「精品」九年级数学下册第26章二次函数26.3实践与探索26.3.2二次函数实物或几何模型同步练习新版华东师大版
- 格式:doc
- 大小:88.00 KB
- 文档页数:5
26.3实践与探索第2课时二次函数实物或几何模型知I识I目I标1.通过模拟、问题变式等,能把实物中的距离、高度、长度等问题转化为二次函数的问题, 并加以解决.2.通过销售问题中的成本价、销售价、利润等关系,建立二次函数模型,借助二次函数的性质探究出最佳方案.、目标突破W ______________________ 有的放矢目标一能解决抛物线形实物模型问题例1教材问题2针对训练如图26-3-4①所示是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1 m,拱桥的跨度为10 m,桥洞与水面的最大距离是5 m,桥洞两侧壁上各有一盏距离水面4 m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图②).(1)求抛物线所对应的函数关系式;(2)求两盏景观灯之间的水平距离.【归纳总结】利用二次函数解决拱桥类问题的步骤:(1)恰当地建立平面直角坐标系;⑵将已知条件转化为点的坐标;(3)合理地设出所求函数的关系式;(4)代入已知条件或点的坐标求出关系式;(5)利用关系式求解问题.目标二能用二次函数探究销售中的最佳方案例2高频考题超市的售货员小王对该超市苹果的销售情况进行了统计,每千克进价为2元的苹果每天的销售量y(千克)和当天的售价班元/千克)之间满足20卄200(3WxW5), 若要使销售该种苹果当天的利润达到最高,则其售价应为()A. 5元/千克B. 4元/千克C. 3. 5元/千克D. 3元/千克例3高频考题为满足市场需求,某超市在端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45 元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价*元)之间的函数关系式(不必写出自变量的取值范围);(2)当每盒售价定为多少元时,每天的销售利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门规定:这种粽子每盒的售价不得高于58元.如果超市想要每天销售粽子获得不低于6000元的利润,那么超市每天至少需要销售粽子多少盒?【归纳总结】用二次函数探究销售中的最佳方案:此类问题一般是先利用“总利润=总售价一总成本”或“总利润=每件商品的利润X销售数量”建立利润与价格Z间的函数关系式(一般是二次函数),求出这个函数图象的顶点坐标,从而可得最大利润.同吋还要注意实际问题中自变量的取值范围.、总结反思_______________ 小结感悟「小结♦♦匸知识点二次函数在实际问题中的应用(2)1.抛物线形的实物在生活中也相当常见,如抛物线形的桥梁、隧道、涵洞等.解决问题的关键是根据实际情况建立平面直角坐标系,并把实物的尺寸转化成点的坐标,再根据具体情况应用二次函数的基本知识解决相关问题.2.根据实际生活中的问题列出二次函数关系式,如商品利润问题,应用二次函数的知识进行最优化决策.[点拨]注意:用二次函数探究销售中的最佳方案时,一定要考虑获取最佳方案时,自变量的取值是否在自变量的取值范围内.广反思♦♦♦某化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售价每千克不得高于60元,不得低于30元.当销售单价为/元/千克时,日销售量为(一2孑+ 200)千克.在销售过程屮,每天还要支付其他费用450元,则当销售单价为多少时,该公司日获利笊元)最大?最大获利是多少元?解:"-匕一30) (―2^+200)—450 = —2,+260x—6450 = —2(x—65),+ 2000.・••当x=65时,用最大,大值= 2000,即当销售单价为65元/千克时,该公司日获利最大,最大获利是2000元. 找出以上解答过程中的错谋,并进行改正.教师详解详析【目标突破】例1 [解析]本题已经建立了平面直角坐标系,于是:(1)依题意可以求得抛物线的顶点坐标,这样可以用顶点式设出抛物线所对应的函数关系式;(2)rh于桥洞两侧壁上各有一盏距离水而4 /〃的景观灯,也就是说两盏景观灯的纵坐标都是4,这样利用(1)屮求得的抛物线所对应的函数关系式得到一个一元二次方程,求解即可.解:(1)由题意可知抛物线的顶点坐标为(5, 5),与y轴的交点坐标是(0, 1).设抛物线所对应的函数关系式是y = a(x —5尸+5.4把(0, 1)代入y = a(x —5尸 + 5,得a=——4所以所求抛物线对应的函数关系式为y =—亦(x—5F+5(0W X W10)・(2)由已知条件得两盏景观灯的纵坐标都是4,4所以4 =—亦(x —5)'+5,9R 1斤斤即(X —5)2=亍,解得X1=y,出=]因1=5(777),所以两盏景观灯Z间的水平距离为5 /〃.例2 [解析]A设销售这种苹果所获得的利润为w元,则w=(x-2) (-20x + 200)=-20X2+240X-400=-20(X-6)2+320,・••当x<6时,w随x的增大而增大.•・・3WxW5,・••当x = 5时,w取得最大值,即当售价为5元/千克时,销售该种苹果当天的利润达到最高. 例3 解:(1)由题意,得y=700-20 (x-45) =-20x+1600.(2)P=(x-40) (-20x+1600) =-20X2+2400X-64000=-20(X-60)2+8000.•・・xM45, a=-20<0,・••当x = 60时,P最大値=8000,即当每盒售价定为60元时,每天的销售利润P(元)最大,最大利润是8000元.(3)由一20(x —60)2+8000 = 6000,解得xi = 50, X2=70.I抛物线P = _20 (x—60)2+8000的开口向下,・・・当50WxW70时,该超市每天销售粽子的利润不低于6000元.又・・・xW58,・・・50WxW58.・・•在y= -20x+1600 中,k=-20<0,・・・y随x的增大而减小,・・・当x = 58 时,y ^=-20X58+1600 = 440,即超市每天至少需要销售粽子440盒.【总结反思】[反思]・.・30WxW60,・・・抛物线顶点的横坐标65不在自变量的取值范围内,AW的最大值不是顶点的纵坐标.改正如下:由函数的增减性可知,当x = 60时,W有最大值,W 最大值=-2X (60 — 65)2+2000=1950,即当销售单价为60元/千克时,该公司日获利最大,最大获利是1950元.。
新课标人教版初中数学九年级下册第26章《二次函数》精品教案第1课时 26.1 二次函数一、阅读教科书第4—6页上方 二、学习目标:1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。
