九年级下册数学二次函数
- 格式:ppt
- 大小:1.47 MB
- 文档页数:21
第二十二章 二次函数第5讲 二次函数的图象和性质【板块一】二次函数的图象和性质题型一 开口方向、对称轴、顶点坐标及位置【例1】(1)抛物线y =2x ²+1的开口方向是 向上 ,对称轴是 y 轴 ,顶点坐标是 (0,1) ;二次函数y =-12(x +1)²﹣2的图象的开口方向是 向下 ,对称轴是直线 x =﹣1 ,顶点坐标是(﹣1.﹣2). (2)抛物线y =2x ²+1在x 轴的 上 方;当x >0时,图象自左向右逐渐 上升 ,它的顶点是最低点;抛物线y =-12(x +1)²﹣2,当x 为全体实数 时,它的图象在x 轴的 下方 ,顶点是 最高点 。
【解析】当a >0时,开口向上;当a <0时,开口向下,y =a (x ﹣h )²+k 的顶点坐标为(h ,k ),对称轴是直线x =h ;当a >0时,抛物线的顶点为最低点,当a <0时,抛物线的顶点为最高点。
题型二 抛物线的开口大小【例2】如图,若抛物线y =ax ²与四条直线x =1,x =2,y =1,y =2围成的正方形ABCD 有公共点,则a 的取值范围是( )A .14≤a ≤1B .12≤a ≤2C .12≤a ≤1D .14≤a ≤2 【解析】确定a 的取值范围,就是探究抛物线的开口大小,当抛物线经过点D 时,开口最小;抛物线经过点B 时,开口最大,而这两条抛物线的解析式的a 值分别2,14,∴14≤a ≤2. 故选D.【例3】如图,在同一平面直角坐标系中,作出①y =x ²;②y =-12x ²,③y =-2x ²的图象,则三个图象I ,Ⅱ,Ⅲ对应的抛物线的解析式依次是 ②③① .【解析】当a >0时,开口向上,当a <0时,开口向下;当|a |越大,开口越小,当|a |越小,开口越大。
故抛物线I 的解析式为y =-12x ²,抛物线Ⅱ的解析式为y =﹣2x ²;抛抛物线Ⅲ的解析式为y =x ².故填②③① 题型三 抛物线的对称性 【例4】抛物线y =ax ²+bx +5经过A (2,5).B (﹣1,2)两点。
九年级下册二次函数知识点二次函数是中学数学中非常重要的一个概念,它在数学理论和实际应用中都具有广泛的重要性。
在九年级下册的学习中,我们将学习与二次函数相关的知识点,包括函数的定义、图像特性以及与实际问题的联系。
本文将详细介绍九年级下册二次函数的知识点。
一、二次函数的定义二次函数是指函数的自变量的最高次数为2的函数,一般的表达式为f(x) = ax^2 + bx + c。
其中,a、b、c为实数常数。
其中的a 称为二次函数的二次项系数,b称为一次项系数,c称为常数项。
二次函数的定义域是实数集R,值域往往和a有关。
二、二次函数的图像特性1. 开口方向二次函数的开口方向与二次项的系数a有关。
当a>0时,函数的图像开口向上;当a<0时,函数的图像开口向下。
这是因为二次函数的图像实际上是一个抛物线,抛物线的开口方向与二次项系数的正负有关。
2. 对称轴与顶点坐标对称轴是二次函数图像的一条特殊线,对称轴的方程通常为x = -b / (2a)。
对称轴将图像分为两部分,而二次函数的图像在对称轴上具有对称性。
顶点坐标则是二次函数图像的最高点或最低点的坐标,它的x值就是对称轴的x值,y值可由函数表达式计算得出。
3. 零点二次函数的零点即使函数的自变量取值使得函数值为0的点。
计算二次函数的零点需要解二次方程ax^2 + bx + c = 0。
二次方程的解有两个,分别代表着图像与x轴的交点。
三、二次函数与实际问题二次函数在实际问题中的应用非常广泛,例如抛体运动、建模等。
下面以抛体运动为例,说明二次函数在实际问题中的应用。
假设有一个以45度角抛出的物体,那么该物体的运动轨迹可以用一个二次函数来表示。
在这里,自变量x表示时间,函数值f(x)表示物体的高度。
而二次函数的开口方向、对称轴以及顶点坐标等特性可以帮助我们分析该物体的抛射轨迹。
通过对二次函数的分析,可以计算物体的最高点、落地点、时间等信息。
除此之外,二次函数还可以用来建立数学模型,以解决实际问题。
九年级数学二次函数的知识点总结一、引言数学是一门让人头疼的学科,而二次函数作为数学的重要组成部分,更是让很多学生感到困惑。
然而,只要我们掌握了二次函数的基本知识点,就能够轻松应对各种题型。
本文将对九年级数学中的二次函数进行一个全面的总结,希望能够帮助到同学们。
