则需要调整a ij 来修正矩阵.(4)层次总排序层次总排序是确定某层所有因素关于总目标的重要程度排序权值,按照从最上层至最下层的顺序进行.如图1所示:最上层总目标为Z ,A 层m 个因素A 1,A 2,…,A m ,对总目标Z 的排序为a 1,a 2,…,a m ,B 层n 个因素对A 层中A j 因素的单层次排序为b 1j ,b 2j ,…,b nj (j =1,2,3,…,m ),那么B 层的层次总排序如下:B 1:a 1b 11+a 2b 12+…+a m b 1mB 2:a 1b 21+a 2b 22+…+a m b 2m …B n :a 1b n 1+a 2b n 2+…+a m b nm31第12期江健生,等:层次分析法和模糊综合评判法在研究生学业评价中的应用即B 层第i 个因素对总目标的权值为:∑mj =1a jbij,那么总排序一致性比例计算如下:CR =∑mj =1CI (j )a j∑mj =1RI (j )ajCI (j ),j =1,…,m 是单排序一致性指标,RI (j ),j =1,…,m 是随机一致性指标,同样只有求得CR <0.1,层次总排序通过一致性检验.1.2模糊综合评判法模糊综合评判法是汪培庄教授基于模糊数学理论提出的一种综合评判方法[7],该方法被广泛使用于模糊、难以量化的问题上,布光等[8]利用模糊综合评判法对大学生体能进行评价.尤游等[9]结合模糊评价和熵值法对高校教师教学质量进行评价.陈志恩等[10]融合粒矩阵与模糊综合评判对课堂教学质量进行评价研究.许晶[11]在本科毕业论文质量评价中使用模糊综合评判法,上述应用都取得了良好效果.运用模糊综合评判法的主要步骤如下:(1)确定因素集因素集是一个由可以评判对象的主要因素所组成的集合,可表示为U ={u 1,u 2,…,u m },其中m 是评判因素的个数,u i 是第i 个评判因素.根据具体情况,可以将评判因素按不同属性进行分层,包括第一级评判因素集,下属的第二级评判因素集甚至第三级评判因素集等,这些因素一般都具有不同程度的模糊性.(2)建立综合评判集评判集是一个由评判对象的可能评判结果所组成的集合,可表示为V ={v 1,v 2,…,v n },其中n 是评判结果的数目,V j 是第j 种评判结果,评判集一般可划分为3至7个等级.(3)单因素模糊评判,获得评判矩阵单因素模糊评判是从一个因素出发,确定评判对象对评判集合V 的隶属程度.设r i 1是U ={u 1,u 2,…,u m }中第i 个元素对评判集V ={v 1,v 2,…,v n }中第1个元素的隶属度,则对第i 个元素单因素评判的结果可表示为:Ri ={r i 1,r i 2,…,r in },那么以m 个单因素评判集R 1,R 2,…,R m 为行组成矩阵R ,就是模糊综合评判矩阵.(4)确定因素权向量由于各因素的重要程度不同,即权重不同,设各因素u i 的权重为a i ,那么各因素的权重集合的模糊集可表示为:W ={a 1,a 2,…,a m }.这里可以通过加权平均法、频率分布确定法、层次分析法等方法计算因素权向量,本文通过层次分析法获得权向量.(5)多指标综合评判对上述因素权向量W 和矩阵R ,通过模糊算子 将模糊向量W 从因素集U 上转换到评判集V 上,即模糊向量B ,如下式:B =W R =(a 1,a 2,…,a m )r 11r 12…r 1nr 21r 22…r 2nr m 1r m 2…rmn =(b 1,b 2,…,b n )其中B 表示评判集各因素的隶属度,根据最大隶属原则,评判结果取最大的b j 对应的评判集v j .