其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x五、课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13 时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.六、目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-12.下列函数中,是二次函数的是( ) A .y =x 2-1B .y =x -1C .y =8xD .y =8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.第2课时二次函数y=ax2的图象与性质一、阅读课本:P6—8二、学习目标:1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.三、探索新知:画二次函数y=x2的图象.【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】描点,并连线由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y=12x2,y=x2,y=2x2的图象.解:列表并填:y=x2的图象刚画过,再把它画出来.归纳:抛物线y=12x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).例2 请在例1的直角坐标系中画出函数y=-x2,y=-12x2,y=-2x2的图象.列表:归纳:抛物线y=-x2,y=-12x2,y=-2x2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) . 五、理一理122.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________;因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________.六、课堂训练 12.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________七、目标检测1.函数y =37 x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________.2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时 二次函数y =ax 2+k 的图象与性质一、阅读课本:P9—10 二、学习目标:1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 三、探索新知:在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表观察图象得:2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.四、理一理知识点1.2.抛物线y =2x 2向上平移3个单位,就得到抛物线__________________; 抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.五、课堂巩固训练2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________.六、目标检测2.抛物线y =-13 x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y=-x2+h的顶点坐标为(0,2),则h=_______________.4.抛物线y=4x2-1与y轴的交点坐标为_____________,与x轴的交点坐标为_________.第4课时二次函数y=a(x-h)2的图象与性质一、阅读课本:P10—11二、学习目标:1.会画二次函数y=a(x-h)2的图象;2.掌握二次函数y=a(x-h)2的性质,并要会灵活应用;三、探索新知:画出二次函数y=-12(x+1)2,y-12(x-1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.描点并画图.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12 (x +1)2 .四、整理知识点2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同.五、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=__________,n=___________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.第5课时二次函数y=a(x-h)2+k的图象与性质一、阅读课本:第12页~第13页上方.二、学习目标:1.会画二次函数的顶点式y=a (x-h)2+k的图象;2.掌握二次函数y=a (x-h)2+k的性质;3.会应用二次函数y=a (x-h)2+k的性质解题.三、探索新知:画出函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.由图象归纳:2.把抛物线y =-12 x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12 (x +1)2-1.2.抛物线y =a (x -h)2+k 与y =ax 2形状___________,位置________________.五、课堂练习2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:第14页~第15页上方.二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.四、理一理知识点:五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.第7课时 二次函数y =ax 2+bx +c 的性质一、复习知识点:第6课中“理一理知识点”的内容. 二、学习目标:1.懂得求二次函数y =ax 2+bx +c 与x 轴、y 轴的交点的方法; 2.知道二次函数中a ,b ,c 以及△=b 2-4ac 对图象的影响. 三、基本知识练习1.求二次函数y =x 2+3x -4与y 轴的交点坐标为_______________,与x 轴的交点坐标____________.2.二次函数y =x 2+3x -4的顶点坐标为______________,对称轴为______________. 3.一元二次方程x 2+3x -4=0的根的判别式△=______________. 4.二次函数y =x 2+bx 过点(1,4),则b =________________. 5.一元二次方程y =ax 2+bx +c (a ≠0),△>0时,一元二次方程有_______________, △=0时,一元二次方程有___________,△<0时,一元二次方程_______________. 