华师大版九年级下册二次函数单元测试及答案
- 格式:docx
- 大小:625.03 KB
- 文档页数:4
(时间90分钟,满分100)、精心选一选(每题 4分,共16分)1 .抛物线y=lx 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式2为()A .y= 1x 2+2x — 2B. y= 1x 2+2x+12 2 C. y= 1x2— 2x — 12 2. 已知二次函数y=ax的图象不经过( A .第一象限B.第二象限C.第三象限D.第四象限3. 直线y=ax+b 与抛物线 y=ax 2+bx+c 中,a 、b 异号,b c<0,那么它们在同一坐标系中的图象大致为()h=1gt 2 (g 为正常数,t 为时间)如图,则函数图象为 ()2二、耐心填一填(每题 4分,共40分)5. 函数y=(m+3)x m2*4,当m=时,它的图象是抛物线.6. 抛物线 y=1(x-3)2-1开口向 ,顶点坐标是 ,对称轴是 .27. 已知以x 为自变量的二次函数 y=(m — 2)x 2+m 2— m — 2的图象经过原点,贝U m=,当x 时y 随x 增大而减小. 8 .函数y=2x2~ 7x+3顶点坐标为.9. 抛物线y=x 2+bx+c ,经过A (— 1, 0)、B (3, 0)两点,则这条抛物线的解析式为 , 它的对称轴为.10. 抛物线 y=x 2+bx+c 的顶点为(2, 3),贝U b=, c=.11. 如果抛物线y=ax 2+bx+c 的对称轴是x= — 2,且开口方向,形状与抛物线y= — | x 2相同,且过原点,US 么 a=, b=, c=.12. 直线y= — 3x+2与抛物线y=x 2- x+3的交点有 个,交点坐标为13. 抛物线的顶点是 C (2, J3),它与x 轴交于A 、B 两点,它们的横坐标是方程 x 2— 4x+3=0D .y= lx 2-2x+1*y 2+bx+c 的图象如右图所示,则一次函数y=ax+bc \:/ B.第二象限C.第三象限D.第四象限*4 .已知h 关于t 函数关系式为(时间90分钟,满分100)、精心选一选(每题 4分,共16分)1. 抛物线y= 1x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式2为( )1 21 2A ,y= x +2x-2 B. y= x +2x+122C. y= ' x 2— 2x — 1 D .y= ' x 2— 2x+1 2 2o2. 已知二次函数y=ax +bx+c 的图象如右图所示, 的图象不经过( ) A.第一象限B.第二象限C.第三象限D.第四象限3. 直线y=ax+b 与抛物线 y=ax +bx+c 中,a 、b 异号,b c<0,那么 它们在同一坐标系中的图象大致为()4. 已知h 关于t 函数关系式为h='gf(g 为正常数,2二、耐心填一填(每题 4分,共40分)2.5. 函数y=(m +3) x m "4 ,当m= 时,它的图象是抛物线.6. 抛物线y=*-3厂1开口向,顶点坐标是 ,对称轴是27. 已知以x 为自变量的二次函数 y=(m -2)x 2+m 2-m-2的图象经过原点,贝U m= ,当 x 时y 随x 增大而减小.8. 函数y=2x 2— 7x+3顶点坐标为9. 抛物线y=x +bx+c,经过A(—1, 0)、B(3,0)两点,则这条抛物线的解析式为 ,它的对称轴为210. 抛物线y=x +bx+c 的顶点为(2, 3),贝U b= , c= 311.如果抛物线y=ax 2+bx+c 的对称轴是x= —2,且开口方向,形状与抛物线y=— x 2相同,且过原点,那么 a= , b= , c=12. 直线y= - 3x+2与抛物线y=x 2-x+3的交点有个,交点坐标为13. 抛物线的顶点是 0(2, 3),它与x 轴交于A 、B 两点,它们的横坐标是方程 X 2-4X +3=0则一次函数y=ax+bct 为时间)如图,则函数图象为(时间90分钟,满分100)、精心选一选(每题 4分,共16分)1. 抛物线y= 1x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式2为( )1 21 2A ,y= x +2x-2 B. y= x +2x+122C. y= ' x 2— 2x — 1 D .y= ' x 2— 2x+1 2 2o2. 已知二次函数y=ax +bx+c 的图象如右图所示, 的图象不经过( ) A.第一象限B.第二象限C.第三象限D.第四象限3. 直线y=ax+b 与抛物线 y=ax +bx+c 中,a 、b 异号,b c<0,那么 它们在同一坐标系中的图象大致为()4. 已知h 关于t 函数关系式为h='gf(g 为正常数,2二、耐心填一填(每题 4分,共40分)2.5. 函数y=(m +3) x m "4 ,当m= 时,它的图象是抛物线.6. 抛物线y=*-3厂1开口向,顶点坐标是 ,对称轴是27. 已知以x 为自变量的二次函数 y=(m -2)x 2+m 2-m-2的图象经过原点,贝U m= ,当 x 时y 随x 增大而减小.8. 函数y=2x 2— 7x+3顶点坐标为9. 抛物线y=x +bx+c,经过A(—1, 0)、B(3,0)两点,则这条抛物线的解析式为 ,它的对称轴为210. 抛物线y=x +bx+c 的顶点为(2, 3),贝U b= , c= 311.如果抛物线y=ax 2+bx+c 的对称轴是x= —2,且开口方向,形状与抛物线y=— x 2相同,且过原点,那么 a= , b= , c=12. 直线y= - 3x+2与抛物线y=x 2-x+3的交点有个,交点坐标为13. 抛物线的顶点是 0(2, 3),它与x 轴交于A 、B 两点,它们的横坐标是方程 X 2-4X +3=0则一次函数y=ax+bct 为时间)如图,则函数图象为(时间90分钟,满分100)、精心选一选(每题 4分,共16分)1. 抛物线y= 1x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式2为( )1 21 2A ,y= x +2x-2 B. y= x +2x+122C. y= ' x 2— 2x — 1 D .y= ' x 2— 2x+1 2 2o2. 已知二次函数y=ax +bx+c 的图象如右图所示, 的图象不经过( ) A.第一象限B.第二象限C.第三象限D.第四象限3. 直线y=ax+b 与抛物线 y=ax +bx+c 中,a 、b 异号,b c<0,那么 它们在同一坐标系中的图象大致为()4. 已知h 关于t 函数关系式为h='gf(g 为正常数,2二、耐心填一填(每题 4分,共40分)2.5. 函数y=(m +3) x m "4 ,当m= 时,它的图象是抛物线.6. 抛物线y=*-3厂1开口向,顶点坐标是 ,对称轴是27. 已知以x 为自变量的二次函数 y=(m -2)x 2+m 2-m-2的图象经过原点,贝U m= ,当 x 时y 随x 增大而减小.8. 函数y=2x 2— 7x+3顶点坐标为9. 抛物线y=x +bx+c,经过A(—1, 0)、B(3,0)两点,则这条抛物线的解析式为 ,它的对称轴为210. 抛物线y=x +bx+c 的顶点为(2, 3),贝U b= , c= 311.如果抛物线y=ax 2+bx+c 的对称轴是x= —2,且开口方向,形状与抛物线y=— x 2相同,且过原点,那么 a= , b= , c=12. 直线y= - 3x+2与抛物线y=x 2-x+3的交点有个,交点坐标为13. 抛物线的顶点是 0(2, 3),它与x 轴交于A 、B 两点,它们的横坐标是方程 X 2-4X +3=0则一次函数y=ax+bct 为时间)如图,则函数图象为。
二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
