第六章 裂纹扩展
- 格式:ppt
- 大小:135.00 KB
- 文档页数:14
第六章 断裂韧性基础第一节Griffith 断裂理论第二节裂纹扩展的能量判据能量释放率G 裂纹扩展单位面积时,系统所提供的弹性能量U A∂∂是裂纹扩展的动力,此力叫裂纹扩展力或称为裂纹扩展时的能量释放率。
以1G 表示(1表示Ⅰ型裂纹扩展)。
G 与外加应力,试样尺寸和裂纹有关,而裂纹扩展的阻力为2()s p γγ+,随1,a G σ↑→↑→增大到某一临界值时,1G 能克服裂纹失稳扩展阻力,则裂纹使失稳扩展而断裂,这个1G 的临界值它为1c G ,称为断裂韧性。
表示材料组织裂纹试稳扩展时单位面积所消耗的能量。
平面应力下: 2211,C cC a aG G E E σπσπ==平面应变下: 222211(1)(1),C c C a v v a G G E Eσπσπ--== G 的单位12MPa m -⋅。
第三节 裂纹顶端的应力场可看成线弹性体12005001000s s MPa MPa σσ⎧⎪=⎪⎨=-⎪⎪⎩玻璃,陶瓷高强钢的横截面中强钢低温下的中低强度钢6.3.1三种断裂类型⎧⎪⎨⎪⎩张开型断裂滑开型断裂撕开型断裂最危险Ⅰ型6.3.2Ⅰ型裂纹顶端的应力场无限大平板中心含有一个长为2a 的穿透裂纹,受力如图欧文(G 。
R 。
Irwin )等人对Ⅰ型裂纹尖端附近的应力应变进行了分析,提出应力应变场的数字解析式,由此引出了应变场强度因子1K的概念。
并建立了裂纹失稳扩展的K判据和断裂韧性1CK。
若用极坐标表达式表达,则有近似数字表达式:当裂尖某点不确定,即,rθ一定后,应力大小均由1K决定———盈利强度因子1K故1K大小反映了裂纹尖端应力场的强弱,取决于应力大小,裂纹尺寸。
6.3.3 应力场强度因子及判据将上面应力场方程写成:()ij ijfσθ=其中1K Y=Y:形状系数。
对无限大板Y=1。
1K:12MPa m-⋅111,,a KK aa Kσσσ⎧↑→↑⎪⇒⎨↑→↑⎪⎩不变是一个决定于和的复合物理量不变当此参量达到临界时,在裂纹尖端足够大的范围内,应力便会达到断裂强度,裂纹便沿着X轴失稳扩展,从而使材料断裂。
裂纹扩展物理模型引言:裂纹扩展是材料科学中一个重要的研究方向,其研究对象是材料中的裂纹在外加载荷下的扩展行为。
裂纹扩展物理模型的建立是理解和预测裂纹扩展行为的关键。
本文将介绍裂纹扩展物理模型的基本原理和应用,包括线弹性力学模型、能量释放率模型和断裂力学模型。
一、线弹性力学模型:线弹性力学模型是裂纹扩展物理模型的基础,在裂纹扩展的早期阶段起到了重要作用。
该模型假设材料是线弹性的,即满足胡克定律,裂纹周围的应力场可以用弹性势能表示。
在这个模型中,裂纹尖端的应力场集中在一个奇异点附近,通常表示为K字段。
K字段可以通过应力分析或数值模拟得到,它是一个衡量裂纹尖端应力强度的关键参数。
线弹性力学模型的优点是简洁易用,但它忽略了材料的非线性和塑性行为,只适用于小裂纹扩展和低应力条件下的情况。
二、能量释放率模型:能量释放率模型是裂纹扩展物理模型的另一个重要方向。
它基于能量守恒原理,通过计算裂纹扩展过程中释放出的能量来描述裂纹扩展行为。
能量释放率模型的基本原理是假设在裂纹尖端附近存在一个小区域,称为裂纹尖端区,该区域的能量密度是一个关键参数。
裂纹扩展的条件是能量释放率达到某个临界值,即裂纹扩展阈值。
能量释放率模型的优点是能够考虑材料的非弹性行为,适用于大裂纹扩展和高应力条件下的情况。
然而,能量释放率模型需要对裂纹尖端区进行精确的能量计算,这在实际应用中可能比较困难。
三、断裂力学模型:断裂力学模型是裂纹扩展物理模型的进一步发展。
它综合考虑了线弹性力学模型和能量释放率模型的优点,并引入了断裂韧性的概念。
断裂韧性是一个材料的固有性质,可以通过断裂试验来测量。
断裂力学模型的基本原理是,在裂纹尖端附近的应力场中引入一个韧性区域,该区域的尺寸与材料的断裂韧性有关。
裂纹扩展的条件是韧性区域内的应力达到材料的断裂强度。
断裂力学模型的优点是综合考虑了材料的弹性、塑性和断裂行为,适用于各种裂纹扩展情况。
然而,断裂力学模型的建立需要对材料的力学性能进行精确的测量和模拟,这对实验技术和数值计算的要求较高。
裂纹扩展的三种基本形式
裂纹扩展是指材料中存在的裂缝在外部作用力的作用下逐渐变长,最终导致断裂的过程。
其三种基本形式如下:
1. 延伸型裂纹扩展:该形式的裂纹扩展是指裂纹从其起始点沿着材料表面或内部延伸,并逐渐变长。
这种裂纹扩展的主要原因是拉伸或剪切力的作用,使裂纹不断扩展并延伸到材料的其他部分。
2. 分离型裂纹扩展:该形式的裂纹扩展是指裂纹在材料中形成分离面,随着外部作用力的增加,裂纹沿着分离面延伸,最终导致材料断裂。
