基于PCA和欧几里得距离判据的模板匹配分类器
- 格式:ppt
- 大小:3.17 MB
- 文档页数:27
基于PCA的人脸识别算法研究毕业论文目录摘要 .................................................. 错误!未定义书签。
Abstract .............................................. 错误!未定义书签。
第1章绪论 .. (1)1.1选题背景及意义 (1)1.2国外研究现状 (2)1.2.1 国外研究现状 (2)1.2.2 国研究现状 (3)1.3人脸识别技术的研究容与技术难点 (3)1.3.1 人脸识别技术研究容 (3)1.3.2 人脸识别技术研究难点 (3)1.4本文研究容与结构安排 (4)第2章人脸识别相关技术介绍 (5)2.1系统概述 (5)2.2人脸识别主要技术 (5)2.2.1 二维人脸识别算法介绍 (5)2.2.2 三维人脸识别算法介绍 (6)2.3常用的人脸图像库 (6)2.4人脸的特征提取 (7)2.4.1 几何特征提取法 (7)2.4.2 代数特征提取法 (8)2.5本章小结 (10)第3章基于PCA的人脸识别算法 (12)3.1引言 (12)3.2K-L变换 (12)3.2.1 K-L变换原理 (13)3.2.2 K-L变换性质 (14)3.3SVD定理 (15)3.4距离的计算 (17)3.5基于PCA的人脸识别 (18)3.5.1 人脸的表示 (18)3.5.2 特征脸空间的构造 (18)3.5.3 特征提取 (19)3.5.4 人脸识别 (20)3.6MATLAB仿真实现 (20)3.7结果分析 (26)3.8本章小结 (28)第4章与基于Fisherface方法的特征提取原理对比 (29)4.1PCA方法的优缺点 (29)4.2基于Fisherface法的人脸特征提取理论介绍 (29)4.3FisherFace方法的优缺点 (31)4.4两种方案的理论对比 (31)4.5本章小结 (32)结论 (33)参考文献 (34)致谢 (36)附录 1 (37)附录 2 (44)附录 3 (48)附录 4 (57)第1章绪论1.1选题背景及意义当今时代社会高速发展,技术不断进步。
LBP直方图与PCA的欧式距离的人脸识别黄金钰;张会林;闫日亮【期刊名称】《计算机系统应用》【年(卷),期】2012(021)006【摘要】LBP operator has notable features of rotation invariance and gray-scale invariance etc. This paper uses LBP operator to get feature extraction, the face image is divided into sub-regions, then connecting these sub-regions LBP histogram to generate facial feature vector, because too many dimension of facial feature vector, using PCA to reduce dimension and compression. The final step is using Euclidean distance classifier to complete face recognition. Through the experimental conclusion shows very good face recognition effect. The face recognition algorithm used for various kinds of public, like the railway station have good application effect%基于LBP算子具有旋转不变性和灰度不变性等显著特点,本文通过LBP算子的特征提取,将人脸分成子区域,然后通过连接这些子区域的LBP直方图生成人脸特征向量,由于生成的特征向量的维数过高,通过PCA算法降维压缩,最后用欧式距离分类器完成测试样本和训练样本的人脸识别,通过实验比较得出很好的人脸识别效果,此人脸识别算法过程用于火车站等各种公共场合有很好的应用效果.【总页数】4页(P202-204,198)【作者】黄金钰;张会林;闫日亮【作者单位】上海理工大学计算机与自动化,上海200090;上海理工大学计算机与自动化,上海200090;上海理工大学计算机与自动化,上海200090【正文语种】中文【相关文献】1.多级LBP直方图序列特征的人脸识别 [J], 高涛;何明一;戴玉超;白磷2.基于LBP直方图的复杂光照下的人脸识别 [J], 王茜;肖国强;吴松;林宽3.基于SQI和加权LBP直方图的不同光照环境下人脸识别 [J], 王建玺;徐向艺;鲁书喜4.自商图像优化加权LBP直方图的光照变化人脸识别 [J], 王刘涛;李肖立5.快速PCA与MB-LBP融合的人脸识别算法研究 [J], 田璐萍因版权原因,仅展示原文概要,查看原文内容请购买。
基于大量人脸数据库的人脸识别的新方法Mahmud S. Alkoffash, Shihadeh Alqrainy, Hasan Muaidi, Mohammed Wedyan阿普杜拉王子。
摘要这篇文章展示了一个算法使得matlab程序能够以来一个给予的数据库和脸部识别技术构建和处理一张图片,这帮助解决了一些公安人员的调查难题和一些类似的操作,随着数据库的发展这些图像得以被构建和实现。
据发现这样的图像处理操作解决了一些需要快速调查的事务的难题比如公安人员的工作。
这种方法依赖于已有的人脸数据库和人脸识别,人脸识别则是采用抓取脸部的数据并于已有数据进行比较,然后找到最接近的一个作为结果。
这个操作需要时间,虽然它并不实时操作但是需要的时间是很短的。
这种方法延伸出一种方法能够更快搜索出一些未知的人或脸,这样所有的部门就能投入更多的兴趣在自己的事务中搜索未知的人。
关键字:图像处理;matlab;数据库;人脸识别;搜索介绍数据库图像处理系统适用于在一些紧急事件中快速构建图像,比如犯罪案件,公安人员对杀人犯,盗窃犯和其他一些犯人的调查。
它可以与图像检索系统和其他的图像处理程序并行。
这个系统能够进行所谓的图像检索操作来比较存储在数据库中的图像和被给予的数据所描绘出的图像,以此使得一些问题得以解决。
另一方面,非语言类检索引用通过图像属性访问数据的系统。
一些图像属性能够依赖图形处理技术被提取出来。
这个系统能够通过取得资源里的数据来启动,这样的数据库描绘了图像然后任何在数据库中的项目都能通过matlab构筑的代码来转换成类似于数据库中给出的图像,从而系统能够搜索一张通过存储大量数据的数据库构筑的相似的图像。
在这之后系统能够得出它的结果使得未知的图像成为已知,之后还需要一个测试阶段来确保最终图像的正确性。