26.1二次函数(A 卷)(100分 60分钟)一、选择题:(每题4分,共28分)1.若函数2221()m m y m m x --=+是二次函数,那么m 的值是A.2B.-1或3C.3D.1-2.满足函数y=x 2-4x-4的一个点是( )A.(4,4)B.(3,-1);C.(-2,-8)D. 1171,24⎛⎫- ⎪⎝⎭3.无论m 为何实数,二次函数y=x 2-(2-m)x+m 的图象总是过定点( )A.(1,3)B.(1,0);C.(-1,3)D.(-1,0)4.在函数中,自变量x 的取值范围是( ) A.x≠1 B.x>0; C.x>0且x≠1 D.x≥0且x≠15.在直角坐标系中,坐标轴上到点P(-3,-4)的距离等于5的点共有( ) A.1个 B.2个 C.3个 D.4个6.在函数中,自变量x 的取值范围是( )A.x>-2且x≠-3;B.x>-2且x≠3;C.x≥-2且x≠±3;D.x≥-2且x≠3 7.下列函数中,是二次函数的是( )A.y=8x 2+1 B.y=8x+1; C.y=8x D.y=28x二、填空题:(每题5分,共45分)y=-x+2x>1y=x 2-1≤x ≤1y=x+2x<-1输入x 值(1) (2) (3)8.形如_______________的函数叫做二次函数.9.如图1所示,某校小农场要盖一排三间长方形的羊圈,打算一面利用一堵旧墙, 其余各面用木棍围成栅栏,该校计划用木棍围出总长为24m 的栅栏. 设每间羊圈的B ACDx B 长为xm.(1)请你用含x 的关系式来表示围成三间羊圈所利用的旧墙的总长度L=_______,三间羊圈的总面积S=____________;(2)S 可以看成x 的_________,这里自变量x 的取值范围是_________; (3)请计算,当羊圈的长分别为2m 、3m 、4m 和5m 时,羊圈的总面积分别为_____、_____、______、______,在这些数中,x 取_____m 时,面积S 最大.10.如图2所示,长方体的底面是边长为xcm 的正方形,高为6cm,请你用含x 的代数式表示这个长方体的侧面展开图的面积S=________,长方体的体积为V=__________,各边长的和L=__________,在上面的三个函数中,_______是关于x 的二次函数.11.根据如图3所示的程序计算函数值. (1)当输入的x 的值为23时,输出的结果为________; (2)当输入的数为________时,输出的值为-4.12.如图4所示,要用总长为20m 的铁栏杆,一面靠墙, 围成一个矩形的花圃, 若设AB 的长为xm,则矩形的面积y=_______________.13.某商店将每件进价为8元的某种商品每件10元出售,一天可销出约100件. 该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件,将这 种商品的售价降低x 元时, 则销售利润y=_________.14.函数中,自变量x 的取值范围是___________.15.y=(m 2-2m-3)x 2+(m-1)x+m 2是关于x 的二次函数要满足的条件是_______.16.如图5所示,有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S(cm 2)与它的一边长x(cm)之间的函数关系式____________. 三、解答题:(27分)17.(12分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y 与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x 2+2.6x+43(0≤x≤30),y 的值越大,表示接受能力越强.(1)若用10分钟提出概念,学生的接受能力y 的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.18.(15分)已知正方形的周长是Ccm,面积是Scm 2.(1)求S 与C 之间的函数关系式;(2)当S=1cm 2时,求正方形的边长;(3)当C 取什么值时,S≥4cm 2?BRACD PGl26.1 二次函数(B 卷)(100分 90分钟)一、学科内综合题:(每题6分,共18分)1.如图所示,在直角梯形ABCD 中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.x x BF ACD E x G2.如图所示,在△ABC 中是AC 上与A 、C 不重合的一个动点,过P 、B 、C 的⊙O 交AB 于D.设PA=x,PC 2+PD 2=y,求y 与x 的函数关系式,并确定x 的取值范围.3.如图所示,有一边长为5cm 的正方形ABCD 和等腰三角形PQR,PQ= PR= 3cm, QR=8cm,点B 、C 、Q 、R 在同一条直线L 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/ 秒的速度沿直线L 按箭头所示的方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR重合部分的面积为Scm 2.解答下列问题:(1)当t=3时,求S 的值;(2)当t=5时,求S 的值;(3)当5≤t≤8时,求S 与t 之间的函数关系式.BRA CD PQ lB HRAC D PQ G l二、学科间综合题:(7分)4.一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱) 与年龄x(岁)大致满足关系式p=0.01x 2+0.05x+107;对男性来说,正常的收缩压p( 毫米汞柱)与年龄x(岁)大致满足关系式p=0.006x 2-0.02x+120.(1)利用公式计算你的收缩压;(2)如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少岁?(1毫米汞柱=133.3224帕)(3)如果一个男性的收缩压为130毫米汞柱,那么他的年龄大概是多少岁?三、应用题:(每题9分,共36分)5.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A 开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.QA6.某化工材料经销公司购进了一批化工原料共7000千克, 购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现,单价定为70元时,日均销售60千克;单价每降低1元,每天多售出2千克. 在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).设销售单价为x元,日均获利为y元.请你求出y关于x的二次函数关系式,并注明x的取值范围.7.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162-3x. 请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.8.某公司试销一种成本单价为500元/件的新产品, 规定试销时的销售单价不低于成本单价,又不高于800元/件.试销时,发现销售量y(件)与销售价x(元/件)的关系可近似看作一次函数y=kx+b(k≠0),如图所示.(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元, 试用销售单价表示毛利润S./件)四、创新题:(每题10分,共20分) (一)教材中的变型题9.(教材P4第3题变题)已知二次函数y=ax 2+(km+c),当x=3时,y=15;当x=-2时,y=5,试求y 与x 之间的函数关系式.(二)多变题10.如图所示,在边长为4的正方形EFCD 上截去一角,成为五边形ABCDE, 其中AF=2,BF=1,在AB 上取一点P,设P 到DE 的距离PM=x,P 到CD 的距离PN=y,试写出矩形PMDN 的面积S 与x 之间的函数关系式.FEB ACD PN五、中考题:(19分)11.(2002,昆明,8分)某广告公司设计一幅周长为12米的矩形广告牌, 广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围.(2)为使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)12.(2004,黄冈,11分)心理学家研究发现,一般情况下, 学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强, 中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力y 随时间t 的变化规律有如下关系式:224100(0100)240(1020)7380(2040)t y t y t t t ⎧-++<≤⎪=<≤⎨⎪-+<≤⎩(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较, 何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?26.1 二次函数(C 卷)(30分 45分钟)一、实践题:(10分)1.