这种裂纹扩展通常出现在脆性材料中,如玻璃、陶瓷等。
3. 疲劳型裂纹扩展:该形式的裂纹扩展是指裂纹在材料中由于反复的应力加载和卸载而逐渐扩展。
这种裂纹扩展通常出现在金属材料中,如铝、钢等。
在疲劳型裂纹扩展过程中,裂纹的扩展速度取决于应力水平、周期和材料的疲劳寿命。
《ABAQUS6.9版本XFEM(扩展有限元)例子的详细图解step by step》帖子的问题汇总已做出解答部分1Damage Stabilization则不收敛。
Damage Stabilization以就不需要Damage Stabilizationhomogeous2、Material模块中的操作的“3.赋予材料取向”时看不到“在part Plate中创建的4all bottom top和fixZall bottom, top和fixZ,个人感觉后三个集合只是面或集合过滤3、集合bdisp是只包含db dbbdisp这个集合只包含dbbdsipP24、关于参考点的问题bottom在x1bdisp的运动一致。
因为在x方向上的载荷是施加在点bdisp点上。
束直接将底部的x③个人认为加这个参考点的作用是为了以后输出加载点的位移和反力用的。
就是那个历史输出请求2.参考点跟底面是一起运动的。
之所以定义这么一个参考点是为了后面场输出变量用的④那个参load的边界条件里面不移。
之所以定义这么一个参考点是为了后面场输出变量用的。
1方向上的载荷直接加载bottomCAE手册。
5、以上我们主要讨论的是Benchmark手册中的例题1.19.1。
咱们能否再讨论一下例题1.19.21.192-4,这样比较好理解。
裂纹长了1.19.2-3上可以看出6、xfemXFEM册中的例题2initiation and propagation of a crack along an arbitrary, mesh-independent, solution-dependent path7、我也一直在用XFEM知wylxl2001Cohesive Element的时候好像遇到过。
XFEM89xfemDrucker prager abaqus扩展有限元的关键是不是就是设置xfem以及interaction是maxps Damage, Traction separation laws 材料模型而改用像混凝土损伤塑性模型Drucker prager模型等是不是就无法实现其扩xfem10、这个abaqus扩展有限元的关键是不是就是设置xfem以及interaction以及求解控制的相关设XFEM的是maxps2个损伤Initiation个是分开位移Maxpe11initialSet CRITERION=DUCTILE to specify a damage initiation criterion based on the ductile failure strain.Set CRITERION=FLD to specify a damage initiation criterion based on a forming limit diagram.Set CRITERION=FLSD to specify a damage initiation criterion based on a forming limit stress diagram.Set CRITERION=HASHIN to specify damage initiation criteria based on the Hashin analysis.Set CRITERION=HYSTERESIS ENERGY to specify damage initiation criteria based on the inelastic hysteresis energy dissipated per stabilized cycle in a low-cyclefatigue analysis.Set CRITERION=JOHNSON COOK to specify a damage initiation criterion based on the Johnson-Cook failure strain.Set CRITERION=MAXE to specify a damage initiation criterion based on the maximumnominal strain for cohesive elements.Set CRITERION=MAXS to specify a damage initiation