第21讲 等腰三角形与直角三角形
- 格式:doc
- 大小:152.50 KB
- 文档页数:4
中考总复习之等腰三角形与直角三角形中考的脚步越来越近啦,同学们是不是都在紧张地进行总复习呢?今天咱们就来好好聊聊等腰三角形和直角三角形这两个重要的“小伙伴”。
先来说说等腰三角形吧。
还记得有一次我在课堂上做实验,用三根长度不一样的小木棍,想拼成一个等腰三角形。
结果呢,怎么拼都拼不出来,同学们在下面笑得前仰后合。
这让我深刻地意识到,等腰三角形的两条腰长度必须相等,不然可就闹笑话啦!等腰三角形有很多有趣的性质。
比如说,它的两个底角相等。
这就像一对双胞胎,长得一模一样。
而且等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,这叫“三线合一”,可厉害啦!再来讲讲直角三角形。
有一次我去公园散步,看到一个滑梯,突然就想到了直角三角形。
这个滑梯的滑道和地面就构成了一个直角三角形。
直角三角形有个特别重要的定理,那就是勾股定理。
就是说两条直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长分别为 a 和 b,斜边长为 c,那么 a²+ b²= c²。
这个定理在解决很多几何问题的时候,就像是一把万能钥匙,一用就灵。
直角三角形还有很多特殊的性质。
比如 30°角所对的直角边等于斜边的一半。
这在计算边长的时候特别有用。
在中考中,等腰三角形和直角三角形经常会一起出现,给我们出难题。
比如说,给你一个等腰三角形,其中一个角是直角,让你求其他角的度数或者边长。
这时候可别慌,咱们就一步步来,先根据等腰三角形的性质确定角的关系,再结合直角三角形的定理来计算边长。
还有一种常见的题型是让你证明一个三角形是等腰直角三角形。
这就需要我们综合运用两个三角形的知识,先证明它是等腰三角形,再证明它是直角三角形。
复习这部分知识的时候,同学们一定要多做练习题,把定理和性质都熟练掌握。
遇到难题不要怕,多想想我们讲过的例子和方法,就一定能攻克难关。
最后,希望同学们都能在中考中取得好成绩,加油!就像我们成功拼出一个完美的等腰三角形或者准确算出直角三角形的边长一样,战胜中考的难题!。
中考讲义:等腰三角形与直角三角形,解直角三角形第一部分:等腰三角形一.基础知识1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.2.等边三角形的定义:有三条边相等的三角形叫做等边三角形.3.等腰三角形的性质:(1)两腰相等.(2)两底角相等.(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合.(4)是轴对称图形,底边的垂直平分线是它的对称轴.线段的垂直平分线:性质定理:线段的垂直平分线上的点到线段的两个端点距离相等判定定理:与线段的两个端点距离相等的点在这条线段的垂直平分线上,线段的垂直平分线可以看做是和线段两个端点距离相等的所有点的集合.4.等腰三角形的判定:(1)有两条边相等的三角形是等腰三角形.(2)有两个角相等的三角形是等腰三角形.5.等边三角形的性质:三边都相等,三个角都相等,每一个角都等于60.6.等边三角形的判定:(1)三条边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60的等腰三角形是等边三角形.7.等腰直角三角形的性质:顶角等于90,底角等于45,两直角边相等.等腰直角三角形的判定:(1)顶角为90的等腰三角形.(2)底角为45的等腰三角形.8.等腰三角形的两大特性。
9.构造等腰三角形(两圆一线找等腰)。
第二部分:直角三角形基础知识1、勾股定理和它的逆定理:勾股定理:若 一 个直角三角形的两直角边为a 、b 斜边为c 则a 、b 、c 满足 逆定理:若一个三角形的三边a 、b 、c 满足 则这个三角形是直角三角形【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合 2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据, 3、勾股数,列举常见的勾股数三组 、 、 】 2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质: ⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它所对 边是 边的一半 3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:⑴定义法有一个角是 的三角形是直角三角形 ⑵有两个角 的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的 这个三角形是直角三角形【名师提醒:直角三角形的有关性质在四边形、相似图形、圆中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】第三部分,解直角三角形基础知识锐角三角函数的概念1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦, 记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值三角函数30°45°60°sinα 21 22 23cos α 23 2221tan α33134、各锐角三角函数之间的关系 (1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA ∙tan(90°—A)=1 (4)弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);( 解直角三角形1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