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产.已知生产每件产品的成本为40元, 在销售过程中发现,当销售单价定为100元时,年销售时为20万件;销售单价每增加10元, 年销售量将减少1万件.设第一年销售单价为x 元,销售量为y 万件,获利(年获利=年销售额-生产成本-投资)为z 万元.(1)试写出y 与x 之间的函数关系式;(不必写出x 的取值范围) (2)试写出z 与x 之间的函数关系式;(不必写出x 的取值范围)(3)计算销售单价为160元时的获利,并说明同样的获利,销售单价还可以定为多少元?相应的销售量分别为多少万件?二、竞赛题:(每题10分,共20分)2.已知:如图所示,BD 为⊙O 的直径,且BD=8,DM 是圆周的14,A 为DM 上任意一点, 取AC=AB,交BD 的延长线于C,连结OA,并作AE⊥BD 于E,设AB=x,CD=y. (1)写出y 关于x 的函数关系式; (2)当x 为何值时,CA 是⊙O 的切线?(3)当CA 与⊙O 相切时,求tan∠OAE 的值.EBM ACD O3.如图所示,△ABC 中,BC=4,∠B=45°,AB=、N 分别是AB 、AC 上的点,MN∥BC.设MN=x,△MNC 的面积为S.(1)求出S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)是否存在平行于BC 的线段MN,使△MNC 的面积等于2?若存在,请求出MN 的长; 若不存在,请说明理由.二次函数A 卷答案:一、1.C 2.D 3.C 4.D 5.C 6.D 7.A二、8.y=ax 2+bx+c(a 、b 、c 为常数,a≠0)9.(1)-4x+24;-4x 2+24x (2)二次函数;0<x<6(3)32m 2;36m 2;32m 2;20m 2;310.24x;6x 2;8x+24;V=6x 211.(1)49(2)6或-6 12.y=-2x 2+20x(0<x<10)13.y=-100x 2+100x+200(0≤x≤2) 14.x>3且x≠5 15.m≠-1且m≠316.S=-x 2+30x(0<x<30)三、17.解:(1)当x=10时,y=-0.1x 2+2.6x+43=-0.1×102+2.6×10+43=59.(2)当x=8时,y=0.1x 2+2.6x+43=-0.1×82+2.6×8+43=57.4, ∴用8分钟与用10分钟相比,学生的接受能力减弱了;当x=15时,y=-0.1x 2+2.6x+43=-0.1×152+2.6×15+43=59.5. ∴用15分钟与用10分钟相比,学生的接受能力增强了.18.解:(1)S=221416C C ⎛⎫= ⎪⎝⎭(2)当S=1时,由 2116S C =,得1=2116C , ∴C=4或C=-4(舍去).∴C=4,∴正方形边长为1cm. (3)∵S=2116C ,∴欲使S≥4,需2116C ≥4,∴C 2≥64. ∴C≥8或C≤-8(舍去),∴C≥8.B 卷答案: 一、1.解:S=S 梯形ABCD -S △EGD -S △EFA -S △BCF =12×(3+6)×4-12x(4-x)- 12x(6-x)-12×4x =x 2-7x+18∵0 30 40 60 xxxx>⎧⎪->⎪⎨->⎪⎪->⎩∴0<x<3,故S=x2-7x+18(0<x<3).2.解:∵AB=∴AB22 =48,AC2=62=36,BC22=12.∴AB2=AC2+BC2.∴△ABC为直角三角形,且∠A=30°.连结PB,则PB为⊙O的直径.∴PD⊥AB.∵在Rt△APD中,∠A=30°,PA=x,∴PD=12x,∴y=PC2+PD2=(6-x)2+22x⎛⎫⎪⎝⎭=254x-12x+36(0<x<6).3.解:(1)作PE⊥QR于E,∵PQ=PR,∴QE=RE=12QR=12当t=3时,QC=3,设PQ 与DC相交于点G.∵PE∥DC,∴△QCG∽△QEP,∴234QEPSS∆⎛⎫= ⎪⎝⎭,∵S△QEP=12×4×3=6,∴S=2327648⎛⎫⨯=⎪⎝⎭(cm2)(2)当t=5时,CR=3.设PR与DC交于G,由△RCG∽△REP可求出S△RCG=278,∴S=S△PBR-S△RCG=12-278=698(cm2)(3)当5≤t≤8时,如答图所示,QB=t-5,RC=8-t. 设PQ 交AB 于点H,由△QBH ∽△QEP,得S △QBH =23(5)8t -.设PR 交CD 于G,由△PCG∽△REP,得S △RCG =38(8-t)2.∴S=12-23(5)8t --23(8)8t -=2339171448t t -+-即关系式为S=2339171448t t -+-.二、4.解:(1)根据解答者的性别、年龄实事求是地代入即可.(2)把p=120代入p=0.01x 2+0.05x+107,得120=0.01x 2+0.05x+107.解得x 1≈-39(舍去),x 2=34. 故该女性的年龄大约为34岁.(3)把p=130代入p=0.006x 2-0.02x+120,得130=0.006x 2-0.02x+120. 解得x 1≈-39(舍去),x 2=43. 故该男性的年龄大约为43岁. 三、5.解:∵PB=6-t,BE+EQ=6+t,∴S=12PB ·BQ=12PB ·(BE+EQ) = 12(6-t)(6+t)=-12t 2+18.∴S=-12t 2+18(0≤t≤6).6.解:若销售单价为x 元,则每千克降低(70-x)元,日均多销售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意,得 y=(x-30)[60+2(70-x)]-500 =-2x2+260x-6500(30≤x≤70). 即y=-2x2+260x-6500(30≤x≤70).7.解:由题意,得每件商品的销售利润为(x-30)元,那么m 件的销售利润为y=m(x-30).又∵m=162-3x,∴y=(x -30)(162-3x),即y=-3x 2+252x-4860.∵x -30≥0,∴x≥30.又∴m≥0,∴162-3x≥0,即x≤54. ∴30≤x≤54.∴所求关系式为y=-3x 2+252x-4860(30≤x≤54).8.解:(1)由图象可知,当x=600时,y=400;当x=700时,y=300,代入y=kx+b中,得400600 300700k bk b=+⎧⎨=+⎩解得k=-1,b=1000∴y=-x+1000(500≤x≤800)(2)销售总价=销售单价×销售量=xy,成本总价=成本单价×销售量=500y,代入毛利润公式,得S=xy-500y=x(-x+1000)-500(-x+1000)=-x2+1500x-500000.∴S=-x2+1500x-500000(500≤x≤800)四、(一)9.解:把x=3,y=15;x=-2,y=5分别代入y=ax2+(xm+c),得9()15 4()5 a km ca km c++=⎧⎨++=⎩解得a=2,km+c=-3, ∴y=2x2-3.(二)10.解:如答图,S矩形PNDM=xy,且2≤x≤4.延长NP交EF于G,显然PG∥BF.故PG AGBF AF=,即4212y x--=,∴y=-12x+5,∴S=xy=-12x2+5x,即S=-12x2+5x(2≤x≤4).五、11.解:(1)由矩形的一边长为x米,得另一边长为1222x-⎛⎫⎪⎝⎭米,即(6-x)米,∴S=x(6-x)=-x2+6x,即S=-x2+6x,其中0<x<6.(2)设此黄金矩形的长为x米,宽为y米,则由题意,得2()6x y x yx y⎧=+⎨+=⎩,解得39xy⎧=⎪⎨=-⎪⎩即当把矩形的长设计为3米时,矩形将成为黄金矩形,此时S=xy=(3)(9-2);可获得的设计费为2)×1000≈8498(元).12.解:(1)当t=5时,y=195,当t=25时,y=205.∴讲课开始后第25分钟时学生的注意力比讲课开始后第5分钟时更集中.(2)当0<t≤10时,y=-t 2+24t+100=-(t-12)2+244,该图的对称轴为t=12, 在对称轴左侧,y 随x 的增大而增大,所以,当t=10时,y 有最大值240.当10<t≤20时,y=240.当20<t≤40时,y=-7t+380,y 随x 的增大而减小,故此时y<240.所以,当t=20时,y 有最大值240.所以,讲课开始后10分钟时,学生的注意力最集中,能持续10分钟.(3)当0<t≤10,令y=-t 2+24t+100=180,∴t=4.当20<t≤40时,令=-7t+380=180,∴t=28.57.所以,老师可以经过适当安排,能在学生注意力达到所需的状态下讲解完这道题目.二次函数C 卷答案:一、1.