ANSYS多物理耦合场有限元分析详细步骤操作
- 格式:ppt
- 大小:1.73 MB
- 文档页数:98
有限元分析ANSYS简单入门教程有限元分析(finite element analysis,简称FEA)是一种数值分析方法,广泛应用于工程设计、材料科学、地质工程、生物医学等领域。
ANSYS是一款领先的有限元分析软件,可以模拟各种复杂的结构和现象。
本文将介绍ANSYS的简单入门教程。
1.安装和启动ANSYS2. 创建新项目(Project)点击“New Project”,然后输入项目名称,选择目录和工作空间,并点击“OK”。
这样就创建了一个新的项目。
3. 建立几何模型(Geometry)在工作空间内,点击左上方的“Geometry”图标,然后选择“3D”或者“2D”,根据你的需要。
在几何模型界面中,可以使用不同的工具进行绘图,如“Line”、“Rectangle”等。
4. 定义材料(Material)在几何模型界面中,点击左下方的“Engineering Data”图标,然后选择“Add Material”。
在材料库中选择合适的材料,并输入必要的参数,如弹性模量、泊松比等。
5. 设置边界条件(Boundary Conditions)在几何模型界面中,点击左上方的“Analysis”图标,然后选择“New Analysis”并选择适合的类型。
然后,在右侧的“Boundary Conditions”面板中,设置边界条件,如约束和加载。
6. 网格划分(Meshing)在几何模型界面中,点击左上方的“Mesh”图标,然后选择“Add Mesh”来进行网格划分。
可以选择不同的网格类型和规模,并进行调整和优化。
7. 定义求解器(Solver)在工作空间内,点击左下方的“Physics”图标,然后选择“Add Physics”。
选择适合的求解器类型,并输入必要的参数。
8. 运行求解器(Run Solver)在工作空间内,点击左侧的“Solve”图标。
ANSYS会对模型进行求解,并会在界面上显示计算过程和结果。
第19章多物理场耦合分析本章首先对多物理场的概念进行简要介绍,并通过典型案例详细讲解了电磁热耦合的操作步骤。
★ 了解多物理场的基本概念及19.1多物理场耦合分析概述在自然界中存在4种场:位移场、电磁场、温度场、流场。
这4种场之间是互相联系的,现实世界不存在纯粹的单场问题,遇到的所有物理场问题都是多物理场耦合的,只是受到硬件或者软件的限制,人为地将它们分成单场现象,各自进行分析。
有时这种分离是可以接受的,但对于许多问题,这样计算将得到错误结果。
因此,在条件允许时,应该进行多物理场耦合分析。
多物理场耦合分析是考虑两个或两个以上工程学科(物理场)间相互作用的分析,例如流体与结构的耦合分析(流固耦合)、电磁与结构耦合分析、电磁与热耦合分析、热与结构耦合分析、电磁与流体耦合分析、流体与声学耦合分析、结构与声学耦合分析(振动声学)等。
以流固耦合为例,流体流动的压力作用到结构上,结构产生变形,而结构的变形又影响了流体的流道,因此流固耦合是流体与结构相互作用的结果。
耦合分析总体来说分为两种:单向耦合与双向耦合。
单向耦合:以流固耦合分析为例,如果结构在流道中受到流体压力产生的变形很小,忽略掉亦可满足工程计算的需要,则不需要将变形反馈给流体,这样的耦合称为单向耦合。
双向耦合:以流固耦合分析为例,如果结构在流道中受到的流体压力很大,或者即使压力很小也不能被忽略掉,则需要将结构变形反馈给流体,这样的耦合称为双向耦合。
ANSYS Workbench还可与ANSOFT Simplorer软件集成在一起实现场路耦合计算。
场路耦合计算适用于电机、电力电子装置及系统、交直流传动、电源、电力系统、汽车部件、汽车电子与系统、航空航天、船舶装置与控制系统、军事装备仿真等领域的分析。
第19章多物理场耦合分析在ANSYS Workbench中,多物理场耦合分析可以分析基本场之间的相互耦合,其应用场合包括以下几个方面。
1. 流固耦合汽车燃料喷射器、控制阀、风扇、水泵等。