常用的模糊算子有以下4种[12]:M (∧,∨):b j =∨m i =1(a i ∧r ij )=max 1≤i ≤mmin (a i ,r ij {}),j =1,2,…,n M (·,∨):b j =∨mi =1(a i ,r ij )=max 1≤i ≤m(a i ·r ij ),j =1,2,…,n M (∧,⊕):b j =min 1,∑mi =1min (a i ,r ij {}),j =1,2,…,n M (·,⊕):b j =min 1,∑mi =1a i r ()ij ,j =1,2,…,n 4种算子的特点如表3,可以根据具体情况进行选择:表34种模糊变化合成算子比较算子类型综合程度利用信息体现权重作用M (∧,∨)主因素突出型弱不充分不明显M (·,∨)主因素突出型弱不充分明显M (∧,⊕)加权平均型强较充分不明显M (·,⊕)加权平均型强充分明显41商丘师范学院学报2020年2研究生学业评判模型的构建2.1确定评判指标、构建评判因素集评判研究生学业水平需要构建全面、合理、科学的学业评判指标,既要真实、准确反映研究生的实际学业水平,还要对研究生培养起到指导和激励作用,同时又为研究生学业奖学金的评选提供参考依据.通过和研究生导师讨论、对研究生调查反馈,结合教育部、财政部、教育厅和高校关于学业奖学金评选相关文件的规定,我们制定多层次、多因素的研究生学业评判二级指标体系.该体系由4个一级指标组成,包括学业成绩、综合素质、科研成果、创新实践,一级指标又细分为14个二级指标.所有指标是对研究生进行全面综合的评价,既包括了学业成绩和综合素质的基本要求,又包括了科研成果和创新实践的导向要求,充分体现了研究生人才培养的目标.按照模糊综合评判法,建立第一级评判因素集:U ={学业成绩U 1,综合素质U 2,科研成果U 3,创新实践U 4}第二级评判因素集分别如下:U 1={考试成绩u 11,考勤成绩u 12}U 2={思想品德u 21,荣誉表彰u 22,学生干部u 23}U 3={科研获奖u 31,科研项目u 32,学术发表u 33,发明创造u 34}U 4={A 类赛事u 41,B 类赛事u 42,C 类赛事u 43,专业实践u 44,社会实践u 45}2.2建立模糊综合评判集我们根据研究生学业奖学金设置的一、二、三等奖和无奖项为依据,将研究生学术评判结果分为4个等级,分别为很好、较好、一般、不好,写成评判集:V ={很好v 1,较好v 2,一般v 3,不好v 4}2.3层次分析法确定各指标权重研究生学业评判中,各指标的权重有所不同,而且不同年级研究生评判的侧重点也不相同.一年级学生主要以课程学习为主;二年级学生课程相对较少,且科研成果暂未体现,主要以创新实践为主;三年级学生经过两年的学习积累,有了一定的科研成果,此时主要以科研成果为主.这里以三年级研究生学业评判为例,利用层次分析法设置各指标权重:根据多元化成员对一级指标的1-9标度法对比打分,我们构造一级指标成对比较矩阵A :学业成绩综合素质科研成果创新实践学业成绩综合素质科研成果创新实践111/51/2111/51/25512221/21一级指标各因素的权重向量,按层次单排序得到.这里利用方根法求权重向量[13],令W'=(a 1',a 2',a 3',a 4'),其中a i '=4Π4j =1a 槡ij ,得W '=(0.562,0.562,2.659,1.189),通过a i =a i '/∑4i =1a i '对W'进行归一化,得到W =(a 1,a 2,a 3,a 4)=(0.113,0.113,0.535,0.239).若矩阵A 满足一致性检验,W 即一级指标学业成绩、综合成绩、科研成果、创新实践的权重向量.下面判断构建的成对比较矩阵A 是否满足一致性,计算:AW T =111/51/2111/51/25512221/210.1130.1130.5350. 239=0.45250.45252.14300.9585那么:λmax=1n∑ni =1(AW T )ia i =140.45250.113+0.45250.113+2.14300.535+0.95850.