解:(1)y=20-10010x -×1=-0.1x+30. (2)z=y ·x-40y-500-1500=(30-0.1x)x-40(30-0.1x)-2000=30x-0.1x 2-1200+4x-2000=-0.1x 2+34x-3200.(3)当x=160时,z=-0.1x 2+34x-3200=-0.1×1602+34×160-3200=-320.把z=- 320代入z=-0.1x 2+34x-3200,得-320=-0.1x 2+34x-3200,x 2-340x+28800=0,∴(x -160) (x-180)=0.∴x=160或x=180.当x=160时,y=-0.1x+30=-0.1×160+30=14(万件);当x=180时,y=-0.1x+30=-0.1×180+30=12(万件).二、2.解:(1)∵OA=OB,AB=AC,∴△AOB 和△ABC 是等腰三角形.∴∠B=∠BAO=∠C.∴△AOB∽△BAC. ∴AB OB BC AB=, 即 48x y x =+, ∴y=2184x -∵A 为MD 上任意一点,BM≤AB≤BD,而=∴∴y=2184x - ((2)若OA⊥CA,则AC 为⊙O 的切线,即当OC 2=OA 2+AC 2时,OA⊥CA,∴(4+y)2=42+ x 2,即y 2+8y=x 2.由y=14x 2-8和y 2+8y=x 2两式可得y=4,∴x=即当,CA 是⊙O 的切线.(3)由(2)得是⊙O 的切线,此时y=4,而OE=BE-OB=12∴tan∠OAE=OE AE =. 3.解:(1)过点A 作AD⊥BC 于D,则有sin450=3=. 设△MNC 的MN 边上的高为h,∵MN∥BC,∴343x h -=. ∴h=1234x -, ∴S=12MN ·h=21123332482x x x x -=-+, 即S=23382x x -+ (0<x<4). (2)若存在这样的线段MN,使S △MNC =2,则方程 23382x x -+=2必有实根, 即3x 2-12x+16=0 必有实根.但△=(-12)2-4×3×16=-48<0,说明此方程无实根,所以不存在这样的线段MN.。
九年级下册数学单元测试卷-第26章二次函数-华师大版(含答案)一、单选题(共15题,共计45分)1、已知抛物线的顶点为,与x轴的一个交点在和之间,其部分图象如图,则以下结论:①;②;③;④方程()一定有实数根,其中正确的结论为()A.②③B.①③C.①②③D.①②③④2、二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x 2+3B.y=x 2-3C.y=(x+3) 2D.y=(x-3) 23、已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是()A. B. C. D.4、如图,二次函数的图象与y轴正半轴相交,其顶点坐标为,下列结论:①;②;③;④.其中正确的个数是().A.1B.2C.3D.45、下列函数中,当x>0时,y随x的增大而减小的是()A.y=xB.y=C.y=-D.y=x 26、二次函数y=2(x-3)2-1的顶点坐标是().A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)7、一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为()A. cmB.1cmC. cmD.2cm8、已知抛物线y=ax2(a>0)过A(﹣2,y1),B(1,y2)两点,则下列关系式中一定正确的是()A.y1>0>y2B.y1>y2>0 C.y2>0>y1D.y2>y1>09、二次函数的最大值为( )A.3B.4C.5D.610、抛物线的对称轴是()A. B. C. D.11、如图,抛物线经过A(1,0),B(4,0),C(0,-4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.912、二次函数y=2 +3的图象是一条抛物线,则下列说法错误的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.抛物线的顶点是(1,3)D.当x>1时,y随x的增大而减小13、在平面直角坐标系中,将抛物线y=x2-4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是( )A. B. C. D.14、如图,⊙O被抛物线y= x2所截的弦长AB=4,则⊙O的半径为()A.2B.2C.D.415、把二次函数y =y=−x2-3x-的图象向上平移3个单位,再向右平移4个单位,则两次平移后的图象的解析式是( )A.y=- (x- 1) 2 +7B.y=- (x+7) 2 +7C.y=- (x+3)2+4 D.y=- (x-1) 2 +1二、填空题(共10题,共计30分)16、抛物线的在对称轴的________侧的部分上升.(填“左”或“右”)17、将二次函数y=x2﹣2x+4化成y=(x﹣h)2+k的形式,则k=________18、抛物线y=x2﹣2x+k与x轴没有交点,则k的取值范围是________.19、若二次函数y=﹣x2+6x﹣m的图象与x轴没有交点,则m的取值范围是________.20、抛物线y=x2+bx+c与x轴无公共点,则b2与4c的大小关系是________ .21、请写出一个开口向上,并且与y轴交于点(0,-1)的抛物线的表达式:________22、已知是关于的二次函数,则m=________.23、二次函数y=(x﹣1)2﹣5的最小值是________.24、将抛物线向左平移2个单位,再向下平移3个单位后,所得抛物线的解析式为y=x2﹣1,则原抛物线的解析式为________.25、抛物线y=ax2+bx+c(a≠0)图象的一部分如图所示,其对称轴为x=2,与x轴的一个交点是(﹣1,0),有以下结论:①abc>0;②4a﹣2b+c<0;③4a+b=0④抛物线与x轴的另一个交点是(5,0)⑤若点(﹣3,y1)(﹣6,y2)都在抛物线上,则y1<y2.其中正确的是________.(只填序号)三、解答题(共5题,共计25分)26、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.27、已知+3x+6是二次函数,求m的值,并判断此抛物线开口方向,写出顶点坐标及对称轴28、小明利用暑假20天(8月5日至24日)参与了一家网店经营的社会实践.负责在网络上销售一种新款的SD卡,每张成本价为20元.第x天销售的相关信息如下表所示.销售量p(张)p=50-x销售单价q(元/q=30+x张)(1)请计算哪一天SD卡的销售单价为35元?(2)在这20天中,在网络上这款销售SD卡在哪一天获得利润最大?这一天赚了多少元?29、已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5).(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.30、已知二次函数的图象顶点是,且经过,求这个二次函数的表达式.参考答案一、单选题(共15题,共计45分)1、C2、D3、A4、C5、B6、B7、C8、B9、C10、C11、C12、D13、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。
