第六章 循环码的译码
- 格式:ppt
- 大小:328.00 KB
- 文档页数:45
循环码的编译码方法..***************** 实践教学****************** 兰州理工大学计算机与通信学院2013年秋季学期《计算机通信》课程设计题目:(15,7)循环码的编译码方法专业班级:通信工程一班姓名:学号:指导教师:成绩:摘要本次课程设计研究的是循环码的编译码方法,在设计过程中,首先要介绍了线性分组码的编码和译码原理,并介绍了循环码的定义及其相关内容;其次给定的生成多项式g?x?求解出了生成矩阵和监督矩阵,并且利用MATLAB编写循环码的编码器和译码器代,实现编码及译码功能;求出该码的最小码距,并分析讨论该码的纠错能力以及在高斯信道下的误码性能。
关键词: 循环码;编码;译码;MATLAB 目录一前言............................................................... ..................................................................... .................................. 1 二循环码编译码的基本原理............................................................... ...................................................................2 循环码的简介............................................................... ..................................................................... ......... 2 循环码的定义............................................................... ....................................................................2 线性分组码与循环码的区别............................................................... ............................................3 循环码的最小码距............................................................... ............................................................ 3 循环码的检纠错能力...............................................................环码编译码原理及过程............................................................... (4)循环码的编译码原理............................................................... ........................................................ 4 循环码编译码的............................................................... (5)三系统分析............................................................... ..................................................................... .......................... 7 循环码编译码方法的实现框图............................................................... ................................................. 7 循环码编译码实现过程............................................................... . (8)四系统设计....................................................................................... 10 生成矩阵和监督矩阵............................................................... . (10)循环码的编码............................................................... ..................................................................... ....... 10 循环码的的译码............................................................... ..................................................................... ... 11 循环码在高斯信道下的误码性能............................................................... ............................................ 13 总结............................................................... ..................................................................... .. (14)线性分组码与循环码的区别线性分组码是同时具有分组特性和线性特性的纠错码。
实验6 BCH 循环码的编码与译码一、实验内容用VC 或Matlab 软件编写循环BCH 码的编码与译码程序。
利用程序对教科书的例题做一个测试。
二、实验环境1. 计算机2. Windows 2000 或以上3. Microsoft Visual C++ 6.0 或以上4. Matlab 6.0或以上 三、实验目的1. 通过BCH 循环码的编码与译码程序的编写,彻底了解并掌握循环BCH 的编码与译码原理2. 通过循环BCH 码的编码与译码程序的编写,提高编程能力。
四、实验要求1. 提前预习实验,认真阅读实验原理以及相应的参考书。
2. 对不同信道的进行误码率分析。
特别是对称信道,画出误码性能图。
即信道误码率与循环汉明码之间的关系。
3. 认真填写实验报告。
五、实验原理1. 循环BCH 的编码与译码原理(略)2. 循环BCH 的程序实现。
六、实验步骤1.基本概念:设α是()2mGF 上的一个本原,t 是整数,含有2t 个跟232,,,...,tαααα,其系数在()2GF 上,并且最低次多项式()g x 为循环码生成多项式,并称为而原本预案BCH 码。
参数如下: 码长:12m n -=校验位数:r n k mt =-≤ 最小码距:min 021d d t ≥=+ 纠错能力:t 。
其中(3)m m ≥和纠错能力t ()12m t t -<是任意整数2.计算方法:(1)有21mn =-算出m ,遭到一个m 次的本原多项式()p x ,产生()2mGF 扩域。
