13.1必然事件与随机事件
- 格式:pptx
- 大小:259.72 KB
- 文档页数:16
新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。
课题:13.1 确定与不确定教者:唐江峰(兴化市大邹初级中学)课型:新授课需 1 课时教学目标:1、了解不可能事件、必然事件、随机事件的概念;2、能指出某一事件是确定事件(不可能事件、必然事件)还是随机事件。
3、培养学生严谨的数学语言口头表达能力,观察、推理能力,运用所学的知识解释生活中简单问题的能力。
4、让学生学会与他人合作交流,敢于发表自己的观点。
重点:区分确定事件(不可能事件、必然事件)与不确定事件。
难点:区分确定事件(不可能事件、必然事件)与不确定事件。
教学方法:讲练结合、探索交流教具:多媒体、扑克牌2副、转盘2只(自制)教学过程:一、情境引入:2009年、2010年春节联欢晚会捧红了魔术师了刘谦,他最擅长近景魔术,其中最拿手的是扑克魔术。
现在老师也以扑克牌为道具和你们玩个游戏:这儿有两副扑克(事先将奇数和偶数的牌分开),现在老师任意拿出一副牌,其中J、Q、K分别为11、12、13,你们只能选奇数或偶数中的一种,如果抽中了就算你们赢。
让你们讨论一下,你们想选什么数。
(生讨论,回答,师选一副他肯定输的牌)游戏结束。
问:你为什么总是输?二、探究新知:1、在某次国际乒乓球单打比赛中,中国选手甲和乙进入最后决赛,那么,该项比赛的(1)冠军属于中国吗?(2)冠军属于外国选手吗?(3)冠军属于中国选手甲吗?2、概念:必然事件——在一定条件下,有些事情我们事先能肯定它一定会发生,这样的事情是必然事件。
不可能事件——在一定条件下,有些事情我们事先能肯定它一定不会发生,这样的事情是不可能事件。
随机事件——在一定条件下,生活中也有很多事情我们事先无法确定它会不会发生,这样的事情是随机事件。
必然事件和不可能事件都是确定事件三、巩固新知:1、在课本本节开头的三个问题中,(1)冠军属于中国是必然事件;(2)冠军属于外国是不可能事件;(3)冠军属于中国选手甲是随机事件。
2、将上述问题的条件改为:甲、乙两名外国选手进入最后决赛,则(1)冠军属于中国是不可能事件;(2)冠军属于外国是必然事件;(3)冠军属于外国选手甲是随机事件。
北京课改版数学八年级上册13.1《必然事件与随机事件》教学设计一. 教材分析《必然事件与随机事件》是北京课改版数学八年级上册13.1章节的内容,本节内容是在学生学习了概率基础知识的基础上进行的,通过本节内容的学习,使学生能够理解必然事件、不可能事件和随机事件的概念,能对一些简单的事件进行分类,并能够运用必然事件、不可能事件和随机事件的概念解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经学习了概率的基础知识,对一些简单的事件已经有了初步的认识,但对其概念的理解还不够深入,同时,学生对于实际问题的解决能力还有待提高。
三. 教学目标1.了解必然事件、不可能事件和随机事件的概念。
2.能够对一些简单的事件进行分类。
3.能够运用必然事件、不可能事件和随机事件的概念解决一些实际问题。
四. 教学重难点重点:必然事件、不可能事件和随机事件的概念及分类。
难点:必然事件、不可能事件和随机事件在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。
六. 教学准备1.准备相关的事件案例,用于教学呈现。
2.准备多媒体教学设备,用于展示案例和讲解。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾概率基础知识,为新课的学习做好铺垫。
2.呈现(10分钟)展示准备好的事件案例,让学生初步感知必然事件、不可能事件和随机事件。
3.操练(10分钟)让学生分组讨论,对呈现的事件案例进行分类,并说明分类的依据。
4.巩固(10分钟)讲解必然事件、不可能事件和随机事件的定义,让学生深刻理解这三个概念。
5.拓展(10分钟)让学生举例说明必然事件、不可能事件和随机事件在实际生活中的应用,并进行讲解。
6.小结(5分钟)对本节课的主要内容进行总结,加深学生对必然事件、不可能事件和随机事件的理解。
7.家庭作业(5分钟)布置相关练习题,让学生巩固所学知识。
8.板书(5分钟)总结本节课的板书内容,方便学生复习。
教学过程每个环节所用时间:导入5分钟,呈现10分钟,操练10分钟,巩固10分钟,拓展10分钟,小结5分钟,家庭作业5分钟,板书5分钟。
25.1.1随机事件---必然事件、随机事件、不可能事件一.【知识要点】1.必然事件、随机事件、不可能事件二.【经典例题】1.有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的其中是必然事件的有()A.1个B.2个C.3个D.4个2.下列事件是随机事件的是()A.购买一张福利彩票,中特等奖B.在一个标准大气压下,将水加热到100℃,水沸腾C.奥林匹克运动会上,一名运动员奔跑的速度是30米/秒D.在一个只装着白球和黑球的袋中摸球,摸出一个红球三.【题库】【A】1.下列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上2.“任意打开一本200页的数学书,正好是第36页”,这是__________事件(填“随机”或“必然”).3.下列事件中,是必然事件的是( )A. 任意买一张电影票,座位号是2的倍数B. 13个人中至少有两个人生肖相同C. 车辆随机到达一个路口,遇到红灯D. 明天一定会下雨【B】1.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球至少有一个是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个球是黑球D.