第26章二次函数数学九年级下册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5个2、将抛物线向右平移个单位,再向上平移个单位,所得抛物线的函数表达式是()A. B. C. D.3、若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函数y=mx2﹣mx()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣4、把抛物线y=2x2向左平移1个单位,则所得抛物线的解析式是()A. y=2(x﹣1)2B. y=2(x+1)2C. y=2 x2﹣1D. y=2 x2+15、关于x的二次函数y=x2+2kx+k﹣1,下列说法正确的是()A.对任意实数k,函数图象与x轴都没有交点B.对任意实数k,函数图象没有唯一的定点C.对任意实数k,函数图象的顶点在抛物线y=﹣x 2﹣x ﹣1上运动D.对任意实数k,当x≥﹣k﹣1时,函数y的值都随x的增大而增大6、对于抛物线y=(x-5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)7、二次函数y=ax2+bx+c的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③2a﹣b=0;④abc>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个8、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是()A.a>0B.b<0C.c<0D.a+b+c>09、函数的图象可以由函数的图象( )得到A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位 D.向下平移3个单位10、把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为( )A.y=-(x+1) 2+1B.y=-(x+1) 2-1C.y=-(x-1) 2+ 1D.y=-(x-1) 2-111、抛物线的对称轴为直线()A. B. C. D.12、已知函数,当函数值y随x的增大而减小时,x的取值范围是()A.x<1B.x>1C.x>-2D.-2<x<413、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A.4B.3C.2D.114、已知二次函数的图象如图所示,则、、满足()A. ,,B. ,,C. ,, D. ,,15、二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A.0<t<2B.0<t<1C.1<t<2D.﹣1<t<1二、填空题(共10题,共计30分)16、在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是________.17、如图,直线y=-2x与抛物线y=-x2+mx+6交于A、B两点,过A、B两点的双曲线的解析式分别为y=、y=,则a·b的值为________.18、抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线________.19、在学完《二次函数》后,老师给小明布置了家庭作业:完成下列表格,再用描点法在同一坐标系中画出y1与y2的函数图象.x …0 1 2=ax2…________ 1 ________y1=ax2+bx+c … 3 ________ ________y2在同一坐标系内画出这两个函数的图象:小明已正确地完成作业(如图中抛物线y2的图象的对称轴为直线x=﹣1),由于不小心表格中的y2的解析式和部分数据被污渍覆盖了,请你根据作业单上的信息求出a,b,y2的解析式.20、若点,,在抛物线上,则,,大小顺序为________.(用“<”号连接)21、已知二次函数y=2x2+8x﹣1,则它的顶点为________,将这个二次函数向上平移2个单位长度,再向右平移2个单位长度后得到新的函数表达式为________.22、已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是________.23、飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数表达式是,则飞机着陆后滑行的最长距离为________米.24、已知二次函数y=﹣(x﹣m)2+m2+1(m为常数),当﹣2≤x≤1时,函数值y有最大值为4,则m的值为________.25、抛物线的顶点在y轴上,那么b=________.三、解答题(共5题,共计25分)26、求二次函数y=x2+4x﹣5的最小值.27、抛物线的图像于x轴交于点M ,N ,且经过点A(0,1),其中,过点A的直线交x轴于C点,与抛物线交于点B(异于A 点),满足△CAN是等腰直角三角形,切,求解析式.28、若y=(m﹣3)是二次函数,(1)求m的值.(2)求出该图象上纵坐标为﹣6的点的坐标.29、如图,抛物线y=﹣x2+bx+c与y轴交于点C,与x轴交于A、B两点(点A在原点左侧,点B在原点右侧),且∠ACB=90°,tan∠BAC= .①求抛物线的解析式;②若抛物线顶点为P,求四边形APCB的面积.30、以直线x=1为对称轴的抛物线y=-x2+bx+c与x轴交于A、B两点,其中点A的坐标为(3,0).(1)求点B的坐标;(2)设点M(x1, y1)、N(x2, y2)在抛物线线上,且x1<x2<1,试比较y1、y2的大小.参考答案一、单选题(共15题,共计45分)1、B2、C4、B5、C6、A7、B8、D9、A10、B11、C12、A13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
九年级下册数学单元测试卷-第26章二次函数-华师大版(含答案)一、单选题(共15题,共计45分)1、已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0B.c<0C.b 2-4ac<0D.a+b+c>02、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个3、二次函数y=x2的图像向右平移2个单位,得到新的函数图像的表达式是()A.y=x 2﹣2B.y=(x﹣2)2C.y=x 2+2D.y=(x+2)24、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A.2B.4C.8D.165、若将抛物线y= 先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A. B. C. D.6、宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为元时,宾馆当天的利润为10890元.则有()A. B.C. D.7、已知二次函数y=mx2-3x++2m-m2的图象过原点,则m的值为 ( )A.0或2B.0C.2D.18、已知抛物线(a,b,c为常数,)经过点,其对称轴在y轴右侧.有下列结论:①;②方程的一个根为1,另一个根为;③.其中,正确结论的个数为()A.0B.1C.2D.39、下列二次函数中,其顶点坐标是(3,-2)的是()A. B. C. D.10、已知二次函数的图象如图所示,现有下列结论:①;②;③;④.则其中结论正确的是()A.①③B.③④C.②③D.①④11、二次函数y=-x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≤0时,x < 0或x > 4;③函数解析式为y=-x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有( )A.①②③④B.①②③C.②③④D.①③④12、下列关于抛物线y=-x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(-1,2)C.在对称轴的右侧,y 随x的增大而增大D.在对称轴的左侧,y随x的增大而增大13、已知函数是二次函数,则m的值为()A.-2B.±2C.D.14、已知二次函数,当时,该函数取最大值8.设该函数图象与x 轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.15、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论,其中不正确的结论是()A.abc=0B.a+b+c>0C.3a=bD.4ac﹣b 2<0二、填空题(共10题,共计30分)16、写出一个图象的顶点在原点,开口向下的二次函数的表达式________.17、若抛物线y=﹣﹣kx+k+ 与x轴只有一个交点,则k的值________.18、请写出一个开口向上,且其图象经过原点的抛物线的解析式为________.19、把抛物线y=x2﹣2x向下平移2个单位长度,再向右平移1个单位长度,则平移后的抛物线相应的函数表达式为________.20、设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式________.21、若函数y=x2﹣6x+m的图象与x轴只有一个公共点,则m=________.22、在平面直角坐标系中,抛物线y=x2+bx+5的对称轴为直线x=1.