()239=4.006CI =λmax -nn -1=0.002CR =CI /RI =0.002/0.89=0.002<0.1成对比较矩阵A 通过一致性检验.同理计算4个一级指标所对应的二级指标权重如表4,且全部通过一致性检验.51第12期江健生,等:层次分析法和模糊综合评判法在研究生学业评价中的应用表4各指标权重及一致性评价指标评价指标指标权重λmax CI RI CRU1-U4(0.113,0.113,0.535,0.239)4.0060.0020.890.002u 11-u12(0.500,0.500)2000u 21-u23(0.571,0.286,0.143)300.580u 31-u34(0.128,0.128,0.522,0.114)4.0280.0090.890.010u 41-u45(0.348,0.185,0.097,0.185,0.185)5.0100.00251.120.00223应用选取我校统计学专业研三某一学生,由学院领导、导师代表、研究生辅导员、同班研究生共10人组成学业评判组,根据学生实际情况及证明材料进行评判打分.该研究生的具体打分情况如表5:表5该研三学生学业打分结果一级指标二级指标评判集很好较好一般不好U1u110910u120820U2u216310u220460u234420U3u310460u323700u338200u341720U4u4100100u423610u431900u442620u451630对表5中该研究生各指标所得评分,通过归一法得到4个二级指标评判矩阵:R 1=00.90.1000.80.[]20R2=0.60.30.1000.40.600.40.40.20R 3=00.40.600.30.7000.80.2000.10.70.20R4=00100.30.60.100.10.9000.20.60.200.10.60.30由B=W R得到综合评价结果,其中W为二级指标权重向量,这里根据算子特点,模糊变化合成算子 使用M(·,⊕),一级指标U1的综合评价结果如下:B 1=W1R1=(0.50.5)00.90.1000.80.[]20=(0,0.8500,0.1500,0)同理得到U2,U3,U4综合评判结果:B 2=W2R2=(0.3998,0.3429,0.2573,0)61商丘师范学院学报2020年B 3=W 3 R 3=(0.4836,0.3844,0.1320,0)B 4=W 4 R 4=(0.1207,0.4203,0.4590,0)由此得到总评判矩阵:R =B 1B 2B 3B 4=00.85000.150000.39980.34290.257300.48360.38440.132000.12070.42030.45900最后根据一级指标权重W =(0.113,0.113,0.535,0.239)进行综合评判:B =W R =(0.113,0.113,0.535,0.239)00.85000.150000.39980.34290.257300.48360.38440.13200.12070.42030.45900=(0.3328,0.4409,0.2263,0)由上面结果看出,该研究生学业评判“较好”占44.09%,按最大隶属度原则,该研究生的学业评判应为较好.4结语本文针对研究生学业水平评判,结合层次分析法和模糊综合评判法,运用数学思想建立模型,使用编程实现评判.整个评判过程完整、可操作性强,评判结果合理、可靠,能够较为客观、公正地体现研究生的学业水平,为高校评价研究生学业水平提供参考方法,也为研究生学业奖学金的评选提供重要依据,对提高研究生培养质量具有重要意义.参考文献:[1]黄成思,王毅磊,陆海霞,等.学术型硕士研究生学业质量评价体系结构构建研究[J ].南昌师范学院学报(社会科学版),2016,37(1):67-71.[2]刘永凤,袁顶国.