许多研究者通过不同的方法论来探究分析这样的系统,比如Jodouin S. et al。
2003 年展示了一个全自动方法,它基于多谱线图像和地形数据库样本的区域探测和描绘。
河北农业大学现代科技学院毕业论文(设计)题目:基于PCA算法的Eigenfaces人脸识别算法摘要人脸识别技术就是利用计算机分析人脸图像,提取有效的识别信息来辨认身份或者判别待定状态的一门技术。
它涉及模式识别、图像处理、计算机视觉等诸多学科的知识,是当前研究的热点之一。
然而影响计算机人脸识别的因素非常之多,主要是人脸表情丰富,人脸随年龄增长而变化,人脸所成图像受光照、成像角度及成像距离等影响,极大地影响了人脸识别走向实用化。
基于PCA算法的人脸识别过程大致分为训练、测试、识别这三个阶段完成,在训练阶段,通过寻找协方差矩阵的特征向量,求出样本在该特征向量上的投影系数;在测试阶段,通过将测试样本投影到特征向量上,得到测试样本在该特征向量上的投影系数。
最后,采用最小欧氏距离,找到了与测试样本最相近的训练样本图像。
关键词Eigenfaces、PCA算法、人脸识别算法、matlab、SVD。
AbstractFace recognition technology is the use of computer analysis of facial images to extract valid identification information to identify or determine the identity of a technology Pending state. It involves knowledge of pattern recognition, image processing, computer vision, and many other disciplines, is one of the hotspots of current research. However, factors affecting the computer face recognition very much, mainly rich facial expression, face changes with age, face a picture of the affected light, imaging and imaging distance, angle, greatly influenced the Face to practical use.PCA algorithm based recognition process is roughly divided into training and testing, the identification of these three stages, in the training phase, to find the eigenvectors of the covariance matrix is obtained on the sample feature vector projection coefficient; in the test phase by the test feature vector is projected onto the sample to obtain a test sample on the projection of the feature vector of coefficients.Finally, the minimum Euclidean distance, the test sample to find the closest sample images.Keywords Eigenfaces PCA Algorithm、Face Recognition Algorithm、matlab、SVD.目录1 绪论---------------------------------------------------------------------- 11.1计算机人脸识别技术及应用--------------------------------------------- 11.2常用的人脸识别方法简介----------------------------------------------- 11.3本论文内容安排------------------------------------------------------- 12 PCA ----------------------------------------------------------------------- 32.1 PCA简介------------------------------------------------------------- 32.2 PCA的实质----------------------------------------------------------- 32.3 PCA理论基础--------------------------------------------------------- 32.3.1投影----------------------------------------------------------- 32.3.2最小平方误差理论----------------------------------------------- 42.3.3 PCA几何解释--------------------------------------------------- 82.4 PCA降维计算--------------------------------------------------------- 83 PCA在人脸识别中的应用--------------------------------------------------- 113.1 人脸识别技术简介--------------------------------------------------- 113.2 图片归一化--------------------------------------------------------- 113.3 基于PCA的人脸识别------------------------------------------------- 113.3.1 人脸数据特征提取---------------------------------------------- 113.3.2计算均值------------------------------------------------------ 123.3.3计算协方差矩阵C ----------------------------------------------- 123.3.4求出协方差C的特征值和特征向量-------------------------------- 