二、函数的基本概念1. 函数的定义:函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值上。
2. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。
3. 函数的表示:函数可以用公式、图像或者表格来表示。
三、二次函数的基本形式1. 二次函数的定义:二次函数是形如 y = ax^2 + bx + c 的一类函数,其中 a、b、c 为常数,且a ≠ 0。
2. 二次函数的图像:二次函数的图像是一个抛物线,可以分为开口向上和开口向下两种情况。
3. 二次函数的顶点:二次函数的顶点是抛物线的最高点或最低点,其横坐标为 -b/2a,纵坐标为 f(-b/2a)。
四、二次函数的性质1. 对称性:二次函数的图像关于顶点对称。
2. 判别式:二次函数的判别式Δ = b^2 - 4ac 可以判断方程的解的情况,当Δ > 0 时,有两个不同的实根;当Δ = 0 时,有两个相等的实根;当Δ < 0 时,无实根。
3. 函数的增减性:当 a > 0 时,二次函数开口向上,图像呈现增函数;当 a < 0 时,二次函数开口向下,图像呈现减函数。
五、二次函数的图像与参数的关系1. a 的作用:a 决定了抛物线的开口方向和形状,当 a > 1 时,抛物线比标准位置的抛物线更狭长;当 0 < a < 1 时,抛物线比标准位置的抛物线更扁平。
2. b 的作用:b 决定了抛物线在 x 轴上的位置,它是顶点的横坐标,当 b > 0 时,顶点在 y 轴右侧;当 b < 0 时,顶点在 y 轴左侧。
3. c 的作用:c 决定了抛物线的纵坐标偏移,当 c > 0 时,抛物线在 y 轴上方;当 c < 0 时,抛物线在 y 轴下方。
人教版九年级数学第22章二次函数 22.1 二次函数讲义合作探究探究点1 二次函数的概念情景激疑我们知道形如b k b kx y ,(+=是常数,k ≠0)的式子是一次函数,那么什么样的函数是二次函数呢?判断二次函数又需要消足哪些条件?知识讲解一般地,形如c b a c bx ax y ,,(2++=是常数,a ≠0)的函数,叫做二次函数。
其中,x 是自变量,a,b,c 分别是函数解析式的次项系数、一次项系数和常数项,如73,23,32222+-=+=+-=x y x x y x x y 等都是二次函数。
(1)c b a c bx ax y ,,(2++=是常数,a ≠0)叫做二次函数的-般式任何一个二次函数的解析式都可以化为c b a c bx ax y ,,(2++=是常数,a ≠0)的形式.(2)在二次函数c b a c bx ax y ,,(2++=是常数,a ≠0)中,a 必須不等于O,因为若a=0的话,此式子则变为c bx y +=的形式,就不是二次函数了.(3)在二次函数c b a c bx ax y ,,(2++=是常数,a ≠0)中,若y=0.则二次函数可以转化为一元二次方程)0(02≠=++a c bx ax 典例剖析例1 下列哪些函数是二次函数?解析 判断一个函数是不是二次函数,先把关系式化简 整理,再分三个步骤来判断:(1)看它的等号两边是否都是整式,如果不都是整式,则必不是二次函数:(2)当它的等号两边都号林式时,再看它是否含有自变量的二次式,如果含有自变量的二安式,那就可能是二次函数,否则就不是:(3)看它的二次项系数是否为0,如果不为0,那就是二次函教.只要按上述三步来分析。
即可作出正确判断.答案 ①③④是二次函数.⑤不一定是二次函数,只有当a ≠0时,才是二次函数②不是整式,故不是二次函数,易错警示二次涵数关系式的等号两边都是整式.答案 (1)设一次购买x 只.才能以最低价购买,则有0.1(x-10)=20-16,解这个方程得x=50.答:一次至少买50只,才能以最低价购买。
