常微分方程的差分方法
- 格式:ppt
- 大小:632.01 KB
- 文档页数:54
常微分方程有限差分
常微分方程是描述自然界中许多现象的数学模型,它们通常用
于描述变化的速率和趋势。
而有限差分则是一种数值方法,用于对
微分方程进行离散化处理,从而可以通过计算机进行求解。
将这两
者结合起来,可以得到一种强大的工具,用于求解复杂的微分方程
问题。
在常微分方程有限差分的方法中,我们首先将微分方程转化为
差分方程,然后利用数值方法进行求解。
这种方法的优势在于,它
可以处理一些无法通过解析方法求解的复杂微分方程,同时也可以
通过计算机进行高效的数值求解。
常微分方程有限差分的方法在科学和工程领域有着广泛的应用。
例如,在物理学中,它可以用于描述物体的运动和变形;在工程领域,它可以用于分析电路的动态行为和控制系统的稳定性;在生物
学中,它可以用于描述生物种群的增长和衰减。
通过常微分方程有
限差分的方法,我们可以更好地理解和预测这些现象的变化规律。
总之,常微分方程有限差分是一种强大的数值方法,它为我们
解决复杂的微分方程问题提供了新的途径。
通过这种方法,我们可
以更深入地理解自然界中的各种现象,并且为科学和工程领域的发展提供了重要的数学工具。
毕业论文题目抛物型方程的差分解法学院数学科学学院专业信息与计算科学班级计算0802学生王丹丹学号20080901045指导教师王宣欣二〇一二年五月二十五日摘要偏微分方程的数值解法在数值分析中占有重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题【1】。
近三十多年来,数值解法的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。
本文的研究主要集中在依赖于时间的问题,借助于简单的常系数扩散方程,介绍抛物型方程的差分解法。
本文以基本概念和基本方法为主,同时结合算例实现算法。
第一部分介绍偏微分方程及差分解法的基本概念,引入本文的研究对象——常系数扩散方程:22,,0 u ua x R tt x∂∂=∈>∂∂第二部分介绍上述方程的几种差分格式及每种格式的相容性、收敛性与稳定性。
第三部分通过算例检验每种差分格式的可行性。
关键词:偏微分方程;抛物型;差分格式;收敛性;稳定性;算例ABSTRACTThe numerical solution of partial differential equation holds an important role in numerical analysis .Many problems of compution in the field of science and techology include the numerical solution of partial differential equation. For more than 30 years, the theory and method of the numerical computation made a great development and its applications in various fields of science and technology are more and more widely. This paper focuses on the problems based on time. I will use object-constant diffusion equation to introduces the finite difference method of parabolic equation. This paper mainly focus on the basic concept ,basic method and simple numerical example.The first part of this paper introduces partial differential equations and basic concepts of finite difference method.I will introduce the object-constant diffusion equation for thefirst time.22,,0 u ua x R tt x∂∂=∈>∂∂The second part of this paper introduces several difference schemes of the above equation and their compatibility ,convergence and stability.The third part tests the accuracy of each scheme.Key words:partial differential equation;parabolic;difference scheme;convergence;stability;application目录摘要 (I)ABSTRACT (II)目录 (III)1前言 (1)2基本概念和定理 (2)2.1抛物型方程的基本概念 (2)2.1.1偏微分方程的定义 (2)2.1.2抛物型方程的定义 (2)2.1.3初边值条件的定义 (3)2.2 差分方法的基本思想 (3)2.3网格剖分 (4)2.4截断误差的基本概念 (5)2.5相容性的基本概念 (7)2.6收敛性的基本概念 (7)2.7稳定性的基本概念 (8)2.7.1判断稳定性的直接法 (8)2.7.2判断稳定性的Fourier方法 (9)3常系数扩散方程的差分格式及其相容性、收敛性和稳定性分析 (12)3.1向前差分格式 (12)3.2向后差分格式 (13)3.3 Crank-Nicolson格式 (14)3.4 Richardson格式 (16)4差分解法的应用 (18)结论 (25)参考文献..................................................... .................. .. (26)致谢 (27)附录 (28)1前言微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程[2]。