ANSYS有限元分析入门与应用指南第一章:ANSYS有限元分析概述ANSYS是一种常用于工程领域的有限元分析软件,主要用于对各种结构进行力学分析、流体动力学分析、热传导分析等。
本章将对ANSYS的基本原理、工作流程和应用领域进行介绍。
1.1 ANSYS的基本原理ANSYS基于有限元方法,将实际结构或系统离散为有限数量的单元,通过对单元进行各种物理特性的分析,最终得到整个结构的行为。
有限元方法是一种数值分析方法,可以有效解决传统方法难以处理的复杂问题。
1.2 ANSYS的工作流程ANSYS的工作流程包括几个关键步骤:前处理、求解和后处理。
前处理阶段主要负责模型的建立和单元网格的划分,求解阶段进行物理场的计算和求解,后处理阶段对结果进行可视化和分析。
1.3 ANSYS的应用领域ANSYS可应用于各个工程领域,如固体力学、流体力学、热传导、电磁场等。
在航空航天、汽车工程、建筑结构、电子设备等领域都有广泛的应用。
第二章:ANSYS建模与前处理在使用ANSYS进行有限元分析之前,需要对模型进行建模和前处理工作。
本章将介绍ANSYS建模的基本方法和前处理的必要步骤。
2.1 模型建立ANSYS提供了多种建模方法,包括几何建模、CAD导入、脚本编程等。
用户可以根据需要选择合适的建模方法,对模型进行几何设定。
2.2 材料定义和属性设置在进行有限元分析之前,需要为材料定义材料性质和属性。
ANSYS提供了多种材料模型,用户可以根据具体需求进行选择和设置。
2.3 网格划分网格划分是有限元分析中非常重要的一步,它决定了模型的离散精度和计算效果。
ANSYS提供了多种单元类型和划分算法,用户可以根据需要进行合理的网格划分。
第三章:ANSYS求解与后处理在进行前处理完成后,就可以进行有限元分析的求解和后处理了。
本章将介绍ANSYS的求解方法和后处理功能。
3.1 求解方法ANSYS提供了多种求解方法,如直接法、迭代法等。
根据模型的复杂程度和求解要求,用户可以选择合适的方法进行求解。
第2章ANSYS有限元分析典型步骤ANSYS有限元分析通常包括以下典型步骤:1. 建立几何模型:首先,需要根据实际情况建立一个准确的物体几何模型。
可以使用ANSYS的建模工具,如DesignModeler或SpaceClaim 等,或者根据实际测量数据导入几何模型。
2.定义材料属性:对于每个组件或部件,需要定义其材料属性。
这包括材料的弹性模量、泊松比、密度等。
可以根据实际材料性能值,或通过实验测量获得的数据进行定义。
3. 网格划分:在进行有限元分析之前,需要将几何模型划分为离散的小单元,也就是网格。
网格的划分可以使用ANSYS的网格划分工具,如Meshing或Tetrahedron等。
网格的质量对分析结果影响很大,因此需要注意网格的尺寸和形状。
4.边界条件的定义:在有限元分析中,需要定义加载条件和边界条件。
加载条件包括模型所受到的力或压力,边界条件包括模型的约束条件。
根据实际情况,可以在加载面上应用力或压力,并在其他面上施加约束条件,如固定、自由、对称等。
5.约束和加载条件的应用:在ANSYS中,可以通过指定加载和约束条件来模拟实际问题的工作条件。
可以使用ANSYS的加载和约束工具来定义这些条件,并将其应用于相应的面或区域。
6.求解计算:在有限元分析中,需要对模型进行数值求解以获得结果。
ANSYS提供了强大的求解器,可以对各种非线性和线性问题进行求解。
可以选择适当的求解方法和参数,并启动求解计算。
7.结果分析:一旦求解过程完成,可以对分析结果进行分析和解释。
ANSYS提供了丰富的后处理工具,可以显示网格变形、应力和应变分布、位移和振动模式等相关结果。
根据需要,可以导出结果并使用其他软件进一步分析。
8.结果验证和优化:根据结果分析,可以对模型和分析设置进行验证和优化。
结果验证通常是与实验数据进行比较,以确定模型的准确性。
优化可以是调整材料属性、几何形状或边界条件等,以提高模型性能。
9.报告和展示:最后,需要编写分析报告,并通过图形和表格等方式展示分析结果。