高校学业评价[M ].北京:高等教育出版社,2019.[3]伍亚华,王永斌,杨小翠,等.基于层次分析法的家庭经济困难学生模糊综合评判认定[J ].蚌埠学院学报,2017,6(2):153-156.[4]张万朋,柯乐乐.基于德尔菲法和层次分析法的研究生学习成果评价研究—以教育经济与管理专业为例[J ].现代大学教育,2018(1):93-99.[5]张丽华,李雅娟,王一然.高校学生职业能力评价体系研究—基于层次分析法[J ].教育理论与实践,2019,39(24):12-14.[6]刘子建,李冉,陈富强.基于SEEQ 与层次分析法的认证型评教体系研究[J ].河南师范大学学报(自然科学版),2019,47(5):32-38.[7]汪培庄.模糊集合论及其应用[M ].上海:上海科学技术出版社,1983:33-76.[8]布光,黄冬梅.基于模糊综合评判的大学生体能评价[J ].河北北方学院学报(自然科学版),2018,34(1):50-57.[9]尤游,刘莉,刘苏兵.熵权模糊综合评判在高校教师教学质量评价中的应用[J ].宁夏师范学院学报,2019,40(4):81-86.[10]陈志恩,王喜玲.粒矩阵与模糊综合评判融合的课堂教学质量评价研究[J ].宁夏师范学院学报,2019,40(7):22-28.[11]许晶.模糊综合评判法在本科毕业论文(设计)质量评价中的应用[J ].通化师范学院学报,2019,40(6):18-21.[12]邹晨红,袁满.模糊综合评判的系统聚类算法研究[J ].吉林大学学报(信息科学版),2018,36(5):441-448.[13]斯彩英.模糊综合评判法在高职教师业绩考评中的应用[J ].石家庄职业技术学院学报,2017,29(4):55-59.[责任编辑:王军]71第12期江健生,等:层次分析法和模糊综合评判法在研究生学业评价中的应用。
层次分析法在大学生就业中的应用【摘要】层次分析法是一种较为科学的决策分析方法,在大学生就业领域也有广泛的应用。
本文首先介绍了层次分析法的基本原理,然后针对大学生就业需求分析、岗位选择、意向排名和方案评价等方面进行了具体应用讨论。
通过层次分析法,大学生能更科学地选择职业方向,提高对自身职业发展的认知,并具有重要的指导意义。
层次分析法的使用可以帮助大学生更好地规划自己的职业生涯,提高就业成功率。
在大学生就业过程中,层次分析法是一种有益的工具,能够帮助他们做出更加合理和有效的决策。
通过本文的讨论,可以进一步认识到层次分析法在大学生就业中的重要作用,促进大学生们取得更好的职业发展。
【关键词】层次分析法, 大学生就业, 应用, 就业需求分析, 就业岗位选择, 就业意向排名, 就业方案评价, 职业方向选择, 自我认知, 指导意义1. 引言1.1 层次分析法在大学生就业中的应用层次分析法在大学生就业中的应用是一种系统性的决策方法,通过对不同因素的比较和权重分配,帮助大学生更科学地进行职业选择和规划。
在大学生就业中,层次分析法可以帮助他们理清自己的需求和优先排列自己的目标,从而更好地找到适合自己的职业方向。
层次分析法在大学生就业中具有重要的作用,可以帮助他们更好地理清自己的职业规划,提高对自身职业发展的认知,从而更好地实现自己的职业目标。
2. 正文2.1 层次分析法的基本原理层次分析法是一种系统性的决策分析工具,它通过将复杂问题分解为层次结构,然后利用专家判断矩阵对各层次的因素进行两两比较,最终确定各因素的权重,从而得出最终的决策结果。
在层次分析法中,首先确定目标,然后将目标分解成若干个层次,每个层次包含若干个因素,形成一个层次结构。
接着,对于每个层次的因素,利用专家意见或实证数据,构建判断矩阵,进行两两比较,确定各因素之间的重要程度。
通过计算特征值和特征向量,计算出各因素的权重,最终得出最佳决策方案。