摸出的4个球中至少有两个球是白球2.在“抛一枚均匀硬币”的试验中,如果现在没有硬币,则下面各个试验中哪个不能代替( )A.两张扑克,“黑桃”代替“正面”,“红桃”代替“反面”B.两个形状大小完全相同,但一红一白的两个乒乓球C.扔一枚图钉D.人数均等的男生女生,以抽签的方式随机抽取一人3.下列事件中必然发生的事件是()A. 一个图形平移后所得的图形与原来的图形不全等B. 不等式的两边同时乘以一个数,结果仍是不等式C. 200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D. 随意翻到一本书的某页,这页的页码一定是偶数【C】1.“a是实数,|a|<0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【D】。
随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n=为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件 B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。
必然事件与随机事件的概念在概率论中,必然事件和随机事件是两个基本概念,是对事件发生可能性的描述和衡量。
以下将对必然事件和随机事件进行详细的定义和解释。
首先,必然事件指的是在任何一次试验中都一定会发生的事件。
也就是说,无论试验重复多少次,该事件始终发生。
习惯上用英文字母"S" 或"Ω" 表示整个试验的样本空间,那么样本空间中的每一个元素都是一个必然事件。
例如,如果一次抛硬币的试验中,样本空间S 包括两个元素,分别表示硬币正面朝上和硬币反面朝上,那么每一个元素都是必然事件,因为无论抛硬币重复多少次,我们总能确定硬币的朝向。
其次,随机事件指的是在一次试验中可能发生也可能不发生的事件。
这些事件的发生与否取决于随机的因素,无法确定性地预测。
随机事件可以用样本空间S 的子集来表示,并且满足以下条件:1. 子集为空集,即事件不发生,表示为∅,这个称为空事件;2. 子集等于样本空间S,即事件必然发生;3. 子集不为空集,也不等于样本空间,即事件有一定的概率发生。
例如,对于一次抛硬币的试验,事件A 可以表示硬币正面朝上的结果,事件A 的发生与否是随机的,可能发生也可能不发生。
同样,事件B 可以表示硬币反面朝上的结果,事件B 的发生与否也是随机的。
因此,事件A 和事件B 都是随机事件。
此外,必然事件和随机事件之间存在一定的关系。
根据排斥事件和互余事件的概念,对于任何一个随机事件A,必然事件A' (也称为对立事件) 定义为A 不发生的情况。
换句话说,事件A 和事件A' 组成了样本空间S,即A ∪A' = S,A ∩A' = ∅。
例如,在一次抛硬币的试验中,如果事件A 表示硬币正面朝上的结果,那么事件A' 表示硬币反面朝上的结果。
最后,必然事件和随机事件在概率计算中起到了重要的作用。
概率是用来衡量事件发生的可能性的数值,它的取值范围通常是0 到1 之间。
教学过程预设问题:1、什么是必然事件、不可能事件、随机事件2、怎样判断必然事件3、怎样判断随机事件4、必然事件和随机事件的区别?一、创设情境导入新课知识回顾::1.明天降水概率是70%,明天一定会降雨吗?为什么?2.今天是30号,明天一定是1号吗?为什么?阅读书130-131页一、填空题1、必然事件是指.请举一例.2.、不可能事件是指.请举一例3、必然事件和不可能事件统称为4、不确定事件是指,也称. 请举一例.思考:按照事件发生的情况可以进行怎样的分类?由此把事件分为()()⎧⎧⎪⎪⎨⎪⎨⎪⎩⎪⎪⎩一定会发生 ? 事件确定事件事件一定不会发生— 事件不确定事件:不能够确定是否会发生的事件二、巩固练习1、“任意一个实数都有平方根”是 事件2、“2008年将在北京召开奥运会”是 事件.3、如果一件事情发生的机会是99%,则此事件是_____事件三、自探合探看教材131页练习1题2题四、课堂检测选择题1、下列成语所描述的事件是必然事件的是( )A .水中捞月 B.拔苗助长 C .守株待兔 D .瓮中捉鳖2.下列事件是确定事件的是( )A .掷一枚骰子5点朝上B. 买一张电影票,座位号是12排2号C .海南省的平均气温比北京的平均气温高D .两个相等的角一定是对顶角3.下列说法正确的是( )A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也有可能发生4.下面的运算结果,不可能出现的是( )A.两个实数相加,和是负数B .两个实数相乘,积是负数C .一个实数开立方,立方根有两个D .一个实数开平方,平方根有两个5.下列事件是随机事件的是( )A .购买一张彩票,中奖B .奥运会上,百米赛跑的成绩为5秒C .在一个标准大气压下,加热到100℃ ,水沸腾D .掷一枚普通骰子,朝上一面的点数是8解答题1.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中搅拌均匀,请判断下列事件是不确定事件、不可能事件,还是必然事件. (1)从口袋中任意取出1个球,是1个白球.(2)从口袋中任意取出5个球,全是蓝球.(3)从口袋中任意取出5个球,只有蓝球和白球,没有红球.2 、指出下列事件哪些是必然事件?哪些是不可能事件?哪些是不确定事件?5张卡片上各写着2,4,6,8,10中的一个数:(1)从中任抽一张,是奇数;(2)从中任抽一张,是2的倍数;(3)从中任抽一张,是3的倍.五、教师点拨必然事件、不可能事件、随机事件是描述事件专业术语,随机事件的发生往往出乎人的意料,通过学习能客观的看待生活中所发生的情况,学会科学的分析问题。