ansys有限元分析实用教程ANSYS有限元分析实用教程有限元分析是一种工程数值分析方法,广泛应用于工程领域中的结构力学分析、热传导分析、流体力学分析等各个方面。
ANSYS作为一款常用的有限元分析软件,能够有效地对工程结构进行模拟和分析,得到结构的应力、位移、温度等相关信息。
本文将为大家提供一份有关ANSYS有限元分析的实用教程,希望能够帮助读者更加深入地理解和应用该软件。
一、软件介绍ANSYS是一款由美国ANSYS公司开发的通用有限元分析软件。
它能够对各种结构进行力学分析、热传导分析和流体力学分析,具有广泛的应用范围。
ANSYS软件提供了全面而强大的建模和分析工具,帮助用户模拟和分析工程结构的力学性能。
同时,软件还提供了可视化的结果展示,使用户能够直观地了解分析结果。
二、基本操作1. 创建几何模型在进行有限元分析之前,首先需要创建几何模型。
ANSYS提供了多种建模工具,包括绘制直线、圆弧、矩形等基本几何图形,以及从CAD软件导入模型。
根据实际需要,选择合适的建模工具,创建准确的几何模型。
2. 设定材料属性在进行分析之前,需要设定材料的力学性质。
ANSYS提供了各种常见材料的力学性质参数,例如弹性模量、泊松比、密度等。
根据实际情况,选择合适的材料属性,以便进行准确的分析。
3. 设定边界条件分析中,还需要设定结构的边界条件。
边界条件包括约束条件和加载条件两部分。
约束条件用于限制结构的自由度,加载条件用于模拟结构所受到的外界载荷。
根据具体情况,在ANSYS中设定合适的边界条件,以便准确模拟实际工况。
4. 网格划分在进行有限元分析之前,需要对几何模型进行网格划分。
网格划分是有限元分析的基础,它将结构离散为多个小单元,每个小单元称为一个单元。
ANSYS提供了多种网格划分算法,用户可以根据需求选择合适的划分方法。
划分完成后,还需要检查网格质量,确保每个单元的质量良好。
5. 进行分析完成以上步骤后,即可进行有限元分析。
第2章ANSYS有限元分析基本步骤ANSYS有限元分析是一种常用的工程分析方法,可以用于解决各种结构力学问题。
本文将对ANSYS有限元分析的基本步骤进行详细介绍。
1.确定分析目标:在进行有限元分析之前,首先需要明确分析的目标和要求。
包括确定所要分析的结构或零件的几何形状、材料特性、受力情况等。
2.建立有限元模型:建立有限元模型是有限元分析的关键步骤之一、在ANSYS软件中,可以通过几何建模功能来定义结构的几何形状和尺寸。
然后,根据要分析的问题类型,选择适当的单元类型,并使用网格划分功能将结构分割成适当大小的单元。
3.定义材料特性:在进行有限元分析之前,需要定义结构的材料特性。
包括弹性模量、泊松比、密度等。
可以根据实际情况输入已知的材料特性值,也可以通过实验或理论计算来获得。
4.定义边界条件:边界条件是有限元分析中的重要概念,它用于描述结构在系统中的限制条件。
在ANSYS中,可以通过节点约束和节点载荷来定义边界条件。
常见的边界条件包括固定边界条件、力载荷和位移约束。
5.生成网格:当有限元模型、材料特性和边界条件都定义好之后,可以使用ANSYS软件中的划分工具生成有限元网格。
生成网格的目的是将结构分割成适当大小和形状的单元,以便进行数值计算。
6.设置分析类型:在进行有限元分析之前,需要选择适当的分析类型。
根据具体问题的要求,可以选择其中的静态分析、动态分析、热分析等多种分析类型。
7.执行分析计算:当有限元模型、材料特性、边界条件和网格都设置好之后,可以执行分析计算。
ANSYS软件会根据设置的分析类型和边界条件进行数值计算,并给出相应的结果。
8.结果分析与后处理:分析计算完成后,可以进行结果的分析和后处理。
ANSYS软件提供了丰富的后处理功能,可以对应力、位移、变形、应变等结果进行可视化和分析。
9.结果验证和优化设计:完成有限元分析后,需要对结果进行验证和评估。
与实际情况进行对比,确定结果的可靠性和准确性。
第一章耦合场分析1.1耦合场分析的定义耦合场分析是指考虑了两个或多个工程物理场之间相互作用的分析。
例如压电分析,考虑结构和电场间的相互作用:求解由施加位移造成的电压分布或相反过程。
