运动学物理竞赛第二讲
- 格式:doc
- 大小:56.00 KB
- 文档页数:2
第二章 运动学研究物体的运动规律。
具体地说就是寻找:1()x f t =(位移公式)、2()v f t =(速度公式)、3()a f t =(加速度公式),这个关系可以用函数表示,也可以图像表示。
搞清了这个关系也就搞清了物体的运动规律。
第一讲 运动的基本概念一、x 、v 、a 的关系 1、(微分)()()()x f t v f t a f t =→=→=tan x t dtθ==∆v∆22()tan d d x dt v k x dt dt θ=====2、(积分)3210ttx v t vdt -∆=∆=∑⎰0ttv a t adt -∆=∆=∑⎰图象的斜率(微分)和面积(积分)a-t 图线和t 轴围成的面积数值上等于Δvv-t 图线和t 轴围成的面积数值上等于Δx x-t 图线的斜率数值上等于速度 v-t 图线的斜率数值上等于加速度 学运动必学微积分例题:已知某质点直线运动,运动学方程42+=t x ,求t 时刻瞬时速度和加速度3、平均加速度练习:已知某质点直线运动,运动学方程3x t =,求t 时刻瞬时速度和加速度例题:有一变速直线运动,位移公式为sin x A t ω=,A 和ω为定值。
求t 时刻瞬时速度和加速度提示:数学知识 sinα+sinβ=2sinα+β2cosα−β20sin lim1x xx→=cosα−cosβ=−2sinα+β2sin α−β21、t ()t t →+∆内的平均速度3、平均加速度附:常用导数1、1()n n x nx -'=2、(sin )'cos x x = (cos )sin x x '=-21(tan )'cos x x =21(cot )'sin x x=- 3、()x xe e '= ()ln x x a a a '=4、1(log )ln xa x a '= 1(ln )x x '=二、研究办法 1、矢量法质点由A 点运动到B 点21r r r ∆=- (矢量的运算,体现在力的合成和分解,运动合成和分解) rv t∆=∆ (平均速度、割线) 0t ∆→时,v v =(瞬时速度、切线) B AV V v a t t -∆==∆∆ (平均加速度) 0t ∆→时,a a = (瞬时加速度)利用数学上的向量可以研究物体的运动规律 2、直角坐标法 3、自然坐标法 4、极坐标法 5、球坐标法例如:轨迹方程就是在坐标系中质点位置坐标的函数关系 平抛的轨迹方程 1、直角坐标系中参数方程: x =V 0t y =12gt 2 轨迹方程: y =−gx 22V 022、极坐标系中 参数方程r =0tan 2gt v θ=轨迹方程r =匀速圆周运动1、直角坐标系中参数方程: x =Rcos(ωt) y =Rsin(ωt) 轨迹方程: x 2+y 2=R 2 2、极坐标系中参数方程 r R = t θω= 轨迹方程 r R =第二讲 抛体运动和直角坐标系将物体以一定的初速度抛出去,在运动过程中只受恒定不变的重力的运动,叫抛体运动。
运动学第一讲 基本知识介绍一.一. 基本概念1. 质点质点2. 参照物参照物3. 参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)是一个点)4.绝对运动,相对运动,牵连运动:v 绝=v 相+v 牵二.运动的描述1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0Δr/Δt.在大学教材中表述为:v =d r/dt, 表示r 对t 求导数求导数 4.加速度a =a n +a τ。
a n :法向加速度,速度方向的改变率,且a n =v 2/ρ,ρ叫做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ: 切向加速度,速度大小的改变率。
a =d v /dt 5.以上是运动学中的基本物理量,以上是运动学中的基本物理量,也就是位移、也就是位移、也就是位移、位移的一阶导数、位移的一阶导数、位移的一阶导数、位移的二阶导数。
位移的二阶导数。
可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。
(a 对t 的导数叫“急动度”。
)6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好三.等加速运动v(t)=v 0+at r(t)=r 0+v 0t+1t+1//2 at 2 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v 0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。
此抛物线为在大炮上方h=v 2/2g 处,以v 0平抛物体的轨迹。
) 练习题:一盏灯挂在离地板高l 2,天花板下面l 1处。
灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。
求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,(认为碎片和天花板的碰撞是完全弹性的,即切即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。
物理竞赛运动学讲座(二)运动的合成与分解、相对运动(慈溪中学叶春)知识点提要:(1)力的独立性原理:(2)运动的独立性原理:(3)力的合成分解:(4)运动的合成分解:A.位移的合成分解 B.速度的合成分解 C.加速度的合成分解参考系的转换:动参考系,静参考系相对运动:绝对运动:牵连运动:(5)位移合成定理:速度合成定理:加速度合成定理:典型例题分析:(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21。
角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。
求解雨滴相对于地的运动。