轧东卡州北占业市传业学校二次函数y=a 〔x-h 〕2和y=a 〔x-h 〕2+k 的图像和性质知识点一 二次函数y=a 〔x-h 〕2的图像和性质把二次函数2x y =的图像向右平移3个单位长度,得到新的图像的函数表达式是〔 〕32+=x y B. 32-=x y C. 2)3(+=x y D. 2)3(-=x y抛物线2)3(2--=x y 的顶点坐标和对称轴分别是〔 〕3),0,3(-=-x 直线 B. 3),0,3(=x 直线C.3),3,0(-=-x 直线 D. 3),3,0(-=x 直线二次函数2)1(3+=x y 的图像上有三点),2(),,2(),,1(321y C y B y A - ,那么321,,y y y 的大小关系为〔 〕A.321y y y >> B. 312y y y >> C. 213y y y >> D. 123y y y >>把抛物线2)1(6+=x y 的图像平移后得到抛物线26x y =的图像,那么平移的方法可以是〔 〕沿y 轴向上平移1个单位长度 B.沿y 轴向下平移1个单位长度C.沿x 轴向左平移1个单位长度D.沿x 轴向右平移1个单位长度假设二次函数12+-=mx x y 的图像的顶点在x 轴上,那么m 的值是〔 〕 A. 2 B. 2- C.0 D. 2± 对称轴是直线2-=x的抛物线是〔 〕A.22+-=x yB.22+=x y C.2)2(21+=x y D.2)2(3-=x y对于函数2)2(3-=x y ,以下说法正确的选项是〔 〕当0>x时,y 随x 的增大而减小 B. 当0<x 时,y 随x 的增大而增大C. 当2>x时,y 随x 的增大而增大 D. 当2->x 时,y 随x 的增大而减小二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图像都是开口向上;②它们的对称轴都是y轴,顶点坐标都是原点〔0,0〕;③当>x时,它们的函数值y都是随着x的增大而增大;④它们的开口的大小是一样的.其中正确的说法有〔〕A.1个B.2个C.3个D.4个9.抛物线2)1(3--=xy的开口向,对称轴是,顶点坐标是。
九年级数学下册二次函数知识点总结
本文档总结了九年级数学下册中关于二次函数的重要知识点。
一、二次函数的定义与特征
- 二次函数的定义:二次函数是一个含有平方项且不含有其他次数项的函数,一般形式为 y = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。
- 二次函数的图像:二次函数的图像是抛物线,开口的方向由a的正负决定。
- 二次函数的顶点:二次函数的图像的顶点是抛物线的最高点或最低点,其横坐标为 x = -b/2a。
二、二次函数的图像与性质
- 二次函数的对称性:二次函数关于其顶点对称,即对于二次函数 y = ax^2 + bx + c,若 (x, y) 在图像上,则 (-x, y) 也在图像上。
- 二次函数的平移:二次函数的图像可以通过平移上下左右来得到新的图像,平移的规律与平移向量的特点相关。
- 二次函数的最值:当二次函数的抛物线开口向上时,函数的最小值为顶点的纵坐标;当二次函数的抛物线开口向下时,函数的最大值为顶点的纵坐标。
三、二次函数的解法与应用
- 二次函数的解法:二次方程 ax^2 + bx + c = 0 的解可以通过求根公式 x = (-b ± √(b^2 - 4ac)) / 2a 来得到。
其中√ 表示平方根。
- 二次函数的应用:二次函数在现实生活中有广泛的应用,如物体自由落体、抛物线轨迹等。
以上是九年级数学下册二次函数知识点的总结,希望对你的研究有所帮助。
第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。
第六讲 二次函数专项一 二次函数的图象和性质知识清单一、二次函数的概念一般地,形如 (a ,b ,c 为常数,a≠0)的函数叫做二次函数.其中x是自变量,a ,b ,c 分别是函数解析式的二次项系数、 和常数项. 二、二次函数的图象和性质1. 二次函数的图象是一条 .其一般形式为y =ax 2+bx +c ,由配方法可化成y =a (x -h )2+k 的形式,其中h=2ba-,k=244ac b a -.2. 二次函数y =ax 2+bx +c (a ≠0)的图象和性质3. 二次函数y =ax 2+bx +c (a ≠0)的图象与系数a ,b ,c 符号的关系ab <0(a ,b 异号)对称轴在y 轴右侧 c决定抛物线与y 轴的交点c >0 交点在y 轴正半轴 c =0 交点在原点 c <0交点在y 轴负半轴考点例析例1 抛物线y=ax 2+bx+c 经过点(-1,0),(3,0),且与y 轴交于点(0,-5),则当x=2时,y 的值为( )A .-5B .-3C .-1D .5分析:画出抛物线的大致图象,可知抛物线的对称轴为x=1,根据抛物线的对称性可求出y 的值. 