(精选)高电压技术前言及第一章讲
- 格式:ppt
- 大小:1.20 MB
- 文档页数:86
绪论高电压技术的产生和发展:•有关高电压的几个著名试验•1752年6月:富兰克林&风筝•1895年11月:伦琴&X射线•1919年:E.卢瑟福&元素的人工转变(a射线轰击氮原子)1945年威克斯勒尔和麦克米伦,电子回旋加速器等•1931年:范德格拉夫起电机(1000万伏)直到20世纪初高电压技术才逐渐成为一个独立的科学分支。
当时的高电压技术,主要是为了解决高压输电中的绝缘问题。
因此,可以这样说高电压与绝缘技术是随着高电压远距离输电和高电压设备的需要而发展起来的一门电力科学技术。
高电压技术:电力系统中涉及过电压、耐压、绝缘等问题的技术。
如:▲雷击变电所、发电厂的过电压及防护措施▲绝缘材料的研制▲合闸分闸空载运行以及短路引起的过电压▲电气设备的耐压试验一、研究意义研究意义:如何将电能大容量、远距离、低损耗地输送,提高电力系统运行的经济效益,防止过电压,提高耐压水平,保持电网运行的安全可靠性。
二.研究内容:1. 提高绝缘能力电压等级提高,需要相应的高压电气设备,要对各类绝缘电介质的特性及其放电机理进行研究,其中气体放电机理是基础。
电介质理论研究——介质特性放电过程研究——放电机理高电压试验技术——高压产生、测量、检验,分预防性和破坏性2. 降低过电压雷击或操作→暂态过程→产生高电压→绝缘破坏→故障→防止破坏→恢复研究过电压的形成及防止措施高电压种类:大气过电压内部过电压——操作过电压,暂时过电压3. 绝缘配合使作用电压的数值、保护电器的特性和绝缘的电气特性之间相互协调以保证电气装置的可靠运行与高度经济性。
三.学习要求与电工及物理的基础理论,如电介质理论、电磁场理论、电路中的瞬变理论相关。
内容涉及面广,经验公式多,文字叙述多,试验数据、图表多,实践性强第一章电介质的极化、电导和损耗§ 1 — 1 电介质的极化一、电介质简介定义:电介质是指.通常条件下导电性能极差的物质,云母、变压器油等都是介质. 电介质中正负电荷束缚得很紧,内部可自由移动的电荷极少,因此导电性能差。
课题2014年 3 月 15日第 1 节绪论简介什么是高电压技术第一章气体电解质的电气强度1.1 气体中带点质的产生与消失教案目的:1.让学生知道开设高电压技术这门课程的目的,以及本门课程的主要内容及学习方法;2.气体中带电粒子的产生及其迁移率和扩散,正离子和负离子的产生和消失。
重点及难点:重点:1.高电压技术这门课程与实际生活的联系;2.主要从哪几个方面对本门课程进行研究;3.电介质概念的引入及其分类;4.气体中带点质点的产生与消失。
难点:气体中带点质点产生与消失的方式。
教案内容及步骤(时间分配):组织教案:师生问候、填写日志、点名。
(5分钟)绪论一、导入新课:从生活实际入手,以南方电网近几年出现的事故为例,借助线路输送容量、电压损耗和功率损耗公式说明高电压输电的优势,从而给出高压电技术的概念。
(5)二、讲授新课(15)1.分析输送容量、电压损耗和功率损耗公式,进而引出高电压输电的优势输送容量公式:,Z—线路波阻抗。
架空线路波阻抗:数百欧姆;电缆线路波阻抗:几十欧姆。
电压损耗公式:功率损耗公式:2.高电压技术概念高电压技术主要研究高电压、强电场下各种电气物理问题。
研究高电压技术,目的是为了解决电力系统中过电压与绝缘这一对矛盾性的问题。
3.高电压技术等级的发展与提高●美国最早于1882年珍珠街发电厂开始发电,仅用于照明。
●从十九世纪末到二十世纪五十年代,电压直线上升。
●从二十世纪六十年代以后,电压上升幅度加大。
●采用750KV电压等级的有美、苏、日、德、英、法、加、意、中等国家。
●二十世纪七十年代就有1500-2000KV线路和变电所的初步设计,APE(美国电力公司)和ASEA(瑞典通用电力公司)联合对2000KV进行了实验,技术上没有问题。
电力系统的大容量和远距离传输、促使电压等级不断提高。
100年来世界上的输电电压提高了100倍,在高电压输电行业中,习惯上称:●低压:35KV以下●高压:35KV-100KV●超高压:100KV-1000KV●特高压:1000KV以上✧普通高压和超高压划分的依据是电晕,超高压和特高压划分的依据是电能4.高电压技术的研究对象电力系统运行过程中经常会导致比工作电压高得多的电压产生,如:自然界的雷击、电力系统本身操作所产生的操作过电压等。