提示:矢量关系入图答案:83.7m/s(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?提示:V人对梯=n1/t1V梯对地=n/t2V人对地=n/t3V人对地= V人对梯+ V梯对地答案:n=t2t3n1/(t2-t3)t1(3)某人驾船从河岸A 处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min 后到达正对岸下游120m 的C 处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min 恰好到达正对岸的B 处,求河的宽度。
提示:120=V 水*600D=V 船*600答案:200m(4)一船在河的正中航行,河宽l=100m ,流速u=5m/s ,并在距船s=150m 的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?提示:如图船航行答案:1.58m/s同步练习1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。
问汽车两次速度之比21v v 为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)2、模型飞机以相对空气v = 39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。
高中物理竞赛辅导讲义第2篇 运动学【知识梳理】一、匀变速直线运动二、运动的合成与分解运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。
我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。
以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则v 绝对 = v 相对 + v 牵连或 v 甲对乙 = v 甲对丙 + v 丙对乙位移、加速度之间也存在类似关系。
三、物系相关速度正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。
以下三个结论在实际解题中十分有用。
1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。
2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。
3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。
四、抛体运动: 1.平抛运动。
2.斜抛运动。
五、圆周运动: 1.匀速圆周运动。
2.变速圆周运动:线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a tτ∆→∆=∆,方向指向切线方向。
六、一般的曲线运动一般的曲线运动可以分为很多小段,每小段都可以看做圆周运动的一部分。
在分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理。
对于一般的曲线运动,向心加速度为2n v a ρ=,ρ为点所在曲线处的曲率半径。
七、刚体的平动和绕定轴的转动1.刚体所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。
刚体的基本运动包括刚体的平动和刚体绕定轴的转动。
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (5)一、高中物理奥赛概况 (5)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (13)第二部分牛顿运动定律 (15)第一讲牛顿三定律 (16)第二讲牛顿定律的应用 (16)第二讲配套例题选讲 (24)第三部分运动学 (24)第一讲基本知识介绍 (24)第二讲运动的合成与分解、相对运动 (26)第四部分曲线运动万有引力 (28)第一讲基本知识介绍 (28)第二讲重要模型与专题 (30)第三讲典型例题解析 (38)第五部分动量和能量 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (53)第六部分振动和波 (53)第一讲基本知识介绍 (53)第二讲重要模型与专题 (57)第三讲典型例题解析 (66)第七部分热学 (66)一、分子动理论 (66)二、热现象和基本热力学定律 (68)三、理想气体 (70)四、相变 (77)五、固体和液体 (80)第八部分静电场 (81)第一讲基本知识介绍 (81)第二讲重要模型与专题 (84)第九部分稳恒电流 (95)第一讲基本知识介绍 (95)第二讲重要模型和专题 (98)第十部分磁场 (107)第一讲基本知识介绍 (107)第二讲典型例题解析 (111)第十一部分电磁感应 (117)第一讲、基本定律 (117)第二讲感生电动势 (120)第三讲自感、互感及其它 (124)第十二部分量子论 (127)第一节黑体辐射 (127)第二节光电效应 (130)第三节波粒二象性 (136)第四节测不准关系 (140)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。
物理竞赛运动学讲座(二)(慈溪中学叶春)运动的合成与分解、相对运动(一)知识点点拨(1)力的独立性原理:各分力作用互不影响,单独起作用。
(2)运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律(3)力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等(4)运动的合成分解:矢量合成分解的规律方法适用A.位移的合成分解 B.速度的合成分解 C.加速度的合成分解参考系的转换:动参考系,静参考系相对运动:动点相对于动参考系的运动绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动牵连运动:动参考系相对于静参考系的运动(5)位移合成定理:S A对地=S A对B+S B对地速度合成定理:V绝对=V相对+V牵连加速度合成定理:a绝对=a相对+a牵连(二)典型例题(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21。