例2 一次函数y=ax+b 的图象如图1所示,则二次函数y=ax 2+bx 的图象可能是( )A B C D分析:根据一次函数y=ax+b 的图象经过的象限得出a <0,b >0,可知二次函数y=ax 2+bx 的图象开口向下,对称轴在y 轴右侧.例3 二次函数y=ax 2+bx+c (a≠0)的图象如图2所示,下列说法中,错误的是( ) A .对称轴是x=12B .当-1<x <2时,y <0C .a+c=bD .a+b >-c图2分析:由图可知,对称轴是x=1+22-=12,选项A 正确;当-1<x <2时,函数图象在x 轴的下方,所以当-1<x <2时,y <0,选项B 正确;当x=-1时,y=a-b+c=0,所以a+c=b ,选项C 正确;当x=1时,y=a+b+c <0,所以a+b <-c ,选项D 错误.例4二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为x =12,且经过点(2,0).有下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若112y ⎛⎫- ⎪⎝⎭,,252y ⎛⎫ ⎪⎝⎭,是抛物线上的两点,则y 1<y 2;图1⑤14b +c >m (am +b )+c (其中m ≠12).其中正确的有( ) A .2个B .3个C .4个D .5个图3分析:由抛物线的开口方向、对称轴的位置、与y 轴的交点可得a ,b ,c 的符号,从而可得abc 的正负;由对称轴x=2b a -=12,得b=-a ,由图象易知当x=-1时,y=a-b+c=﹣2b+c =0;根据抛物线经过点(2,0),可得4a+2b+c=0;根据“开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”可判断y 1与y 2的大小;由图象知当x =12时,y 有最大值为14a+12b+c=14b +c ,由此可判断14b +c 与m (am +b )+c 的大小关系.归纳:(1)几种常见代数式的判断①2a ±b 2b a-与±1比较②a ±b +c 令x =±1,看纵坐标 ③4a ±2b +c 令x =±2,看纵坐标 ④9a ±3b +c令x =±3,看纵坐标⑤3a +c ,3b -2c 等关于a ,c 或b ,c 的代数式 一般由②③④式与①式结合判断(2①当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小.ꎻ②利用抛物线上的对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性比较大小. ③利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小;开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”也可以比较大小. 跟踪训练1.已知二次函数y=(a-1)x 2,当x >0时,y 随x 的增大而增大,则实数a 的取值范围是( ) A .a >0 B .a >1 C .a≠1 D .a <12.二次函数y=x 2+4x+1的图象的对称轴是( )A .x=2B .x=4C .x=-2D .x=-4 3.关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值64.一次函数y=ax+b (a≠0)与二次函数y=ax 2+bx+c (a≠0)在同一平面直角坐标系中的图象可能是( )A B C D5.如图3,二次函数y=ax2+bx+c的图象经过点A(-1,0),B(3,0),与y轴交于点C.有下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数为()A.1 B.2 C.3 D.4第5题图6.定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1-m,2-m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y随x的增大而减小.其中所有正确结论的序号是.专项二确定二次函数的解析式知识清单用待定系数法求二次函数的解析式时,若已知条件给出了图象上任意三点(或任意三组对应值),可设解析式为;若给出顶点坐标为(h,k),则可设解析式为;若给出抛物线与x轴的两个交点为(x1,0),(x2,0),则可设解析式为.