《高电压技术》第3版常美生主编第一章电介质的极化、电导和损耗概述⏹电介质:指具有很高电阻率(通常为106~1019Ω·m)的材料。
⏹电介质的作用:在电气设备中主要起绝缘作用,即把不同电位的导体分隔开,使之在电气上不相连接。
⏹电介质的分类:按状态可分为气体、液体和固体三类。
其中气体电介质是电气设备外绝缘(电气设备壳体外的绝缘)的主要绝缘材料;液体、固体电介质则主要用于电气设备的内绝缘(封装在电气设备外壳内的绝缘)。
⏹极化、电导和损耗:在外加电压相对较低(不超过最大运行电压)时,电介质内部所发生的物理过程。
这些过程发展比较缓慢、稳定,所以一直被用来检测绝缘的状态。
此外,这些过程对电介质的绝缘性能也会产生重要的影响。
⏹击穿:在外加电压相对较高(超过最大运行电压)时,电介质可能会丧失其绝缘性能转变为导体,即发生击穿现象。
第一节电介质的极化一、电介质的极性及分类⏹分子键:电介质内分子间的结合力。
⏹化学键:分子内相邻原子间的结合力。
根据原子结合成分子的方式的不同,电介质分子的化学键分为离子键和共价键两类。
原子的电负性是指原子获得电子的能力。
电负性相差很大的原子相遇,电负性小的原子的价电子被电负性大的原子夺去,得到电子的原子形成负离子,失去电子的原子形成正离子,正、负离子通过静电引力结合成分子,这种化学键就称为离子键。
电负性相等或相差不大的两个或多个原子相互作用时,原子间则通过共用电子对结合成分子,这种化学键就称为共价键。
离子键中,正、负离子形成一个很大的键矩,因此它是一种强极性键。
共价键中,电负性相同的原子组成的共价键为非极性共价键,电负性不同的原子组成的共价键为极性共价键。
由非极性共价键构成的分子是非极性分子。
由极性共价键构成的分子,如果分子由一个极性共价键组成,则为极性分子;如果分子由两个或多个极性共价键组成,结构对称者为非极性分子,结构不对称者为极性分子。
分子由离子键构成的电介质称为离子结构的电介质。
高电压技术总目录第1讲绪论第2讲气体放电理论(一)第3讲气体放电理论(二)第4讲气隙的击穿特性第5讲电介质电气性能(一)第6讲电介质电气性能(二)第7讲固体电介质的击穿特性第8讲液体电介质的击穿特性第9讲绝缘诊断与绝缘试验第10讲高电压试验设备第11讲波沿线路传导第12讲输电线路防雷技术第13讲防雷装置第14讲输电线路防雷技术第15讲内部过电压概论一、世界电压等级的发展与提高高压电网向特高压电网发展的历程z1875年,法国巴黎建成世界上第一座发电厂,标志着世界电力时代的到来z1891年,在德国劳芬电厂安装了世界第一台三相交流发电机:它发出的三相交流电通过第一条13.8kV输电线将电力输送到远方用电地区,使电力既用于照明,又用于动力,从而开始了高压输电的时代z1879年,中国上海公共租界点亮了第一盏电灯。
1882年,第一家电业公司—上海电气公司成立。
100多年来,输电电压由最初的13.8kV逐步发展到20,35,66,110,134,220,330,345,400,500,735,750,765,1000kV高压电网向特高压电网发展的历程z输电电压一般分高压、超高压和特高压。
高压(HV):35~220kV;超高压(EHV):330 ~750kV;特高压(UHV):1000kV及以上高压直流(HVDC):±600kV及以下特高压直流(UHVDC):±600kV以上,包括±750kV和±800kVz1908年,美国建成了世界第一条110kV输电线路;经过15年,于1923年,第一条230kV线路投入运行;1954年建成第一条345kV线路。
从230kV电压等级到345kV电压等级经历了31年。
在345kV投运15年后,1969年建成了765kV线路高压电网向特高压电网发展的历程z1952年,瑞典建成世界上第一条380kV超高压线路z1965年,加拿大建成世界第一条735kV超高压线路z1952年,前苏联建成第一条330kV线路;1956年建成400kV 线路;1967年建成750kV线路。