雷达信号理论与应用-3
- 格式:pdf
- 大小:2.66 MB
- 文档页数:55
自适应阵列天线自适应阵列天线(如图9.3所示)是N 个天线的集合,天线的输出送到加权求和网络,加权值随信号自动调整以减少不需要信号的影响,并增大求和网络输出中所需的信号。
输出信号z 经包络检波并与合适门限α 相比较以发现有用的信号[28][34]~[40]。
自适应阵列天线是前面章节中描述的SLC 系统概念的推广。
我们首先考虑干扰对消及目标增强的基础理论,然后把注意力集中在使用自适应阵列天线来获得超分辨能力,以便有助于ECCM 。
自适应阵列天线的实现与数字波束形成技术有着越来越紧密的联系[41]~[43]。
干扰对消与目标信号增强早在20世纪70年代初期,自适应阵列天线原理就得到非常精确的数学描述[40]。
最佳权矢量的表达式给出基本的结果。
*1ˆS M W-=μ (9.6) 式中,)(T *V V M E =是阵列天线所接收的V (噪声加干扰)的N 维协方差矩阵;S 是N 维矢量,它包含某个方向来的目标信号的采样。
可以看出,式(9.6)和SLC 的方程式(9.3)之间的相似性。
相比于SLC ,自适应阵列天线技术有在消除杂波、箔条和干扰时增强目标信号的能力。
自适应系统以最佳模式分配其自由度(即阵列的每个天线接收的脉冲串)以达到上述目的。
图9.3 自适应阵列方案自适应阵列基本理论的推广包括:(1)目标模型S 未知,而不是在式(9.6)中假设已知的。
(2)除空间滤波外,还采用了多普勒滤波来消除杂波和箔条。
(3)雷达平台如在舰载或机载应用中是移动的。
第9章 电子反干扰(ECCM ) ·359·式(9.6)的最佳滤波的检测概率为[40])/1ln(2,(*1T FA D P Q P S M S -= (9.7)式中,Q (·,·)是Marcum Q 函数,P F A 是预先设定的虚警概率。
可以证明,式(9.6)中的权矢量提供最大的改善因子I f ,它由下式定义:输入端信干功率比输出端信干功率比=f I (9.8) 输入端信干功率比(SNR)I (相对于单个回波脉冲)在天线的输入端测量。
随机过程在雷达信号处理中的应用雷达技术是一种广泛应用于军事和民用领域的技术,而随机过程作为一种数学工具,在雷达信号处理中扮演着重要的角色。
本文将探讨随机过程在雷达信号处理中的应用,并分析其在雷达系统中的重要性。
一、雷达系统概述雷达系统是一种利用无线电波来探测目标,测量其位置和速度的设备。
它由发射器、天线、接收器和信号处理器等部分组成,能够实现目标的探测、跟踪和识别。
雷达系统广泛应用于军事情报收集、天气预报、航空导航等领域。
二、随机过程在雷达信号处理中的作用1. 随机信号建模雷达接收到的信号往往包含各种噪声和干扰,因此需要对信号进行建模。
随机过程能够描述信号的随机特性,例如高斯白噪声、马尔可夫过程等,从而帮助提高信号处理的准确性和可靠性。
2. 信号检测与估计在雷达信号处理中,常常需要对目标信号进行检测和估计。
随机过程理论提供了一种有效的方法来处理信号检测与估计问题,如最大似然估计、贝叶斯估计等,能够帮助提高雷达系统的目标探测性能。
3. 跟踪算法设计雷达系统中的目标跟踪是一个动态过程,需要不断地更新目标位置和速度信息。
随机过程能够提供有效的跟踪算法设计,如卡尔曼滤波、粒子滤波等,能够实现对目标轨迹的准确跟踪。
4. 数据处理与特征提取随机过程在雷达信号处理中还可以用于数据处理与特征提取。
通过对信号进行随机过程分析,可以提取信号的统计特性、频谱特征等信息,为后续的目标识别和分类提供依据。
三、随机过程在雷达系统中的应用实例1. 高斯模型下的雷达信号处理在雷达系统中,常常会遇到高斯噪声的情况,此时可以利用高斯过程来建模信号。
通过高斯过程的分析,可以实现对噪声的消除和信号的增强,提高雷达系统的性能表现。
2. 马尔可夫链在目标跟踪中的应用目标的运动轨迹往往具有一定的时序关系,可以利用马尔可夫链来描述目标的运动过程。