考点例析例在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的解析式为()A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5分析:由抛物线的解析式求得抛物线的顶点坐标与点C的坐标,然后结合中心对称的性质,求得新抛物线的顶点坐标,用待定系数法求出新抛物线的解析式.跟踪训练1.若抛物线y=x2+bx+c与x轴两个交点间的距离为4,对称轴为直线x=2,P为这条抛物线的顶点,则点P 关于x轴的对称点的坐标是()A.(2,4)B.(-2,4)C.(-2,-4)D.(2,-4)2.在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了如图所示直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数解析式各不相同,其中a的值最大为()A.52B.32C.56D.12第2题图专项三二次函数图象的平移知识清单二次函数图象的平移规律平移前的解析式平移方向及距离平移后的解析式口诀顶点坐标y=a(x-h)2+k (a≠0)向左平移m个单位长度y=a(x-h+m)2+k左加右减纵坐标不变向平移m个单位长度y=a(x-h-m)2+k向上平移m个单位长度y=a(x-h)2+k+m上加下减横坐标不变向平移m个单位长度y=a(x-h)2+k-m平移前后a值不变例将抛物线y=-x2-2x+3向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线必定经过()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)分析:先将y=-x2-2x+3转化成顶点式y=a(x-h)2+k,再利用二次函数的平移规律:左加右减,上加下减,得出平移后抛物线的解析式,最后把各选项的点代入判断即可.跟踪训练1.将抛物线y=ax2+bx+c(a≠0)向下平移2个单位长度,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变2.抛物线的函数解析式为y=3(x-2)2+1,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数解析式为()A.y=3(x+1)2+3 B.y=3(x-5)2+3 C.y=3(x-5)2-1 D.y=3(x+1)2-13.已知抛物线y=a(x-h)2+k与x轴有两个交点A(-1,0),B(3,0),抛物线y=a(x-h-m)2+k与x轴的一个交点是(4,0),则m的值是()A.5 B.-1 C.5或1 D.-5或-14.已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.-5或2 B.-5 C.2 D.-25.把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.6.如图,二次函数y=(x-1)(x-a)(a为常数)的图象的对称轴为x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的解析式.第6题图专项四二次函数与一元二次方程的关系知识清单二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)的关系:Δ=b2-4ac一元二次方程ax2+bx+c=0根的情况二次函数y=ax2+bx+c的图象与x轴的位置关系Δ>0有两个不等的实数根有两个不同的公共点Δ=0有两个相等的实数根只有唯一的公共点Δ<0无实数根没有公共点考点例析例已知关于x的一元二次方程x2+x-m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x-m的部分图象如图所示,求一元二次方程x2+x-m=0的解.分析:(1)由方程x2+x-m=0有两个不相等的实数根,可得Δ>0,列不等式即可求出m的取值范围;(2)根据二次函数图象的对称性,可得二次函数y=x2+x-m的图象与x轴的另一个交点,从而得到一元二次方程x2+x-m=0的解.解:跟踪训练1.已知直线y=kx+2过第一、二、三象限,则直线y=kx+2与抛物线y=x2-2x+3的交点个数为()A.0 B.1 C.2 D.1或22.