四、知识点应用1.求二次函数y =ax 2+bx +c 与x 轴交点(含y =0时,则在函数值y =0时,x 的值是抛物线与x 轴交点的横坐标).例1 求y =x 2-2x -3与x 轴交点坐标.2.求二次函数y =ax 2+bx +c 与y 轴交点(含x =0时,则y 的值是抛物线与y 轴交点的纵坐标).例2 求抛物线y =x 2-2x -3与y 轴交点坐标.3.a 、b 、c 以及△=b 2-4ac 对图象的影响. (1)a 决定:开口方向、形状(2)c 决定与y 轴的交点为(0,c )(3)b 与-b2a共同决定b 的正负性(4)△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000例3 如图, 由图可得: a_______0 b_______0 c_______0 △______0例4 已知二次函数y =x 2+kx +9.①当k 为何值时,对称轴为y 轴;②当k 为何值时,抛物线与x 轴有两个交点; ③当k 为何值时,抛物线与x 轴只有一个交点.五、课后练习1.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.如图:由图可得:a_______0b_______0c_______0△=b2-4ac______0六、目标检测1.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.2.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.3.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0第8课时二次函数y=ax2+bx+c解析式求法一、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.二、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.三、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x 轴的两交点为(-1,0)和(3,0),且过点(2,-3). 求抛物线的解析式. 四、归纳用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设一般式为y =ax 2+bx +c .2.已知抛物线顶点坐标及一点,设顶点式y =a(x -h)2+k .3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标), 设两根式:y =a(x -x 1)(x -x 2) .(其中x 1、x 2是抛物线与x 轴交点的横坐标)五、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?六、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.七、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.第10课时 用函数观点看一元二次方程Q PC B A一、阅读课本:第20~22页二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx +c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x +1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________ 4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0②如图2a+b_______04a+2b+c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).第12课时实际问题与二次函数一、阅读课本:第27页探究3二、学习目标:1.会建立直角坐标系解决实际问题;2.会解决桥洞水面宽度问题.三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y=-14x2,当拱桥下水位线在AB位置时,水面宽为12m,这时水面离桥拱顶端的高度h是()A.3m B.2 6 m C.4 3 m D.9m 3.有一抛物线拱桥,已知水位线在AB位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y=ax2+c的形式,请根据所给的数据求出a、c的值;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m,高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.图①(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?第13课时二次函数综合应用一、复习二次函数的基本性质二、学习目标:灵活运用二次函数的性质解决综合性的问题.三、课前训练1.二次函数y=kx2+2x+1(k<0)的图象可能是()2.如图:(1)当x为何范围时,y1>y2?(2)当x为何范围时,y1=y2?(3)当x 为何范围时,y 1<y 2?3.如图,是二次函数y =ax 2-x +a 2-1的图象,则a =____________.4.若A (-134 ,y 1),B (-1,y 2),C (53,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动.(1)求点P 从点A 运动到点D 所需的时间.(2)设点P 运动时间为t (秒)①当t =5时,求出点P 的坐标.②若△OAP 的面积为S ,试求出S 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).五、目标检测如图,二次函数y =ax 2+bx +c 的图像经过A (-1,0),B (3,0)两交点,且交y 轴于点C .(1)求b 、c 的值;(2)过点C 作CD ∥x 轴交抛物线于点D ,点M 为此抛物线的顶点,试确定△MCD 的形状.。
实践与探索(2)
【学习目标】 1.会根据二次函数的图象分析、解决问题。
2.在转化、建模中体会二次函数的实际意义。
3.感受数学在生活中的运用,激发学习热情。
【重点】会用二次函数的性质解决问题。
【难点】构建二次函数的数学模型。
【使用说明与学法指导】 先预习P27-28问题2内容,勾画课文中的重点,理清解题思路后,独立完成导学案,疑惑随时记录在课本或预习案上,准备课上讨论质疑; 预 习 案 一、预习导学: 一个涵洞的截面边缘成抛物线形,如图,现测得,当水面宽AB =1.6 m 时,涵洞顶点与水面的距离为2.4 m .这时,离开水面1.5 m 处,涵洞宽ED 是多少?是否会超过1 m ?