通过马尔可夫链模型,可以实现对目标运动的预测和跟踪,为雷达系统的目标探测提供有效支持。
3. 随机过程在雷达数据处理中的应用雷达系统中的数据处理常常需要对信号进行解调、滤波等处理。
雷达基础理论试题及答案一、单选题(每题2分,共20分)1. 雷达系统的基本组成部分不包括以下哪一项?A. 发射机B. 天线C. 接收机D. 显示器答案:D2. 雷达的工作原理是基于以下哪种物理现象?A. 电磁波的反射B. 电磁波的折射C. 电磁波的衍射D. 电磁波的干涉答案:A3. 下列哪种波不能用于雷达?A. 微波B. 无线电波C. 声波D. 光波答案:C4. 雷达的探测距离主要取决于以下哪个因素?A. 目标的大小B. 雷达发射的功率C. 天气条件D. 以上都是答案:D5. 雷达天线的主要功能是什么?A. 发射电磁波B. 接收电磁波C. 转换电能为电磁能D. 以上都是答案:D6. 雷达的分辨率主要取决于以下哪个参数?A. 波长B. 带宽C. 脉冲宽度D. 以上都是答案:D7. 雷达的多普勒效应可以用于测量目标的什么?A. 速度B. 方向C. 距离D. 以上都不是答案:A8. 雷达的脉冲压缩技术可以提高哪种性能?A. 分辨率B. 探测距离C. 抗干扰能力D. 以上都是答案:A9. 雷达的隐身技术主要是通过以下哪种方式实现的?A. 吸收电磁波B. 反射电磁波C. 散射电磁波D. 以上都是答案:A10. 雷达的干扰技术中,哪种方式是通过发射虚假信号来欺骗雷达?A. 噪声干扰B. 欺骗干扰C. 脉冲干扰D. 以上都不是答案:B二、多选题(每题3分,共15分)1. 雷达的基本工作模式包括以下哪些?A. 搜索模式B. 跟踪模式C. 引导模式D. 干扰模式答案:ABC2. 雷达的天线类型主要有以下哪些?A. 抛物面天线B. 阵列天线C. 相控阵天线D. 螺旋天线答案:ABC3. 雷达的信号处理技术包括以下哪些?A. 脉冲压缩B. 频率捷变C. 多普勒滤波D. 目标识别答案:ABCD4. 雷达的抗干扰措施包括以下哪些?A. 频率捷变B. 功率控制C. 信号编码D. 空间滤波答案:ABCD5. 雷达的目标识别技术包括以下哪些?A. 形状识别B. 速度识别C. 频率识别D. 模式识别答案:ABD三、判断题(每题1分,共10分)1. 雷达的发射功率越大,其探测距离就越远。
雷达基本理论与基本原理一、雷达的基本理论1、雷达工作的基本过程发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。
向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。
2、雷达工作的基本原理一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。
目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。
如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。
该频率的漂移与目标相对于雷达的速度成正比,根据2rd v f λ=,即可得到目标的速度。
3、雷达的主要性能参数和技术参数 雷达的主要性能参数 雷达的探测范围雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。
测量目标参数的精确度和误差精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。
分辨力指雷达对两个相邻目标的分辨能力。
可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。
距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:min ()2c R τ∆=。
