厄瓦尔德图解:衍射矢量方程与倒易点阵结合, 厄瓦尔德图解:衍射矢量方程与倒易点阵结合,表示 衍射条件与衍射方向
反射球(衍射球, 反射球(衍射球,厄 瓦尔德球) 瓦尔德球):在入射线 方向上任取一点C为球 心,以入射线波长的倒 数为半径的球. 产生衍射的条件: 产生衍射的条件:若以入 射线与反射球的交点为原 点,形成倒易点阵,只要 倒易点落在反射球面上, 对应的点阵面都能满足布 拉格条件,衍射线方向为 反射球心射向球面上其倒 易结点的方向.
P1
SP1 / λ
r
* P1
SP2 / λ
S0 / λ
C
O*
r
* P2
P2
材料现代研究方法讲义
利用厄瓦尔德图解释晶体的衍射现象 1,劳埃法:单晶体试样固定不动,采用连续X射线
材料现代研究方法讲义
利用厄瓦尔德图解释晶体的衍射现象 2,旋转晶体法:单晶体绕与入射线垂直的轴转动.
材料现代研究方法讲义
b×c b×c a*= = V a b × c
c×a c×a b* = = V bc× a a×b a×b c* = = V ca×b
aib * = bic * = cia * = 0
a* = 1 a , b* = 1 b , c* = 1 c
材料现代研究方法讲义
正点阵和倒易点阵中点,线,面的关系 点阵矢量 r * = ha * + kb * + lc * 倒易点阵基本平移矢量: 倒易点阵基本平移矢量:a *, b *, c *
为新的三个基矢, 以 a *, b *, c * 为新的三个基矢, 引入另一个点阵, 引入另一个点阵,显然该点阵 c×a 中的点阵矢量 r * = ha * + kb * + lc * b* = V 的方向就是晶面(hkl)的法线方 的方向就是晶面 的法线方 a×b 向,该矢量指向的点阵点指数 c* = V 即为hkl 即为 . 倒易点阵的一个结点对应空间点阵的一个晶面