层次分析法的基本原理是建立层次结构,通过专家判断矩阵确定各因素之间的相对重要性,利用数学计算方法得出各因素的权重,进而做出最佳决策。
层次分析法在报考学校中的应用摘要每年都有大量的高考毕业生面临着择校问题,大部分都没有经验总是会有些茫然失措顾此失彼,据问卷调查可知有一大部分大学生对自己当初的选择不尽如意。
为了减少这种心态下的种种决策失误,所以需要一种可靠的定量的容易操作的,并且具有说服力的方法来作出决策。
本文提出了定性定量相结合的层次分析法步骤,构成了学校满意度的评价指标,根据数据解决问题。
关键词:选学、层次分析法、决策、目标、权向量一、问题的提出刚高考完面临选择学校的学生甲,根据其分数可能被录取的学校有c1甲学校、c2乙学校、c3丙学校、c4丁学校。
如何在填报志愿中对着这四个学校进行排序并选择他比较满意的学校?这是目前需要解决的。
通过研究,最终确定了六个准则作为参照依据,来判断出最适合且让他满意的学校。
准则:B1师资力量B2学校声誉B3就业前景B4录取几率B5食宿条件B6地理位置二、模型的假设1、四个学校相当,各有利弊2、该学生仅在这四个学校中进行选择三、符号说明四、 模型的建立与求解 1、层次结构的建立第一层:目标层,即对可供选择的学校满意度A ;第二层:准则层,即B1师资力量B2学校声誉B3就业前景B4录取几率B5食宿条件B6地理位置第三层:方案层,即c1甲学校、c2乙学校、c3丙学校、c4丁学校 目标层准则层 方案层2、通过相互比较确定个准则对于目标的权重,及各方案对于每一准则的权重,这些权重在人的思维过程中通常是定性的,而在层次分析中则要给出得到权重的定量方法。
综上运用1-9尺度ij a 的含义构造两两比较矩阵并给出RI表1随机一致性指标RI 的数值一致性检验:成对比阵通常不是一致阵,但为了能用它的对应于特征根λ的特征向量作为比较因素的权向量,其不一致程度应在容许范围内即CI=1n n λ--,CR=CIRI<0.1 构造成对比较矩阵和计算权向量 准则层对目标层的成对比矩阵AA=111421/2112421/211/21531/21/41/41/511/31/31/21/21/3311/3222331⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭方案层对准则层的成对比较阵B1;即B1=方案层对准则层的成对比较阵B2;即B2=方案层对准则层的成对比较阵B3;即B3=方案层对准则层的成对比较阵B4;即B4=方案层对准则层的成对比较阵B5;即B5=12321/2141/21/31/411/41/2241⎛⎫⎪⎪ ⎪⎪⎝⎭115311431/51/411/21/31/321⎛⎫⎪⎪ ⎪⎪⎝⎭11/21/31/7211/21/53211/57551⎛⎫ ⎪ ⎪⎪⎪⎝⎭13541/3121/31/51/211/51/4351⎛⎫⎪ ⎪ ⎪⎪⎝⎭11/231/221511/31/511/62161⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭方案层对准则层的成对比较阵B6;即B6=3、 将方案层对准则层的权重及准则层对目标层的权重进行综合分析并作一致性检验运用matlab 软件求解各成对比阵的最大特征根及对应向量,ω12=[ 0.3876; 0.4519; 0.4025; 0.1099; 0.2093;0.6540]归一化后得作为[0.1750;0.2040;0.1817;0.0496;0.0945;0.2952];λ=6.2620一致性检验; CI= 0.26205=0.0524一致性比率,CR=CI RI =0.05241.24=0.0422<0.1,则一致性检验通过,ω13可以作为权重向量。
高校硕士研究生招生指标分配问题摘要高等学校研究生招生指标分配问题,对研究生的培养质量、学科建设和科研成果的取得有直接影响。