其它耦合场分析的例子有热-应力分析,热-电分析,流体-结构分析。
需要进行耦合场分析的工程应用有压力容器(热-应力分析),流体流动的压缩(流体结构分析),感应加热(磁-热分析),超声波换能器(压电分析)以及磁体成形(磁-结构分析),以及微电机械系统(MEMS)等。
1.2耦合场分析的类型耦合场分析的过程依赖于所耦合的物理场,但明显可以可分为两类:顺序耦合和直接耦合。
1.2.1 顺序耦合方法顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于不同物理场的分析。
通过将前一个分析的结果作为载荷施加到第二个分析中的方式进行耦合。
典型的例子是热-应力顺序耦合分析,热分析中得到节点温度作为“体载荷”施加到随后的应力分析中去。
1.2.2 直接耦合方法直接耦合方法一般只涉及到一次分析,利用包括所有必要自由度的耦合场类型单元。
通过计算包含所需物理量的单元矩阵或载荷向量的方式进行耦合。
例如使用了SOLID5、PLANE13或SOLID98单元的压电分析。
另外的例子如利用TRANS126单元的MEMS分析。
1.2.3 直接法与顺序法的应用场合对于耦合情况的相互作用非线性程度不是很高的情况,顺序耦合法更有效,也更灵活。
因为两个分析之间是相对独立的。
例如在热应力顺序耦合分析中,可以先进行非线性瞬态热分析,然后再进行线性静力分析。
可以将瞬态热分析中任一载荷步或时间点的节点温度作为载荷施加到应力分析中。
顺序耦合可以是不同物理场之间交替进行执行,直到收敛到一定精度为止。
当耦合场之间的相互作用是高度非线性的,直接耦合具有优势。
它使用耦合变量一次求解得到结果。
直接耦合的例子有压电分析,流体流动的共轭传热分析,电路-电磁分析。
这些分析中使用了特殊的耦合单元直接求解耦合场间的相互作用。
基于ANSYS18.2对三根母排模型的电磁、热、结构多物理场耦合分析1 前言电气设备通常会存在多场共同作用的情况,如电机的绕组端部,变压器绕组,单抗器。
这种情况下单场的耦合很难满足设计和仿真的需求,采用ANSYS多物理场耦合分析的方法,能够计算多场共同作用下设备的性能,满足设计选型的要求。
本例以三根母排为例,用ANSYS 18.2软件,对母排的电磁场,热场及结构场进行分析。
如图所示,为本例计算的三根母排模型。
当母排通电时,根据欧姆定律,母排本身会发热;同时,根据法拉第电磁感应定律,母排与母排之间会有电磁力相互作用。
这种由电磁、热、结构多场耦合分析,需要借助强大的ANSYS有限元分析软件对其进行精确仿真计算。
为了研究本例中的各个物理场,本例分别采用ANSYS旗下的Maxwell3D、Steady-State Thermal、Static Structural三个模型进行分析。
2 操作步骤1 新建Workbench工程打开ANSYS仿真软件,启动Workbench仿真平台,并点击保存图标或者【File】>【Save As…】保存文件,注意文件名和保存路径不能出现中文。
2 创建仿真流程在Workbench上的Toolbox菜单中,依次拖拽Maxwell3D、Steady-State Thermal、Static Structural 三个模型到工作台上,并连线建立数据联系。
3 3.1.3 添加材料双击Engineering Data,进入到Workbench的材料设置界面,点击,进入材料库,选择,在其中找到Copper Alloy,点击其后面的添加按钮,将铜材料添加到工程文件中。
关闭EngineeringData页签,返回Workbench 操作环境中。
2.1 电磁仿真分析2.1.1 模型的导入及设置(1)双击Maxwell3D,进入到Maxwell操作环境。
(2)点击【Modeler】>【Import】,在弹出的界面找到模型文件的位置,选择并打开。
第一章实体建模第一节基本知识建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。
建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。