若关于x的一元二次方程(t为实数)在-1<x<4的范围内有实数根,则t的取值范围为________.23、抛物线y=x2+8x﹣4与直线x=﹣4的交点坐标是________.24、如图,在平面直角坐标系中,点C是y轴正半轴上的一个动点,抛物线y=ax2-6ax+5a(a是常数,且a>0)过点C,与x轴交于点A、B,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧,连接BD,则BD的最小值是________.25、二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0 ;② 4a +c<2b ;③m(am+b)+b>a(m≠-1);④方程ax2+bx+c-3=0的两根为x1, x2(x1<x2),则x2<1,x1>-3 ,其中正确结论的是________.三、解答题(共5题,共计25分)26、已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值27、小李按市场价格30元/kg收购了一批海鲜1000kg存放在冷库里,据预测,海鲜的市场价格将每天每kg上涨1元.冷冻存放这批海鲜每天需要支出各种费用合计310元,而且这些海鲜在冷库中最多存放160天,同时平均每天有3kg的海鲜变质.(1)设x天后每kg该海鲜的市场价格为y元,试写出y与x之间的函数关系式;(2)若存放x天后,将这批海鲜一次性出售.设这批海鲜的销售总额为P元,试写出P与x之间的函数关系式;(3)小李将这批海鲜存放多少天后出售可获得最大利润,最大利润是多少元?(利润W=销售总额﹣收购成本﹣各种费用)28、以直线x=1为对称轴的抛物线y=-x2+bx+c与x轴交于A、B两点,其中点A的坐标为(3,0).(1)求点B的坐标;(2)设点M(x1, y1)、N(x2, y2)在抛物线线上,且x1<x2<1,试比较y1、y2的大小.29、如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(Ⅰ)直接写出点B坐标;判断△OBP的形状;(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;(i)若抛物线向下平移m个单位长度,当S△PCD= S△POC时,求平移后的抛物线的顶点坐标;(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.30、如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B,C重合),过点P作PQ⊥EP,交CD于点Q,求在点P运动的过程中,BP多长时,CQ有最大值,并求出最大值.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、B5、B6、C7、C8、C9、C10、B11、D12、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。
第26章二次函数数学九年级下册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图像上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个2、下面的函数是二次函数的是()A. B. C. D.3、抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个B.2个C.3个D.4个4、若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.-2B.1C.2D.-15、将抛物线y=2x2向右平移一个单位后得到的新抛物线的解析式为()A.y=2(x+1)2B.y=2(x-1)2C.y=2x 2+1D.y=2x 2-16、关于二次函数y=﹣(x﹣3)2﹣2的图象与性质,下列结论错误的是()A.抛物线开口方向向下B.当x=3时,函数有最大值﹣2C.当x>3时,y随x的增大而减小D.抛物线可由y= x 2经过平移得到7、对于二次函数y=−3(x+1)2-2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是-2B.对称轴是直线x=1,最大值是-2 C.对称轴是直线x=−1,最小值是-2 D.对称轴是直线x=−1,最大值是-28、把抛物线y=﹣2(x﹣2)2+3先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x﹣1)2+2B.y=﹣2(x+1)2+2C.y=﹣2(x﹣3)2+5 D.y=2(x﹣3)2+59、下列各式中,y是x的二次函数的是()A.y=mx 2+1(m≠0)B.y=ax 2+bx+cC.y=(x﹣2)2﹣x2 D.y=3x﹣110、对于抛物线y=(x﹣1)2+2的描述正确的是()A.开口向下B.顶点坐标为(﹣1,2)C.有最大值为2D.对称轴为x=111、二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x 2+3B.y=x 2﹣3C.y=(x+3)2D.y=(x﹣3)212、对称轴为y轴的二次函数是()A. B. C. D.13、在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,014、已知函数与轴交点是,则的值是( )A.2014B.2013C.2012D.201115、关于二次函数,下列说法正确的是()A.图象的对称轴在y轴左侧B.图象的顶点在x轴下方C.当时,随的增大而增大 D. 有最小值是1二、填空题(共10题,共计30分)16、已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,则a﹣c=________.17、将二次函数y=﹣2( x﹣1)2﹣2的图象向左平移1个单位,在向上平移1个单位,则所得新二次函数图象顶点为________.18、函数y=2x2﹣4x﹣1写成y=a(x﹣h)2+k(a≠0)的形式是________.19、如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.因为上游水库泄洪,水面宽度变为6m,则水面上涨的高度为________m.20、抛物线y=﹣2(x+1)2+3的顶点坐标是________.21、函数,当k________时,它的图象是开口向下的抛物线.22、二次函数y=ax2中,当x=1时,y=2,则a=________。
第26章二次函数数学九年级下册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是()A. B. C. D.2、如图是二次函数图象的一部分,对称轴为,且经过点,有下列说法:①;②;③;④若是抛物线上的两点,则,上述说法正确的是()A.①②④B.③④C.①③④D.①②3、二次函数y=-(x-1)2+2图象的对称轴是( )A.直线x=2B.直线x=1C.直线x=-1D.直线x=-24、二次函数y=2(x-1)2+3的图象的顶点坐标是()A. B. C. D.5、在平面直角坐标系中,如果抛物线分别向上、向右平移2个单位,那么新抛物线的解析式是()A. B. C. D.6、当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为4,则a的值为()A.﹣2B.4C.4或3D.﹣2或37、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>-1B.b>0C.2a+b≠0D.9a+c>3b8、把抛物线y=2x2向上平移5个单位,所得抛物线的解析式为()A.y=2x 2+5B.y=2x 2﹣5C.y=2(x+5)2D.y=2(x﹣5)29、已知抛物线y=x2+bx+c(其中b,c是常数)经过点A(2,6),且抛物线的对称轴与线段BC有交点,其中点B(1,0),点C(3,0),则c的值不可能是()A.4B.6C.8D.1010、抛物线y=x2+x+p(p≠0)与x轴相交,其中一个交点的横坐标是p.那么该抛物线的顶点的坐标是()A.(0,-2)B.C.D.11、已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A.5B.4C.3D.212、已知,与为二次函数图象上的三点,则的大小关系是()A. B. C. D.13、如图,抛物线与轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,随的增大而增大;④关于的一元二次方程有两个不相等的实数根.其中正确的结论有( )A.1个B.2个C.3个D.4个14、已知二次函数的图象如图所示,则下列结论正确的是()A. B. C. D.15、下列各式中,是关于的二次函数的是().A. B. C. D.