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,有下列结论:①c=2;②b2-4ac>0;③方程ax2+bx=0的两根为x1=-2,x2=0;④7a+c<0.其中正确的有()3.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.4.对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是.5.武汉)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是.(填序号)专项五二次函数的应用知识清单构建二次函数模型解决实际问题的一般步骤:(1)审题,分析问题中的变量和常量;(2)建立二次函数模型表示它们之间的关系;(3)充分结合已知条件,利用函数解析式或图象等得出相应问题的答案,或把二次函数解析式用顶点坐标公式或用配方法化为顶点式,确定出二次函数的最大(小)值;(4)结合自变量的取值范围和问题的实际意义,检验结果的合理性.考点例析例1某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y件.(1)求y与x的函数解析式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?分析:(1)根据“该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件”列出y与x的函数解析式;(2)设每个月的销售利润为w元,根据等量关系“利润=(售价-进价)×销量”列出函数解析式,配方后根据二次函数的性质求解.解:例2某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数解析式为y=-16(x-5)2+6.(1)求雕塑高OA;(2)求落水点C,D之间的距离;(3)若需要在OD上的点E处竖立雕塑EF,OE=10 m,EF=1.8 m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.分析:(1)根据给出的抛物线的函数解析式,令x=0,求出点A的纵坐标,可得出雕塑高OA;(2)根据给出的抛物线的函数解析式,令y=0,求出点D的横坐标,可得出OD的长度,由喷出的水柱为抛物线且形状相同,可得出OC的长,结合CD=OC+OD即可求出落水点C,D之间的距离;(3)将x=10代入函数解析式y=-16(x-5)2+6求出y的值,将求出的y值与1.8比较后即可得出顶部F是否会碰到水柱.解:跟踪训练1.某快餐店销售A,B两种快餐,每份利润分别为12元,8元,每天卖出份数分别为40份,80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数解析式;(2)设销售收入为p(万元),求p与x之间的函数解析式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入-总支出)第2题图3. 如图①是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系. (1)求桥拱顶部O 离水面的距离.(2)如图②,桥面上方有3根高度均为4 m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m . ①求出其中一条钢缆抛物线的函数解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.① ②第3题图专项六 二次函数中的分类讨论思想分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法.我们在运用分类讨论思想时,必须遵循下列两个原则:一是要有分类意识,善于从问题的情境中抓住分类对象;二是要找出科学合理的分类标准,应当满足互斥、无漏、最简原则. 引起分类讨论的因素较多,归纳起来主要有以下几个方面:①由数学概念、性质、定理、公式的限制条件引起的讨论;②由数学变形所需要的限制条件引起的讨论;③由图形的不确定性引起的讨论;④由于题目含有字母引起的讨论等等. 考点例析例 已知关于x 的二次函数y 1=x 2+bx+c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的解析式; (2)若b 2-c=0,当b-3≤x≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x+m ,若在(1)的条件下,当0≤x≤1时,总有y 2≥y 1,求实数m 的最小值.