因此,脉宽越小,距离分辨力越好数据率雷达对整个威力范围完成一次探测所需时间的倒数。
抗干扰能力指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。
雷达可靠性分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。
体积和重量体积和重量决定于雷达的任务要求、所用的器件和材料。
功耗及展开时间功耗指雷达的电源消耗总功率。
展开时间指雷达在机动中的架设和撤收时间。
雷达信号测量原理
雷达信号的测量原理主要基于电磁波的发射、反射和接收。
雷达通过天线发射一束电磁波,这些电磁波在遇到目标物后会发生反射。
反射回来的电磁波会被雷达接收并处理,从而获取目标物的位置、速度、形状等信息。
具体来说,雷达信号的测量原理可以分为以下几个步骤:
1. 发射:雷达系统通过天线发射一束电磁波,通常使用微波波段的频率。
发射功率和频率根据应用环境和目标物体的要求进行选择。
2. 脉冲方式:雷达系统通常使用脉冲方式发射电磁波,即以一定时间间隔连续发送短时间的高功率电磁波脉冲。
脉冲的宽度和重复周期根据应用需求进行设置。
3. 接收:发射出去的电磁波遇到目标物后发生反射,其中一部分反射能量会返回雷达装置,被雷达接收。
4. 信号处理:雷达系统对接收到的信号进行处理,提取出有用的信息,如目标物的距离、速度、方位角等。
5. 显示:处理后的信号通过显示设备呈现出来,提供给操作人员使用。
以上就是雷达信号的测量原理,这个过程涉及到很多复杂的物理和工程问题,需要多个领域的专业知识和技术。
雷达脉冲压缩信号基本理论第二章 雷达脉冲压缩信号基本理论在介绍脉冲压缩之前,首先要了解关于雷达信号处理的基本基本理论,为研究雷达信号的脉冲压缩技术奠定理论基础。
2.1雷达信号处理基本理论简介 匹配滤波匹配滤波(matched filtering )是最佳滤波的一种。
当输入信号具有某一特殊波形时,其输出达到最大。
在形式上,一个匹配滤波器由以按时间反序排列的输入信号构成。
且滤波器的振幅特性与信号的振幅谱一致。
因此,对信号的匹配滤波相当于对信号进行自相关运算。
配滤波器是一种非常重要的滤波器,广泛应用与通信、雷达等系统中。
现假设一雷达输入信号为()x t ,其中已知的雷达信号为()s t ,噪声信号为()n t 。
那么有()()()x t s t n t =+(2.1)其中雷达信号()s t 的频谱表达式和能量表达式分别可以用式2.2和2.3表示。
()()exp(2)S f s t j ft dtπ∝-∝=⋅-⎰ (2.2)2|()|E S f df∝-∝=⎰(2.3)假设匹配滤波器的冲激响应为h(t),那么滤波器的输出响应为:()()()s n y t y t y t =+(2.4)其中滤波器对()s t 的响应函数()s y t 的表达式为:()()()exp(2)s y t H f S f j ft dfπ∝-∝=⎰(2.5)再假设滤波器的输出信号成分在0t 时刻会得到一个峰值,那么输出信号的峰值功率为:200()|()()exp(2)|s y t H f S f j ft df π∝-∝=⎰(2.6)此外,噪声的平均功率为:22()|()|2n Ny t H f df∝-∝=⎰(2.7)因此可以得到信噪比:2202022000|()()exp(2)||()||()|2|()|/2|()|2s n H f S f j ft df S f df y t ESNR y t N N N H f df π∝∝-∝-∝∝-∝==≤=⎰⎰⎰(2.8)当式2.8满足信噪比最大值的时候,则有:*0()()exp(2)H f KS f j ft π=-(2.9)转换为时域,则有*0()()h t Ks t t =-(2.10)从上面的理论推导可以看到,当输出信噪比为最大值的时候,滤波器的传递函数与输入信号的频谱函数满足特定的关系,式2.10就反映了这个关系。