二、我的疑惑:
合作探究
探究一:例1:如图,有一个抛物线形的水泥门洞.门洞的地面宽度为8 m,两侧距地面4 m高处各有一盏灯,两灯间的水平距离为6 m.求这个门洞的高度.(精确到0.1 m)
探究二:如图,一位篮球运动员在离篮圈水平距离4 m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05 m.
(1)建立图中所示的直角坐标系,求抛物线所对应的函数关系式;
(2)若该运动员身高1.8 m,这次跳投时,球在他头顶上方0.25 m处出手.问:球出手时,他跳离地面多高?
链接中考:。
26.3 实践与探索一.选择题1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③2已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.3.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象如图,则该图象的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣D.直线x=4.抛物线y=ax2+bx+c如图,考查下述结论:①b<0;②a﹣b+c>0;③b2>4ac;④2a+b<0.正确的有()A.①②B.①②③C.②③④D.①②③④5.将抛物线y=x2﹣2平移到抛物线y=x2+2x﹣2的位置,以下描述正确的是()A.向左平移1单位,向上平移1个单位B.向右平移1单位,向上平移1个单位C.向左平移1单位,向下平移1个单位D.向右平移1单位,向下平移1个单位6.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD 与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)7.关于x的二次函数y=x2+(1﹣m)x﹣m,其图象的对称轴在y轴的右侧,则实数m的取值X围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>18.已知二次函数y=ax2﹣1的图象开口向下,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限二.填空题9.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为_________ .10如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_________ .11.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.12.已知二次函数y=ax2+bx+c的图象如图所示,则下列7个代数式ab,ac,bc,b2﹣4ac,a+b+c,a﹣b+c,2a+b 中,其值为正的式子的个数为_________ 个.13.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x …0 1 2 3 …y … 5 2 1 2 …点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系是_________ .14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________ 件(用含x的代数式表示).三.解答题15.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值X围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?16.如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式.(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由.(3)若球一定能越过球网,又不出边界.则h的取值X围是多少?17.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.18.如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点C(0,﹣5).(1)求该二次函数的解析式和它与x轴的另一个交点B的坐标.(2)在上面所求二次函数的对称轴上存在一点P(2,﹣2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形.19.如图,一块直角三角形木板ABC,其中∠C=90°,AC=3m,BC=4m,现在要把它们加工成一个面积最大的矩形,甲、乙两位木工师傅的加工方法分别如图1、图2所示,请用学过的知识说明哪位师傅的加工方法符合要求.参考答案一.选择题1. B2. D3. D 4.B5. C6. C7. D8. D二.填空题9.8 10. x1=0,x2=211.12. 313. y1>y214.(60+x).三.解答题15.解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.16.