特别是2011年研究生招生改革方案中,将硕士研究生招生指标划分为学术型和专业型两类。
这一改革方案的实施,给研究生教育的发展带来发展机遇的同时,也给研究生招生指标分配的优化配置提出了新的思考。
针对问题一,从附件所给数据可得,2007-2011年岗位等级数据出现缺失,针对这一问题,我们从两个方面进行考虑,一是针对每一种学科内部,基于已知的岗位等级样本对缺失的样本数据进行判别分析;二是在不考虑学科分类的情况下基于所有已知的样本数据,对未知数据进行判别分析,并根据实际情况,从两种结果选取最佳分类方案。
针对问题二,当以岗位级别为指标时,我们考虑把七个岗位级别看作是相互独立的,基于每一个岗位级别内部的招生人数、科研经费、发表中英文论文数、申请专利数、获奖数以及获得优秀论文数量可能会出现一定的相关性,所以我们考虑运用主成分分析的方法进行变量降维,找出每一个岗位级别侧重于的综合指标的信息贡献率,获得其统计规律。
针对问题三,利用第二问结果,并假设各学科之间没有差异。
我们用虚拟变量表示学术型和专业型,并将其作为被解释变量,将第二问得出的主成分因素作为解释变量,运用Eviews软件,建立二元选择模型进行分析。
针对问题四,1 问题背景与提出据统计,显示自高校扩招以来, 我国研究生教育发展很快,选择考取硕士研究生的比率在不断提高,与此同时国家发展改革委办公厅也在2011年研究生招生改革方案中,将硕士研究生招生指标划分为学术型和专业型两类。
这一改革方案的实施,给研究生教育的发展带来发展机遇的同时,也给研究生招生指标分配的优化配置提出了新的思考。
随着研究生人数的急速膨胀, 将不可避免地影响甚至强烈冲击传统的研究生教育管理体制和教育培养方法。
各研究生培养单位应该也主动适应这种情况的变化, 研究并调整有关的管理体制及与其相配套的培养方法,这使得对研究生招生指标分配进行优化配置势在必行。
层次分析法原理及应用层次分析法(Analytic Hierarchy Process,简称AHP)是由美国运筹学家托马斯·L·塞蒂博士在1970年代提出的一种决策分析方法,主要用于解决多目标决策问题。
AHP方法通过将复杂的决策问题逐级分解为层次结构,并利用专家判断和主观感受进行两两比较,最终得出权重的相对大小,从而达到对各个因素的定量分析和决策的目的。
层次分析法的基本原理是构建一个决策层次结构,将决策问题分解为若干层次。
具体分为目标层、准则层和方案层。
其中目标层表达决策问题的最终目标,准则层表示实现目标所需考虑的准则或因素,方案层是具体的可选择方案。
通过一系列两两比较,形成一个决策准则的成对比较矩阵,然后通过特征向量方法计算出各个因素的权重。
最后,将各个层次的权重乘起来,得到各个方案的总权重,从而进行方案的排序和选择。
层次分析法的应用非常广泛,以下是几个常见的领域:1. 项目选择和评估:在项目管理领域,层次分析法可以帮助决策者对不同项目的目标和准则进行比较和权衡,从而选择最适合的项目方案。
2. 供应商选择:在供应链管理中,层次分析法可以用于评估和选择供应商。
通过比较和评估不同供应商在成本、质量、交货时间等准则上的表现,从而选择最优的供应商。
3. 市场营销决策:在市场营销中,层次分析法可以用于确定市场细分、产品定位、市场推广策略等决策。
通过比较不同市场细分、不同产品定位、不同推广策略等因素的重要性,从而制定最合理的决策方案。
4. 人事招聘和绩效评估:在人力资源管理中,层次分析法可以帮助企业进行人事招聘和绩效评估。
通过比较不同应聘者在能力、经验、素质等方面的重要性,从而选择最合适的人才;通过比较不同员工在工作成绩、团队合作、个人发展等方面的重要性,从而进行绩效评估和薪酬分配。
5. 投资决策:在投资领域,层次分析法可以用于进行投资决策和投资组合优化。
通过比较不同投资标的在收益、风险、流动性等方面的重要性,从而选择风险与收益最优的投资组合。