123.4奇异值分解定理------------------------------------------------------ 123.5 基于PCA的人脸识别的训练------------------------------------------- 133.5.1 训练集的主成分计算-------------------------------------------- 133.5.2 训练集图片重建------------------------------------------------ 133.6 识别--------------------------------------------------------------- 144 实验--------------------------------------------------------------------- 154.1 实验环境----------------------------------------------------------- 154.2 PCA人脸识别实验过程------------------------------------------------ 154.2.1 训练阶段------------------------------------------------------ 154.2.2 测试阶段------------------------------------------------------ 224.2.3 采用欧氏最小距离识别------------------------------------------ 234.3实验结果------------------------------------------------------------ 245 总结--------------------------------------------------------------------- 265.1.1内容总结:---------------------------------------------------- 265.1.2工作总结:---------------------------------------------------- 26 6致谢--------------------------------------------------------------------- 27 参考文献------------------------------------------------------------------- 281 绪论1.1计算机人脸识别技术及应用计算机人脸识别技术就是利用计算机分析人脸图像,进而从中提取出有效的识别信息,用来“辨认”身份的一门技术,它涉及图像处理、模式识别、计算机视觉、神经网络、生理学、心理学等诸多学科领域的知识。
ncc 模板匹配算法NCC模板匹配算法,即最近邻分类算法(Nearest Class Classifier),是一种常用的模式识别和图像处理技术。
它通过计算待分类样本与已知样本之间的相似度,选择最近邻样本确定其所属类别。
在本文中,我们将一步一步地回答关于NCC模板匹配算法的问题,以帮助读者了解该算法的原理和应用。
第一步:什么是NCC模板匹配算法?NCC模板匹配算法是一种基于相似度度量的分类算法。
它通过计算待分类样本与已知样本之间的相似度,将待分类样本划分到与之最相似的已知类别中。
相似度度量通常使用特征向量之间的欧氏距离或相关性来描述。
第二步:NCC模板匹配算法的原理是什么?NCC模板匹配算法的原理主要包括特征提取和最近邻分类两个步骤。
在特征提取阶段,算法会从已知样本中提取出代表各类别特征的模板。
这些模板可以是特征向量、图像或其他描述类别特征的数据结构。
在最近邻分类阶段,算法会计算待分类样本与所有已知样本之间的相似度,并选择与之最相似的已知样本确定其类别。
第三步:NCC模板匹配算法的实现过程是怎样的?NCC模板匹配算法的实现过程可以分为以下几个步骤:1. 特征提取:从已知样本中提取出代表各类别特征的模板。
这可以通过计算已知样本的特征向量、图像的特征描述子等方法实现。
2. 相似度度量:对于待分类样本,计算其与所有已知样本之间的相似度。
常用的相似度度量方法包括欧氏距离、相关性等。
3. 最近邻分类:选择与待分类样本最相似的已知样本,将其标记为该待分类样本所属的类别。
4. 输出结果:将分类结果输出,可以是直接输出类别标签或输出与每个已知类别的相似度值。
第四步:NCC模板匹配算法的优缺点是什么?NCC模板匹配算法具有以下优点:1. 简单易实现:NCC模板匹配算法的实现相对简单,不需要复杂的训练过程和特征选择。
2. 高效性能:该算法的时间复杂度通常较低,能够快速进行分类。
3. 鲁棒性:NCC模板匹配算法对于一定程度的噪声和变形具有较好的鲁棒性。
基于DWT 的PCA+SVM 优化算法在人脸识别应用中的研究摘要:文章提出一种PCA+SVM 算法优化方法,以小波变换(DWT)为基础,旨在提升人脸识别的精度。
先用DWT 将原本的人面影像分解成多个子带,再将每个子带进行PCA 降维运算,选出最重要的特征子集作为输入资料,最后用SVM 分类器来识别人面。
实验结果显示,其在ORL 人脸数据库中提出的方法,应用前景更好,人脸识别准确率明显提高。
关键词:人脸识别;PCA ;SVM ;DWT ;算法中图分类号:TP319文献标识码:A文章编号:2095-0438(2023)09-0157-04(合肥财经职业学院人工智能学院安徽合肥230061)PCA+SVM 是人们常用的面部识别算法,识别性能较好。
但PCA+SVM 算法也需要提高识别精度,以应对大规模的人脸数据。
所以,如何提高PCA+SVM 算法在人脸识别领域应用的精确度,是目前研究的一个重要方向。
小波变换(dwt)是一种时频分析方法,具有多分辨率、局部性和优秀的压缩性等特点。
小波变换可以将讯号分解为频率不同、时间不同的多个子讯号,从而实现讯号的降维和特性的抽离。
所以通过小波变的方式优化PCA+SVM 算法,可以增强人脸识别的精确度。
一、PCA 算法和SVM 算法原理PCA+SVM 算法的基本思路是,首先利用PCA 算法将高维度的人面图像数据向低维度空间进行降维处理,再将降维处理后的数据送至SVM 分类器进行分类处理。
(一)PCA 算法。
PCA 算法是一种常用的降维方法,其基本思路是将高维数据通过线性变换映射到低维空间,从而达到数据维度的降低。
在图像处理中,PCA 算法可以通过对图像数据的协方差矩阵进行特征值分解来提取图像的主成分,进而实现对图像的降维操作。
假设有一个n 维的样本数据矩阵X ,每个样本有m 个特征值,则可以通过以下步骤来实现PCA 算法:第一步:对数据进行中心化处理计算出数据矩阵X 每个特征值的均值,然后将数据矩阵X 的每个样本向量减去其均值,得到新的中心化数据矩阵Y 。