解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x﹣6)2+h过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=,故y与x的关系式为:y=﹣(x﹣6)2+2.6,(2)当x=9时,y=(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,(x﹣6)2+2.6=0,解得:x1=6+>18,x2=6﹣(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得,此时二次函数解析式为:y=(x﹣6)2+,此时球若不出边界h≥,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得,此时球要过网h≥,故若球一定能越过球网,又不出边界,h的取值X围是:h≥.17.解:(1)∵二次函数y=x2+bx+c的图象过A(2,0),B(8,6)∴,解得∴二次函数解析式为:y=x2﹣4x+6,(2)由y=x2﹣4x+6,得y=(x﹣4)2﹣2,∴函数图象的顶点坐标为(4,﹣2),∵点A,D是y=x2+bx+c与x轴的两个交点,又∵点A(2,0),对称轴为x=4,∴点D的坐标为(6,0).(3)∵二次函数的对称轴交x轴于C点.∴C点的坐标为(4,0)∵B(8,6),设BC所在的直线解析式为y=kx+b,∴解得∴BC所在的直线解析式为y=x﹣6,∵E点是y=x﹣6与y=x2﹣4x+6的交点,∴x﹣6=x2﹣4x+6解得x1=3,x2=8(舍去),当x=3时,y=﹣,∴E(3,﹣),∴△BDE的面积=△CDB的面积+△CDE的面积=×2×6+×2×.(4)存在,设点P到x轴的距离为h,∵S△BCD=×2×6=6,S△ADP=×4×h=2h∵S△ADP=S△BCD∴2h=6×,解得h=,当P在x轴上方时,=x2﹣4x+6,解得x1=4+,x2=4﹣,当当P在x轴下方时,﹣=x2﹣4x+6,解得x1=3,x2=5,∴P1(4+,),P2(4﹣,),P3(3,﹣),P4(5,﹣).18.解:(1)根据题意,得,解得,∴二次函数的表达式为y=x2﹣4x﹣5,当y=0时,x2﹣4x﹣5=0,解得:x1=5,x2=﹣1,∵点A的坐标是(﹣1,0),∴B(5,0),答:该二次函数的解析式是y=x2﹣4x﹣5,和它与x轴的另一个交点B的坐标是(5,0).(2)令y=0,得二次函数y=x2﹣4x﹣5的图象与x轴的另一个交点坐标B(5,0),由于P(2,﹣2),符合条件的坐标有共有4个,分别是M1(4,0)M2(2,0)M3(﹣2,0)M4(2,0),答:x轴上所有点M的坐标是(4,0)、(2,0)、(﹣2,0)、(2,0),使得△OPM是等腰三角形.19.解:如图1,设DE=x,EF=y,矩形的面积记为S,由题意,DE∥CB,∴即:解得y=3﹣x其中0<x<4∴S=xy=x(3﹣x)=﹣x2+3x=﹣(x﹣2)2+3∴有最大面积是3.(2)如图,作CE⊥AB于点E,交NM与点D∵∠C=90°,AC=3m,BC=4m,设MQ=x MN=y,则DE=x,CD=2.4﹣x∵MN∥AB∴即:整理得:y=﹣x+5∴S=xy=x(﹣x+5)=﹣(x﹣)2+3 故两个师傅均符合要求.。
26.3 实践与探索
第2课时二次函数实物或几何模型
知|识|目|标
1.通过模拟、问题变式等,能把实物中的距离、高度、长度等问题转化为二次函数的问题,并加以解决.
2.通过销售问题中的成本价、销售价、利润等关系,建立二次函数模型,借助二次函数的性质探究出最佳方案.
目标一能解决抛物线形实物模型问题
例1 教材问题2针对训练如图26-3-4①所示是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1 m,拱桥的跨度为10 m,桥洞与水面的最大距离是5 m,桥洞两侧壁上各有一盏距离水面4 m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图②).
(1)求抛物线所对应的函数关系式;
(2)求两盏景观灯之间的水平距离.
图26-3-4
【归纳总结】利用二次函数解决拱桥类问题的步骤:
(1)恰当地建立平面直角坐标系;
(2)将已知条件转化为点的坐标;
(3)合理地设出所求函数的关系式;
(4)代入已知条件或点的坐标求出关系式;
(5)利用关系式求解问题.
目标二能用二次函数探究销售中的最佳方案
例2 高频考题超市的售货员小王对该超市苹果的销售情况进行了统计,每千克进价为2元的苹果每天的销售量y(千克)和当天的售价x(元/千克)之间满足y=-20x+200(3≤x≤5),若要使销售该种苹果当天的利润达到最高,则其售价应为( )
A.5元/千克 B.4元/千克
C.3.5元/千克 D.3元/千克
例3 高频考题为满足市场需求,某超市在端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现:当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式(不必写出自变量的取值范围);
(2)当每盒售价定为多少元时,每天的销售利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门规定:这种粽子每盒的售价不得高于58元.如果超市想要每天销售粽子获得不低于6000元的利润,那么超市每天至少需要销售粽子多少盒?