角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。
求解雨滴相对于地的运动。
提示:矢量关系入图答案:83.7m/s(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?提示:V人对梯=n1/t1V梯对地=n/t2V人对地=n/t3V人对地= V人对梯+ V梯对地答案:n=t2t3n1/(t2-t3)t1(3)某人驾船从河岸A 处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min 后到达正对岸下游120m 的C 处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min 恰好到达正对岸的B 处,求河的宽度。
提示:120=V 水*600D=V 船*600答案:200m(4)一船在河的正中航行,河宽l=100m ,流速u=5m/s ,并在距船s=150m 的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?提示:如图船航行答案:1.58m/s(三)同步练习1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。
第二讲 运动学§2.1质点运动学的基本概念2.1.1、参照物和参照系要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。
为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。
通常选用直角坐标系O –xyz ,有时也采用极坐标系。
平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。
2.1.2、位矢 位移和路程在直角坐标系中,质点的位置可用三个坐标x ,y ,z 表示,当质点运动时,它的坐标是时间的函数 x=X (t ) y=Y (t ) z=Z (t ) 这就是质点的运动方程。
质点的位置也可用从坐标原点O 指向质点P (x 、y 、z )的有向线段r来表示。
如图2-1-1所示, r 也是描述质点在空间中位置的物理量。
r 的长度为质点到原点之间的距离,r 的方向由余弦αcos 、βcos 、γcos 决定,它们之间满足1cos cos cos 222=++γβα当质点运动时,其位矢的大小和方向也随时间而变,可表示为r =r (t)。
在直角坐标系中,设分别为i 、j 、k 沿方向x 、y 、z 和单位矢量,则r 可表示为k t z j t y i t x t r )()()()(++=位矢r 与坐标原点的选择有关。
研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点),,(1111z y x P运动到另一点),,(2222z y x P ,相应的位矢由r 1变到r 2,其改变量为r ∆k z z j y y i x x r r r )()()(12121212-+-+-=-=∆称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。
它描写在一定时间内质点位置变动的大小和方向。
它与坐标原点的选择无关。
物理竞赛辅导第二讲
例1:超音速飞机沿直线OB 以速度v 匀速飞行。
一观察者从A 点注视飞机起飞,∠BOA=θ且在观察时间内可认为不变。
如图1-1-3,飞机的辐射器先后发出强度一小一大两个脉冲短声波,脉冲时间间隔为τ,如图1-1-4.在什么条件下观察者能先记录下强度大的脉冲,再记录下强度小的脉冲?已知OA=L ,声速为V 。
例2:用5条边长为L 的正方形薄板做成一个小屋,置于地面上,并且屋顶面互相垂直,如图3所示。
已知水滴沿屋顶从A 点流到B 点所需的时间为从B 点滴落地面所需时间的2倍。
假定水滴从A 点以初速度零开始流下,试求水滴从A 流到地面所需的时间。
例3:一只蜗牛从地面开始沿竖直电杆上爬,它上爬的速度υ与它离地面的高度h 之间满足的关系
是,其中常数L=20cm ,0υ=2cm/s 。
求它上爬20cm 所用的时间。
例4:将一小球以30m/s 的初速度竖直上抛,以后每隔1s 抛出一球(空气阻力可以忽略不计),空中各球不会发生碰撞,问:
(1)最多能有几个小球同时在空中?
(2)设在t=0时第一个小球被抛出,那么它应该在哪些时刻和以后抛出的小球在空中相遇而过?(g 取10m/2s )
h l lv v +=0
例5:1-2所示,在倾角为 的光滑斜面顶端有一质点A 自静止开始自由下滑,与此同时在斜面底部有一质点B 自静止开始以匀加速度为a 背离斜面在光滑的水平面上运动,设A 下滑到斜面底部能沿着光滑的小弯曲部分平稳地朝B 追去,试求为使A 不能追上B ,a 的取值范围。
例6:一客车从静止开始以加速度a 做匀加速直线运动的同时,在车尾的后面离车头为sm 远的地方有一乘客正以某一速度在追赶这列客车,已知司机从车头前面的反光镜内能看到离车头的最远距离为0s m ,保留时间在0t s 内才能看清楚,这样才能制动客车使车停下来,该乘客要想乘坐上这列客车,其追赶客车匀速运动的速度所满足的表达式是什么?若a=1m/2s ,s=30m ,0s =20m ,0t =1s ,求v 的最小值。
例7:蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离为反比,当蚂蚁爬到距巢中心1L =1m 的A 点处时,速度是1v =2cm/s ,试问,蚂蚁从A 点爬到距巢中心2L =2m 的B 点所需的时间为多少?
例8:已知一质点做变加速直线运动,初速度为0v ,其加速度随位移线性减小的关系即加速过程中加速度与位移之间的关系满足条件a=0a -ks ,式中a 为任一位置处的加速度,s 为位移,0a 、k 为常数,求当位移为0s 时质点的瞬时速度。