二、填空题(共10题,共计30分)16、函数y=2x2中,自变量x的取值范围是________,函数值y的取值范围是________.17、二次函数图象如图,下列结论:;;;当时,:.其中正确的有________ 只填序号.18、若函数的图象与x轴只有一个交点,则b的值是________.19、若二次函数:y=ax2+bx+c的x与y的部分对应值如表,则当x=1时,y的值为________.x ﹣7 ﹣6 ﹣5 ﹣4 ﹣3 ﹣2y ﹣27 ﹣13 ﹣3 3 5 320、如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2= (x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).21、把二次函数变形为的形式为________.22、已知抛物线(如图)和直线.我们规定:当x取任意一个值时,x对应的函数值分别为和.若,取和中较大者为M;若,记.①当时,M的最大值为4;②当时,使的x的取值范围是;③当时,使的x的值是,;④当时,M随x的增大而增大.上述结论正确的是________(填写所有符合题意结论的序号)23、二次函数y=﹣2(x﹣5)2+3的顶点坐标是________。
第26章二次函数数学九年级下册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1B.2C.3D.42、将抛物线向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为()A. B. C. D.3、当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为()A. 或2B. 或C.2或D.2或4、二次函数(是常数,)的自变量与函数值的部分对应值如下表:…0 1 2 ………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,符合题意结论的个数是()A.0B.1C.2D.35、下列函数不属于二次函数的是()A.y=(x﹣2)(x+1)B.y= (x+1)2C.y=2(x+3)2﹣2x2 D.y=1﹣x 26、如图是二次函数y=a(x+1)2+2图象的一部分,则关于x的不等式a(x+1)2+2>0的解集是()A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>17、抛物线y=2x2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为( )A.y=2(x+1) 2+5B.y=2(x+1) 2-5C.y=2(x-1) 2-5D.y=2(x-1) 2+58、如图,抛物线的对称轴为,与轴的一个交点在和之间,其部分图象如图所示,则下列结论:(1):(2);(3)(为任意实数);(4);5)点是该抛物线上的点,且,其中符合题意结论的个数是()A.2B.3C.4D.59、将抛物线y=2x2向右平移一个单位后得到的新抛物线的解析式为()A.y=2(x+1)2B.y=2(x-1)2C.y=2x 2+1D.y=2x 2-110、如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),与y轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥am2+bm(m为任意实数);⑤一元二次方程ax2+bx+c=n有两个不相等的实数根,其中正确的有()A.2个B.3个C.4个D.5个11、如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A和点B,顶点为C,则sin∠ABC=()A. B. C.2 D.12、二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)13、同一坐标平面内,图象不可能由函数y=2x2+1的图象通过平移变换、轴对称变换和旋转变换得到的函数是 ( )A.y= x 2-1B.y=2x 2+3C.y=-2x 2-1D.y=2(x+1) 2-114、如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A. B. C. D.15、已知二次函数的图象如图所示,则下列结论:①a<0,,b<0 ;② b2-4ac>0;③a+b>am2+bm;④b+2a=0;⑤-a+c>0 正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、二次函数y=2(x﹣3)2+4的最小值为________.17、将抛物线向右平移个单位,再向下平移个单位后所得到新抛物线的解析式是________,顶点坐标是________.18、已知关于x的方程(x+1)(x-3)+m=0(m<0)的两根为a和b,且a<b,用“<”连接-1、3、a、b的大小关系为________.19、若二次函数的最小值是,则它的图象与轴的交点坐标是________.20、如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ 的最大值为________.21、若二次函数y=ax2+4x+a的最大值是3,则a=________.22、已知二次函数的图象如图所示,则由抛物线的特征可得到含,,三个字母的等式或不等式为________.23、抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线________.24、已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤3时,函数的最小值为﹣4,则m 的值为________.25、已知二次函数( )的图象如上图所示,给出4个结论:①;②;③;④.其中正确的是________ (把正确结论的序号都填上).三、解答题(共5题,共计25分)26、二次函数y=ax2+bx+c的对称轴为x=3,最小值为−2,且过(0,1),求此函数的解析式.27、巴西世界杯足球赛期间,某商店购进一批单价为30元的纪念品,如果按每件40元出售,那么每天可销售100件.经市场调研发现,纪念品的销售单价每上涨1元,其销售量每天相应减少5件,如果每件纪念品的利润不超过40%,设纪念品的销售单价上涨x元,每天销售量为y件.(1)直接写出y与x之间的函数关系式.(2)将纪念品销售单价定为多少,才能使每天所获销售利润最大?最大利润是多少?28、已知抛物线的顶点为A,与y轴的交点为B,求过A、B两点的直线的解析式.29、已知有一个二次函数由的图象与x轴的交点为(-2,0),(4,0),形状与二次函数相同,且的图象顶点在函数的图象上(a,b为常数),则请用含有a的代数式表示b.30、旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金是x(元).发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.当每辆车的日租金为多少元时,每天的净收入最多?(注:净收入=租车收入﹣管理费)参考答案一、单选题(共15题,共计45分)1、C3、D4、C5、C6、C7、D8、C9、B10、B11、A12、A13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
华师大版九年级(下)二次函数学习评价
(时间90分钟, 满分100)
一、精心选一选(每题4分,共16分)
1.抛物线y=2
1x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式
为( )
A .y=2
1x 2+2x -2 B. y=21x 2+2x+1
C. y=2
1x 2-2x -1 D .y=21x 2-2x+1 2.已知二次函数y=ax 2+bx+c 的图象如右图所示,则一次函数y=ax+bc 的图象不经过( )
A .第一象限 B.第二象限 C.第三象限 D.第四象限 3.直线y=ax+b 与抛物线y=ax 2+bx+c 中,a 、b 异号 ,b c<0, 那么 它们在同一坐标系中的图象大致为( )
4.已知h 关于t 函数关系式为h=2
1gt 2(g 为正常数,t 为时间)如图,则函数图象为( )
二、耐心填一填(每题4分,共40分) 5.函数y=(m+3)4
2
-+m m
x ,当m= 时,它的图象是抛物线.
