九年级数学下册二次函数
- 格式:docx
- 大小:10.41 KB
- 文档页数:4
九年级下册二次函数知识点二次函数是中学数学中非常重要的一个概念,它在数学理论和实际应用中都具有广泛的重要性。
在九年级下册的学习中,我们将学习与二次函数相关的知识点,包括函数的定义、图像特性以及与实际问题的联系。
本文将详细介绍九年级下册二次函数的知识点。
一、二次函数的定义二次函数是指函数的自变量的最高次数为2的函数,一般的表达式为f(x) = ax^2 + bx + c。
其中,a、b、c为实数常数。
其中的a 称为二次函数的二次项系数,b称为一次项系数,c称为常数项。
二次函数的定义域是实数集R,值域往往和a有关。
二、二次函数的图像特性1. 开口方向二次函数的开口方向与二次项的系数a有关。
当a>0时,函数的图像开口向上;当a<0时,函数的图像开口向下。
这是因为二次函数的图像实际上是一个抛物线,抛物线的开口方向与二次项系数的正负有关。
2. 对称轴与顶点坐标对称轴是二次函数图像的一条特殊线,对称轴的方程通常为x = -b / (2a)。
对称轴将图像分为两部分,而二次函数的图像在对称轴上具有对称性。
顶点坐标则是二次函数图像的最高点或最低点的坐标,它的x值就是对称轴的x值,y值可由函数表达式计算得出。
3. 零点二次函数的零点即使函数的自变量取值使得函数值为0的点。
计算二次函数的零点需要解二次方程ax^2 + bx + c = 0。
二次方程的解有两个,分别代表着图像与x轴的交点。
三、二次函数与实际问题二次函数在实际问题中的应用非常广泛,例如抛体运动、建模等。
下面以抛体运动为例,说明二次函数在实际问题中的应用。
假设有一个以45度角抛出的物体,那么该物体的运动轨迹可以用一个二次函数来表示。
在这里,自变量x表示时间,函数值f(x)表示物体的高度。
而二次函数的开口方向、对称轴以及顶点坐标等特性可以帮助我们分析该物体的抛射轨迹。
通过对二次函数的分析,可以计算物体的最高点、落地点、时间等信息。
除此之外,二次函数还可以用来建立数学模型,以解决实际问题。
九年级数学二次函数教案(优秀9篇)二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法讨论探索法。
教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
轧东卡州北占业市传业学校二次函数y=a 〔x-h 〕2和y=a 〔x-h 〕2+k 的图像和性质知识点一 二次函数y=a 〔x-h 〕2的图像和性质把二次函数2x y =的图像向右平移3个单位长度,得到新的图像的函数表达式是〔 〕32+=x y B. 32-=x y C. 2)3(+=x y D. 2)3(-=x y抛物线2)3(2--=x y 的顶点坐标和对称轴分别是〔 〕3),0,3(-=-x 直线 B. 3),0,3(=x 直线C.3),3,0(-=-x 直线 D. 3),3,0(-=x 直线二次函数2)1(3+=x y 的图像上有三点),2(),,2(),,1(321y C y B y A - ,那么321,,y y y 的大小关系为〔 〕A.321y y y >> B. 312y y y >> C. 213y y y >> D. 123y y y >>把抛物线2)1(6+=x y 的图像平移后得到抛物线26x y =的图像,那么平移的方法可以是〔 〕沿y 轴向上平移1个单位长度 B.沿y 轴向下平移1个单位长度C.沿x 轴向左平移1个单位长度D.沿x 轴向右平移1个单位长度假设二次函数12+-=mx x y 的图像的顶点在x 轴上,那么m 的值是〔 〕 A. 2 B. 2- C.0 D. 2± 对称轴是直线2-=x的抛物线是〔 〕A.22+-=x yB.22+=x y C.2)2(21+=x y D.2)2(3-=x y对于函数2)2(3-=x y ,以下说法正确的选项是〔 〕当0>x时,y 随x 的增大而减小 B. 当0<x 时,y 随x 的增大而增大C. 当2>x时,y 随x 的增大而增大 D. 当2->x 时,y 随x 的增大而减小二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图像都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点〔0,0〕;③当>x时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有〔〕A.1个B.2个C.3个D.4个9.抛物线2)1(3--=xy的开口向,对称轴是,顶点坐标是。
第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。
九年级数学下册《二次函数》复习课教学设计及反思
知识目标:1、了解二次函数解析式的三种表示方法,抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;
2、一元二次方程与抛物线的关系.
3、利用二次函数解决实际问题。
技能目标:培养学生运用函数知识与几何知识解决数学综合题和实际问题的能力。
情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;
2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。
复习重点:二次函数的应用
复习难点:函数综合题型
复习方法:自主探究、分组合作交流
复习过程:
一、知识梳理(学生独立练习,分小组批改)
1、二次函数解析式的三种表示方法:
(1)顶点式:(2)交点
式:(3)一般
式:
2、填表:(屏幕显示)
抛物线对称轴顶点坐标开口方向当a>0时开口方向当a<0时
y=ax2
Y=ax2+k
Y=a(x-h)2
y=a(x-h)2 +k
Y=ax2 +bx2 +c
3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而___,在对称轴左侧,y随x的增大而___;当a<0时,在对称轴右侧,y随x的增大而____, 在对称轴左侧,y随x的增大而_____
4、抛物线y=ax2 +bx+c,当a>0时图象有最____点,此时函数有最_____值;当a<0时图象有最______点,此时函数有最_______
值。
二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)(屏幕显示)
1、已知二次函数y=ax2 +bx+c的图象如图所示,试判断下面各式的符号:(1)abc (2)b2-4ac (3)2a+b (4) a+b+c
2、已知抛物线y=x 2 +(2k+1)x-k 2
+k
(1) 求证:此抛物线与x 轴总有两个不同的交点;
(2)设A (x 1 ,0)和B (x 2 ,0)是此抛物线与x 轴的两个交点,且满
足x 1 +x 2 = -2k 2 +2k+1,①求抛物线的解析式
②此抛物线上是否存在一点P ,使△PAB 的面积等于3,若存在,请求出点P 的坐标;若不存在,请说明理由。
三、归纳小结:
通过本节课的练习,你有什么收获和体会?
四、利用二次函数解决实际问题:
一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,
(1) 根据题意建立直角坐标系,并求出抛物线的解析式。
(2) 该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?
五、作业:
已知抛物线y=x2+(1-2a)x+a2 (a≠0)与x轴交于两点A(x1,0),B(x2,0) ,(x1≠x2)
(1)求a的取值范围,并证明A、B两点都在原点的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。