criterion based on the maximumnominal stress criterion for cohesive elements.Set CRITERION=MAXPE to specify a damage initiation criterion based on the maximum principal strain for enriched elements.Set CRITERION=MAXPS to specify a damage initiation criterion based on the maximum principal stress criterion for enriched elements.Set CRITERION=MK to specify a damage initiation criterion based on a Marciniak-Kuczynski analysis.Set CRITERION=MSFLD to specify a damage initiation criterion based on theMüschenborn and Sonne forming limit diagram.Set CRITERION=QUADE to specify a damage initiation based on the quadratic separation-interaction criterion for cohesive elements.Set CRITERION=QUADS to specify a damage initiation based on the quadratic traction-interaction criterion for cohesive elements.Set CRITERION=SHEAR to specify a damage initiation criterion based on the shear failure strain.xfem的initial损伤定义吧?xfem11、看了这个帖c3d4C3D8crackcrack后abaqus还有其他方法模拟我上述的想Cohesive element或者surface-based cohesive12XFEM不考虑奇异性。
⾦属学及热处理课后习题答案解析第六章第六章⾦属及合⾦的塑性变形和断裂2)求出屈服载荷下的取向因⼦,作出取向因⼦和屈服应⼒的关系曲线,说明取向因⼦对屈服应⼒的影响。
答:1)需临界临界分切应⼒的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截⾯积需要注意的是:在拉伸试验时,滑移⾯受⼤⼩相等,⽅向相反的⼀对轴向⼒的作⽤。
当载荷与法线夹⾓φ为钝⾓时,则按φ的补⾓做余弦计算。
2)c osφcosλ称作取向因⼦,由表中σs和cosφcosλ的数值可以看出,随着取向因⼦的增⼤,屈服应⼒逐渐减⼩。
cosφcosλ的最⼤值是φ、λ均为45度时,数值为0.5,此时σs为最⼩值,⾦属最易发⽣滑移,这种取向称为软取向。
当外⼒与滑移⾯平⾏(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则⽆论τk数值如何,σs均为⽆穷⼤,表⽰晶体在此情况下根本⽆法滑移,这种取向称为硬取向。
6-2 画出铜晶体的⼀个晶胞,在晶胞上指出:1)发⽣滑移的⼀个滑移⾯2)在这⼀晶⾯上发⽣滑移的⼀个⽅向3)滑移⾯上的原⼦密度与{001}等其他晶⾯相⽐有何差别4)沿滑移⽅向的原⼦间距与其他⽅向有何差别。
答:解答此题⾸先要知道铜在室温时的晶体结构是⾯⼼⽴⽅。
1)发⽣滑移的滑移⾯通常是晶体的密排⾯,也就是原⼦密度最⼤的晶⾯。
在⾯⼼⽴⽅晶格中的密排⾯是{111}晶⾯。
2)发⽣滑移的滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度最⼤的晶向,在{111}晶⾯中的密排⽅向<110>晶向。
3){111}晶⾯的原⼦密度为原⼦密度最⼤的晶⾯,其值为2.3/a2,{001}晶⾯的原⼦密度为1.5/a24)滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度⾼于其他晶向,原⼦排列紧密,原⼦间距⼩于其他晶向,其值为1.414/a。
6-3 假定有⼀铜单晶体,其表⾯恰好平⾏于晶体的(001)晶⾯,若在[001]晶向施加应⼒,使该晶体在所有可能的滑移⾯上滑移,并在上述晶⾯上产⽣相应的滑移线,试预计在表⾯上可能看到的滑移线形貌。