等腰三角形与直角三角形讲义一、等腰三角形(一)等腰三角形的定义有两边相等的三角形叫做等腰三角形。
相等的两条边称为腰,另一条边称为底边。
两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
(二)等腰三角形的性质1、等腰三角形的两个底角相等(简写成“等边对等角”)。
2、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
例如,在等腰三角形 ABC 中,AB = AC,如果 AD 是顶角∠BAC 的平分线,那么 AD 也是底边 BC 上的中线和高;如果 AD 是底边 BC 上的中线,那么 AD 也是顶角∠BAC 的平分线和底边 BC 上的高;如果 AD 是底边 BC 上的高,那么 AD 也是顶角∠BAC 的平分线和底边BC 上的中线。
(三)等腰三角形的判定1、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
2、有两条边相等的三角形是等腰三角形。
(四)等腰三角形的周长和面积1、周长:等腰三角形的周长=腰长×2 +底边长度。
2、面积:等腰三角形的面积=底×高÷2。
(五)等腰三角形的常见题型1、利用等腰三角形的性质求角度。
比如,已知等腰三角形的一个底角为 70°,求顶角的度数。
因为等腰三角形的两个底角相等,所以另一个底角也是 70°,根据三角形内角和为 180°,顶角的度数为 180° 70°×2 = 40°。
2、利用等腰三角形的判定证明三角形是等腰三角形。
给定一个三角形,已知其中两个角相等,证明它是等腰三角形。
3、利用等腰三角形的周长和面积解决实际问题。
例如,要制作一个等腰三角形的招牌,已知腰长为 5 米,底边长为6 米,求制作这个招牌需要多少材料(即求周长),以及招牌的面积是多少。
二、直角三角形(一)直角三角形的定义有一个角为 90°的三角形,叫做直角三角形。
第21讲 等腰三角形与直角三角形(特殊的三角形)参考答案二、【课前热身---经典链接】(磨刀不误砍柴功!!!) 得分:1. 2 2. PD=PC (答案不唯一) 3. 15 4. D 5. C三、【知识要点梳理—知识链接】1.等腰三角形(1)两边(2)性质:①两腰; ②底角(即等边对等角);③重合;④轴对称 垂直平分线(3)判定:①两边;②两个角2.等边三角形(1)三边(2)性质:①三边;②三个角,600;③轴对称,3(3)判定:①三边;②三个角;③6003.直角三角形(1)性质:①互余;②一半 (2)判定:①直角;②中线4. 勾股定理及其逆定理(1)平方和 平方 (2)平方和 平方五、【中考链接一湛江真题】快乐一练! 得分___________1. C2. ()12-n3. C 4.C六、【中考演练二----2010-2012年中考题】得分___________ 1.360 2.30 3.B 4.C5.证明:∵AE 平分∠DAC , ∴∠1=∠2,∵AE ∥BC , ∴∠1=∠B ,∠2=∠C ,∴∠B=∠C ,∴AB=AC .6.解:在Rt △ABC 中,∵AC=8m ,BC=6m , ∴AB=10m ,(1)当AB=AD 时,CD=6m ,△ABD 的周长为32m ;(2)当AB=BD 时,CD=4m ,AD=54m ,△ABD 的周长是(20+54)m ;(3)当DA=DB 时,设AD=x ,则CD=x-6,则()22286+-=x x ,∴325=x ,∴△ABD 的周长是380m , 答:扩建后的等腰三角形花圃的周长是32m 或(20+54)m 或380m . 七、【中考演练三---备考核心演练】 得分___________1.B 2.C 3.D 4.B 5. 3 6.4 7.18 8.3第5题9.解:仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.答:四边形ABCD 的面积是36.。
等腰三角形与直角三角形讲义1.△ABC中,AB=AC,∠A=70°,则∠B=_55°_____2.等腰三角形一底角的外角为105°,那么它的顶角为_30_____度3.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( C )A.30° B.150° C.30°或150° D.120°【知识梳理】1、等腰三角形及其性质(1)有两条边相等的三角形,叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(2)性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.2、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.一般地,两条直角边相等的直角三角形叫做等腰直角三角形.等腰直角三角形的两个底角相等,都等于45°.4、直角三角形的性质:直角三角形ABC可以表示为Rt△ABC.(1)直角三角形中,如果两条直角边为a、b,斜边为 c,斜边上的高为h,那么它们存在这样的关系:或.(2)定理:直角三角形的两个锐角互余.推理过程:在△ABC中,∵∠C=90°,∴∠A+∠B=90°(或∠A=90°-∠B,∠B=90°-∠A).说明:这一定理应用的前提是Rt△,已知一个锐角,求另一个角.反过来,有两个角互余的三角形是直角三角形,可以作为判定三角形是直角三角形的方法.(3)定理:在直角三角形中,如果一个锐角为30°,那么它所对的直角边等于斜边的一半.推理格式:∵在△ABC中,∠C=90°,∠A=30°,∴BC=AB.(4)定理:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.推理格式:∵在△ABC中,∠C=90°,BC=AB,∴∠A=30°.