(2)在()2mGF 上找到一个本原a,一般情况下是利用本原多项式()p x 的根,分别计2t 个连续米次根232,,,...,t αααα所对应的()2GF 域上的最小多项式()()()122,,...,t m x m x m x(3)计算2t 个连续奇次幂之根所对应的最小多项式的公倍式,得到生成多项式()()()()132,,...,t g x LCM m x m x m x =⎡⎤⎣⎦(4)由关系式()()()C x m x g x =求得BCH 码字3.程序实现:对于BCH(15,5),有matlab实现程序如下:①BCH编码enbch155.mfunction coded = bch155(msg_seq) %定义函数bch编码% 输入为msg_seq信息位% 输出为编码后的码元codedg=[1 0 1 0 0 1 1 0 1 1 1]; %生成多项式系数n=15;k=5; %默认为BCH(15,5)%% 从输入msg_seq中提取信息位msgdisplay('信息位:')if nargin<1 %判断输入信息,若未输入,系统自动产生5组信息码,并显示出信息位nmsg=5;msg=randi([0,1],[nmsg,k])elselmsg = length(msg_seq);nmsg = ceil(lmsg/k);msg = [msg_seq(:);zeros(nmsg*k-lmsg,1)];msg = reshape(msg,k,nmsg).'endxx = [msg zeros(nmsg,n-k)]; %将输入信息码msg拓展为矩阵形式的xx%% 进行编码,将xx编码为codedcoded =zeros(nmsg,n);fori=1:nmsg[q,r]=deconv(xx(i,:),g); %产生余式r=abs(rem(r,2));coded(i,:)=r;endcoded = coded + xx; %产生信息码end②BCH解码debch155.mM=4;code = gf(code,M);[m , n]=size(code);decode=[];code1=[];T2=6;N=15;mat=gf(2,M,code.prim_poly).^([N-1:-1:0]'*([1:T2]));Tx = [0 1 zeros(1,T2-1)];fori=1:m ;code1=code(i,:);M=code1.m;T2=6;N=15;S = code1* ((gf(2,M,code1.prim_poly)).^([N-1:-1:0]'*([1:T2]))); LambdaX = gf([1 zeros(1,T2)],M,code1.prim_poly);Tx = [0 1 zeros(1,T2-1)];L=0;for k = 1:T2;LambdaXTemp = LambdaX;Delta = S(k) - LambdaXTemp(1+[1:L])*(S(k-[1:L]))';ifDelta.x;LambdaX = LambdaXTemp - Delta*Tx;if 2*L < k;L = k-L;Tx = LambdaXTemp/Delta;end;end;Tx = [0 Tx(1:T2)];end;LambdaXValue = LambdaX.x;LambdaX = gf(LambdaXValue(1:max(find(LambdaXValue))), M, code1.prim_poly); errLoc_int = roots(LambdaX);errLoc = log(errLoc_int);fori = 1:length(errLoc);errorMag = 1;code1(N-errLoc(i)) = code1(N-errLoc(i)) - errorMag;end;decode=[decode;code1];end;ccode = double(decode.x);decode = ccode(:,1:5);end③测试文件 bch_en_decode.mfunction bch_en_decode(msg) %编码ifnargin<1code=enbch155();else code=enbch155(msg); %编码endcode=code+randerr(5,15,1:3); %模拟信道产生错误,每行有1-3个随机错误display('信道传输中干扰后,接收到的信息');coder=rem(code,2) %对2取余,使范围是0、1display('解码后');decode=debch155(coder)end4.进行测试法一:不输入信息位,让系统自动产生信息位,在matlab中输入下面一行代码,得到结果>>bch_en_decode()信息位:msg =0 0 1 1 11 1 1 0 01 1 1 1 11 0 0 0 10 0 0 0 0编码后码元:coded =0 0 1 1 1 1 0 1 0 1 1 0 0 1 01 1 1 0 0 0 0 1 0 1 0 0 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 0 0 1 1 1 1 0 1 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 信道传输中干扰后,接收到的信息coder =0 0 0 1 1 1 0 1 0 1 1 0 0 1 00 1 1 0 0 0 0 1 0 1 1 0 1 1 01 1 1 1 1 1 1 1 0 0 1 0 1 1 11 0 0 0 0 0 1 1 0 1 0 1 1 0 00 0 0 0 0 0 1 1 0 0 0 0 0 1 0 解码后decode =0 0 1 1 11 1 1 0 01 1 1 1 11 0 0 0 10 0 0 0 0法二:输入信息位在matalb中输入下面两行代码,得到结果如下>>msg=[1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1];>>bch_en_decode(msg)信息位:msg =1 1 0 1 11 1 1 1 10 0 0 0 10 0 0 1 00 0 0 0 1编码后码元:coded =1 1 0 1 1 1 0 0 0 0 1 0 1 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 1 0 1 0 0 1 1 0 1 1 10 0 0 1 0 1 0 0 1 1 0 1 1 1 00 0 0 0 1 0 1 0 0 1 1 0 1 1 1 信道传输中干扰后,接收到的信息coder =1 1 0 1 1 1 0 0 0 0 1 0 1 0 11 1 1 1 0 0 1 1 1 1 1 1 0 1 10 0 0 0 1 0 1 1 0 1 1 0 1 1 10 0 1 1 0 1 1 0 1 0 0 1 1 1 00 0 1 1 1 0 1 0 0 1 1 0 1 1 1 解码后decode =1 1 0 1 11 1 1 1 10 0 0 0 10 0 0 1 00 0 0 0 1。
循环码编译码工作过程可以概括为以下几个步骤:一、循环码编码过程1. 生成多项式选择:循环码的编码过程中,需要选择合适的生成多项式,以便将输入的数据符号转换成循环码序列。
常见的生成多项式有GF(2^m)中的最小多项式、标准多项式等。
2. 输入数据符号的编码:将输入的数据符号转换成二进制码字,可以采用简单的模2加法或利用编码算法进行转换。
3. 生成多项式扩展:将二进制码字通过生成多项式进行扩展,得到循环码的码字。
由于循环码是循环移位对称的,因此可以通过将码字循环移位得到不同的码字。
4. 校验位添加:根据循环码的校验规则,添加校验位,以确保编码后的码字是正确的循环码序列。
二、循环码解码过程1. 循环移位:将接收到的码字进行循环移位,使其与发送的码字匹配。
2. 校验位检查:根据循环码的校验规则,检查接收到的码字中的校验位是否正确。
3. 错误检测与纠正:如果校验位不正确,需要根据错误的位置和大小进行错误检测和纠正。
如果错误数量较少且位置相对固定,可以采用简单的错误纠正算法;如果错误数量较多或位置不固定,则需要利用更复杂的算法进行错误检测和纠正。
4. 数据恢复:根据解码过程中得到的正确的二进制码字,恢复原始数据符号。
需要注意的是,循环码的编码和解码过程都涉及到多项式的运算,因此需要选择合适的算法和工具进行实现。
同时,为了保证编码和解码的正确性和效率,还需要对传输过程中的干扰和噪声等因素进行考虑和处理。
在实现循环码的过程中,可以采用硬件或软件的方式。
对于硬件实现,可以利用数字电路和微处理器等技术进行设计;对于软件实现,可以利用编程语言和算法库等进行编写。
在实际应用中,需要根据具体的需求和环境选择合适的方式。
总之,循环码是一种重要的编码技术,具有较高的可靠性和效率。
了解循环码的编译码工作过程,对于在实际应用中实现循环码、优化编码和解码性能、提高通信系统的性能具有重要意义。