一、实体造型简介1.建立实体模型的两种途径①利用ANSYS自带的实体建模功能创建实体建模:②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。
2.实体建模的三种方式(1)自底向上的实体建模由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。
(2)自顶向下的实体建模直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。
(3)混合法自底向上和自顶向下的实体建模可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。
自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。
二、ANSYS的坐标系ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。
①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。
②显示坐标系:定义了列出或显示几何对象的系统。
③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
④单元坐标系:确定材料特性主轴和单元结果数据的方向。
1.全局坐标系全局坐标系和局部坐标系是用来定位几何体。
在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。
总体坐标系是一个绝对的参考系。
ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。
4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系(Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。
ANSYS耦合场分析指南第一章耦合场分析1.1耦合场分析的定义耦合场分析是指考虑了两个或多个工程物理场之间相互作用的分析。
例如压电分析,考虑结构和电场间的相互作用:求解由施加位移造成的电压分布或相反过程。
其它耦合场分析的例子有热-应力分析,热-电分析,流体-结构分析。
需要进行耦合场分析的工程应用有压力容器(热-应力分析),流体流动的压缩(流体结构分析),感应加热(磁-热分析),超声波换能器(压电分析)以及磁体成形(磁-结构分析),以及微电机械系统(MEMS)等。
1.2耦合场分析的类型耦合场分析的过程依赖于所耦合的物理场,但明显可以可分为两类:顺序耦合和直接耦合。
1.2.1 顺序耦合方法顺序耦合方法包括两个或多个按一定顺序排列的分析,每一种属于不同物理场的分析。
通过将前一个分析的结果作为载荷施加到第二个分析中的方式进行耦合。
典型的例子是热-应力顺序耦合分析,热分析中得到节点温度作为“体载荷”施加到随后的应力分析中去。
1.2.2 直接耦合方法直接耦合方法一般只涉及到一次分析,利用包括所有必要自由度的耦合场类型单元。
通过计算包含所需物理量的单元矩阵或载荷向量的方式进行耦合。
例如使用了SOLID5、PLANE13或SOLID98单元的压电分析。
另外的例子如利用TRANS126单元的MEMS分析。
1.2.3 直接法与顺序法的应用场合对于耦合情况的相互作用非线性程度不是很高的情况,顺序耦合法更有效,也更灵活。
因为两个分析之间是相对独立的。
例如在热应力顺序耦合分析中,可以先进行非线性瞬态热分析,然后再进行线性静力分析。
可以将瞬态热分析中任一载荷步或时间点的节点温度作为载荷施加到应力分析中。
顺序耦合可以是不同物理场之间交替进行执行,直到收敛到一定精度为止。
当耦合场之间的相互作用是高度非线性的,直接耦合具有优势。
它使用耦合变量一次求解得到结果。
直接耦合的例子有压电分析,流体流动的共轭传热分析,电路-电磁分析。
这些分析中使用了特殊的耦合单元直接求解耦合场间的相互作用。