分析:(1)将(0,4)代入二次函数y 1=x 2+bx+c ,可求得c ,由对称轴为x=-2b=1,可求出b ;(2)二次函数y 1=x 2+bx+c 图象的对称轴为x=-2b ,需要分三种情况:b <-2b ,b-3>-2b 和b-3≤-2b≤b 进行分类讨论;(3)设函数y 3=y 2-y 1,根据二次函数图象的增减性进行求解. 解:跟踪训练科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数解析式;(2)求出y2与x之间的函数解析式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?参考答案专项一二次函数的图象和性质例1 A 例2 D 例3 D 例4 B1.B 2.C 3.D 4.C 5.B6.①②③专项二确定二次函数的解析式例 A1.A 2.A专项三二次函数图象的平移例 B1.D 2.C 3.C 4.B 5.y=2x2+4x6. 解:(1)因为y=(x-1)(x-a)=x2-(a+1)x+a,图象的对称轴为x=2,所以+12a=2,解得a=3.(2)由(1),知a=3,则该二次函数的解析式为y=x²-4x+3.所以二次函数的图象向下平移3个单位后经过原点.所以平移后图象所对应的二次函数的解析式是y=x²-4x.专项四二次函数与一元二次方程的关系例(1)由题意,知Δ>0,即1+4m>0,解得m>-14.(2)二次函数y=x2+x-m图象的对称轴为x=-12,所以该函数图象与x轴的两个交点关于直线x=-12对称.由图可知抛物线与x轴的一个交点为(1,0),所以另一个交点为(-2,0).所以一元二次方程x2+x-m=0的解为x1=1,x2=-2.1.C 2.B 3.1 4.①②④专项五二次函数的应用例1 (1)y=300-10(x-60)=-10x+900.(2)设每个月的销售利润为w元.由(1),知w=(x-50)y=(x-50)(-10x+900)=-10x2+1400x-45 000=-10(x-70)2+4000.因为-10<0,所以当x=70时,w有最大值为4000.所以该商品每件的销售价为70元时,每个月的销售利润最大,最大利润是4000元.x2=11.所以OD=11 m..因为从A点向四周喷水,喷出的水柱为抛物线,且形状相同,所以OC=OD=11 m.所以CD=OC+OD=22 m1.12642.解:(1)设y与x之间的函数解析式为y=kx+b.w(万元).(3)设销售利润为所以原料的质量x为24吨时,所获销售利润最大,最大销售利润是65.2万元.3. 解:(1)根据题意,知点F的坐标为(6,-1.5),可设拱桥侧面所在抛物线的函数解析式为y1=a1x2.=a2(x-6)2+1.(2)①根据题意,知右边钢缆所在抛物线的顶点坐标为(6,1),可设其解析式为y2②设彩带的长度为L m.所以当x=4时,L 最小值=2.答:彩带长度的最小值是2 m .专项六 二次函数中的分类讨论思想例 (1)因为二次函数的图象经过点(0,4),所以c=4.(2)当b 2-c=0时,b 2=c ,此时函数的解析式为y 1=x 2+bx+b 2. 根据题意,分三种情况:所以(b-3)2+b (b-3)+b 2=21,解得b 3=4,b 4=-1(舍去).(3)由(1),知二次函数的解析式为y 1=x 2-2x+4.设函数y 3=y 2-y 1=x 2+3x+m-4. 所以当x=0时,y 3即y 2-y 1有最小值m-4,所以m-4≥0,即m≥4.所以m 的最小值为4. 跟踪训练解:(1)y 1=5x+30.(2)当x=6时,y 1=5×6+30=60.因为y 2的图象是过原点的抛物线,所以可设y 2=ax 2+bx . 因为点(1,35),(6,60)在抛物线y 2=ax 2+bx 上,所以=35366=60.a b a b ++⎧⎨⎩,解得=5=40.a b ⎩-⎧⎨,所以y 2=-5x 2+40x .所以y 2与x 的函数解析式为y 2=-5x 2+40x . (3)设小钢球和无人机的高度差为y 米. 令y 2=0,则-5x 2+40x=0,解得x=0或x=8.因为6<x≤8,所以当x=8时,y的最大值为70.70米.。