6.抛物线y=2
1(x -3)2-1开口向 ,顶点坐标是 ,对称轴是 .
7.已知以x 为自变量的二次函数y=(m -2)x 2+m 2-m -2的图象经过原点,则m= ,当
x 时y 随x 增大而减小.
8.函数y=2x 2-7x+3顶点坐标为 . 9.抛物线y=x 2+bx+c ,经过A (-1,0)、B (3,0)两点,则这条抛物线的解析式为 ,它的对称轴为 .
10.抛物线y=x 2+bx+c 的顶点为(2,3),则b= ,c= . 11.如果抛物线y=ax 2+bx+c 的对称轴是x=—2,且开口方向,形状与抛物线y=—2
3x 2
相同,且过原点,那么a= ,b= ,c= .
12.直线y=-3x+2与抛物线y=x 2-x+3的交点有 个,交点坐标为
13.抛物线的顶点是C(2,3),它与x 轴交于A 、B 两点,它们的横坐标是方程x 2-4x+3=0
的两个根,则AB= ,S △ABC = .
14.抛物线y=x 2+bx+4与x 轴只有一个交点则b= ;当x 时y>0. 三、细心解一解(第20题9分,其余每题7分,共44分)
15.如图二次函数y=ax 2+bx+c 的图象经过A 、B 、三点, (1)观察图象,写出A 、B 、C 三点的坐标,
并求出抛物线解析式,
(2)求此抛物线的顶点坐标和对称轴
(3)观察图象,当x 取何值时,y<0?y=0?y>0?
16.函数y=ax 2+bx+c(其中a 、b 、c 为常数,a ≠0),图象如图 所示,x=
3
1
为该函数图象的对称轴,根据这个函数图象,你能 得到关于该函数的哪些性质和结论?(写出四个即可)
171995年为亿元人民币,2000年为亿元人民币.经论证:上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005年该市国内生产总值将达到多少?
18.已知二次函数y=(m 2-2)x 2-4mx+n 的图象关于直线x=2对称,且它的最高点在直线
y=
2
1
x+1上. (1)求此二次函数的解析式;
(2)若此抛物线的开口方向不变,顶点在直线y=
2
1
x+1上移动到点M 时,图象与x 轴交于A 、B 两点,且S △ABM =8,求此时的二次函数的解析式.
19.如图(1)是棱长为a 的小正方体,图(2),图(3)由这样的小正方体摆放而成,按
照这样的方法继续摆放,自上而下,分别叫做第一层、第二层、第三层、… 、第n 层,第n 层的小正方体的个数记为s ,解答下列问题:
(1n 1 2 3 4 …… s
1
3
6
……
-1 4 y x A
B 5
O
x
1
-1 -1 1 2
y O
(2)写出当n=10时,S= ;
(3)根据上表中的数据,把S 作为纵坐标,n 作为横坐标,在平面直角坐标系中,描出相
应的各点;
(4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函
数的解析式.
20.在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,2
9),E(0,6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示) (1)问符合条件的抛物线还有哪几条?不求解析式请用约定的方法表示出来;
(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如
.
1.B. 2.B. 3.C. 4.A. 5.2. 6.上,(3,-1),直线x=3. 7.-1,>0.
8. (4
7,825
). 9.y=x 2-2x -3,对称轴x=1. 10.b=-4,c=7. 11.-2
3,-
6,0. 12.1,(-1,5). 13.2,3. 14.±4,≠±4. 15.(1)y=x 2-2x -3; (2)顶点坐标(1,-4),对称轴是直线x=1;(3)当x<-1或x>4时y>0:当x=
-1或x=4时y=0:当-1<x<4时y<0. 16.(1)顶点在第四象限;(2)与x 轴有两个交点;(3)与y 轴交于负半轴; (4)-1<c ,0;(5)当x<3
1
时,y 随x 的增大而减小;(6)当x>
3
1
时,y 随x 的增大而增大; (7)a>0; (8)抛物线开口向上等. 17.依题意,可以把三组数据看成三个点:A (0,),B (5,),C (10,),设解析式为y=ax 2+bx+c.把A ,B ,C 三点坐标代入一般式,可得二次函数解析式为y=++,令x=15,代入二次函数,得y=.所以2005年该市生产总值将达到亿元人民币. 18.(1)y=-x 2+4x -2 ; (2)y=-x 2+12x -32. 19.(1)
(2)S=55; (3)描点(略); (4)经观察所描各点,它们在一条抛物线上.S=
21n 2+2
1n. 20.(1) 符合条件的抛物线还有5条,分别如下:○
1抛物线AEC ;○2抛物线CBE ;○3抛物线DEB ;
○
4抛物线DEC ;○5抛物线DBC. (2)在(1)中存在的抛物线DBC ,它与直线AE 不相交.抛物线解析式为y=41x 2-4
5
x+1; 直线解析式为y=-3x -6.。