【归纳总结】用二次函数探究销售中的最佳方案:
此类问题一般是先利用“总利润=总售价-总成本”或“总利润=每件商品的利润×销售数量”建立利润与价格之间的函数关系式(一般是二次函数),求出这个函数图象的顶点坐标,从而可得最大利润.同时还要注意实际问题中自变量的取值范围.
知识点二次函数在实际问题中的应用(2)
1.抛物线形的实物在生活中也相当常见,如抛物线形的桥梁、隧道、涵洞等.解决问题的关键是根据实际情况建立平面直角坐标系,并把实物的尺寸转化成点的坐标,再根据具体情况应用二次函数的基本知识解决相关问题.
2.根据实际生活中的问题列出二次函数关系式,如商品利润问题,应用二次函数的知识进行最优化决策.
[点拨]注意:用二次函数探究销售中的最佳方案时,一定要考虑获取最佳方案时,自变量的取值是否在自变量的取值范围内.
某化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售价每千克不得高于60元,不得低于30元.当销售单价为x元/千克时,日销售量为(-2x+200)千克.在销售过程中,每天还要支付其他费用450元,则当销售单价为多少时,该公司日获利W(元)最大?最大获利是多少元?
解:W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2+2000.
∴当x=65时,W最大,W最大值=2000,
即当销售单价为65元/千克时,该公司日获利最大,最大获利是2000元.
找出以上解答过程中的错误,并进行改正.
教师详解详析
【目标突破】
例1 [解析] 本题已经建立了平面直角坐标系,于是:(1)依题意可以求得抛物线的顶点坐标,这样可以用顶点式设出抛物线所对应的函数关系式;(2)由于桥洞两侧壁上各有一盏距离水面4 m 的景观灯,也就是说两盏景观灯的纵坐标都是4,这样利用(1)中求得的抛物线所对应的函数关系式得到一个一元二次方程,求解即可.
解:(1)由题意可知抛物线的顶点坐标为(5,5),与y 轴的交点坐标是(0,1).
设抛物线所对应的函数关系式是y =a(x -5)2+5.
把(0,1)代入y =a(x -5)2+5,得a =-425
. 所以所求抛物线对应的函数关系式为y =-425
(x -5)2+5(0≤x ≤10). (2)由已知条件得两盏景观灯的纵坐标都是4,
所以4=-425
(x -5)2+5, 即(x -5)2=254,解得x 1=152,x 2=52
. 因为152-52
=5(m ), 所以两盏景观灯之间的水平距离为5 m .
例2 [解析] A 设销售这种苹果所获得的利润为w 元,
则w =(x -2)(-20x +200)
=-20x 2+240x -400
=-20(x -6)2+320,
∴当x <6时,w 随x 的增大而增大.
∵3≤x ≤5,
∴当x =5时,w 取得最大值,即当售价为5元/千克时,销售该种苹果当天的利润达到最高. 例3 解:(1)由题意,得y =700-20(x -45)=-20x +1600.
(2)P =(x -40)(-20x +1600)=-20x 2+2400x -64000=-20(x -60)2+8000.
∵x ≥45,a =-20<0,
∴当x =60时,P 最大值=8000,
即当每盒售价定为60元时,每天的销售利润P(元)最大,最大利润是8000元.
(3)由-20(x -60)2+8000=6000,
解得x 1=50,x 2=70.
∵抛物线P =-20(x -60)2+8000的开口向下,
∴当50≤x ≤70时,该超市每天销售粽子的利润不低于6000元.
又∵x ≤58,
∴50≤x ≤58.
∵在y =-20x +1600中,k =-20<0,
∴y 随x 的增大而减小,
∴当x =58时,y 最小值=-20×58+1600=440,
即超市每天至少需要销售粽子440盒.
【总结反思】
[反思] ∵30≤x≤60,
∴抛物线顶点的横坐标65不在自变量的取值范围内,
∴W的最大值不是顶点的纵坐标.
改正如下:由函数的增减性可知,当x=60时,W有最大值,
W最大值=-2×(60-65)2+2000=1950,
即当销售单价为60元/千克时,该公司日获利最大,最大获利是1950元.。