【典型例题】知识点一:等腰三角形考点一:等腰三角形的判断与证明例1、如图,△ABC中,D、E分别是AC,AB上的点,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠ODC;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形).(2)选择第(1)题中的一种情形,证明△ABC是等腰三角形.分析:这是一道开放型的题目,考虑分析各种情形,从中选出适合题意的情形.解:(1)①③,①④,②③,②④.(2)选择①④来证明结论成立.已知:∠EBO=∠DCO,OB=OC.求证:△ABC是等腰三角形.证明:∵OB=OC,∴∠OBC=∠OCB.又∵∠EBO=∠DCO,∴∠ABC=∠ACB,∴AB=AC.∴△ABC为等腰三角形.例2、如图,在△ABC中,AB=AC,O为△ABC内一点,且OB=OC.求证:AO⊥BC.证明:延长AO交BC于D.在△ABO与△ACO中,∴△ABO≌△ACO,∴∠BAO=∠CAO,即∠BAD=∠CAD,∴AO⊥BC.考点二:利用等腰三角形求度数例3、如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE.求∠A的度数.分析:本题中没有给出一个角的度数,而要求∠A的度数,必然是运用三角形内角和定理,其解题思路是设某一个角的度数为x,其他各角都能用x的代数式表示,列出代数方程求解.解:设∠A=x.∵AD=DE=EB∴∠DEA=∠A=x,∠EBD=∠EDB.又∵∠DEA=∠EBD+∠EDB,∴∠EBD=∠EDB=.∴BDC=∠A+∠ABD=.∵BD=BC,AB=AC,∴∠BDC=∠BCD=∠ABC=.在△ABC中,∠A+∠ABC+∠ACB=180°,即,∴x=45°,即∠A=45°.例4、已知:AD和BE是△ABC的高,H是AD与BE或是AD、EB延长线的交点,BH=AC.求∠ABC的度数.(1)当H是AD与BE的交点时,∵BE、AD是△ABC的高,∴∠4=∠3=∠5=90°,∴∠1+∠C=∠2+∠C=90°,∴∠2=∠1.又∵BH=AC,∴△BHD≌△ACD,∴BD=AD,∴∠DBA=∠6.又∵∠6+∠DBA=90°,∴∠DBA=45°,即∠ABC=45°.(2)当H是AD、EB延长线的交点时,∵BE、AD是△ABC的高,∴∠3=∠2=90°,∠4=90°,∴∠1+∠H=90°,∴∠CAD+∠H=90°,∴∠1=∠CAD.又∵BH=AC,∴△DBH≌△DAC,∴DB=DA,∴∠5=∠6.又∵∠5+∠6=90°,∴∠6=45°,∴∠ABC=180°-45°=135°.故∠ABC的度数为45°或135°.考点三:几种辅助线作法:证明线段的和、差、倍、分问题时,常采用“截长”、“补短”等方法.例6、如图,已知AD是△ABC的角平分线,∠B=2∠C,求证:AC=AB+BD.(你可以用不同的方法证明吗)方法一:(截长法)在AC上截取AE=AB,连接DE.因为AD平分∠BAC,所以∠2=∠1.又因为AD=AD,所以△BAD≌△EAD(SAS).所以BD=ED.所以∠3=∠B=2∠C.因为∠3=∠C+∠4,所以2∠C=∠C+∠4,所以∠C=∠4,所以DE=CE.所以CE=BD.所以AC=AE+EC=AB+DB.方法二:(补短法)如图,延长AB到E,使BE=BD,连接DE,所以∠E=∠1.因为∠2=∠E+∠1=2∠E,又因为∠2=2∠C(已知),所以∠C=∠E.因为∠4=∠3,AD=AD,所以△ADC≌△ADE(AAS),所以AC=AE.因为AE=AB+BD,所以AC=AB+BD.例7、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF⊥BC.方法一:解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.方法二:接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.方法三:小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.方法四:小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.方法五:小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.方法六:大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.例8、如图,在△ABC中,AB=2AC,AD平分∠BAC,AD=BD.求证:CD⊥AC.证明:取AB的中点E,连结DE.∵AD=BD,∴DE⊥AB,∴∠3=90°.又∵AB=2AC,AB=2AE,∴AE=AC.又∵∠1=∠2,AD=AD,∴△AED≌△ACD,∴∠3=∠ACD,∴∠ACD=90°,∴CD⊥AC.例9、如图,△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,连结DE交BC于F.求证:DF=EF.过E作EG//AB交BC的延长线于G,则∠G=∠B.又∵AB=AC,∴∠B=∠1.又∵∠1=∠ECG,∴∠G=∠ECG,∴CE=GE.又∵BD=CE,∴BD=GE.又∵∠BFD=∠GFE,∴△BDF≌△GEF,∴DF=EF.知识点二:直角三角形考点一:30°所对的直角边等于斜边的一半例1(将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.32cm D.62cm思路分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.点评:此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边.例2.如图,∠ACB = ∠ADB = 90°,AC = AD,E是AB上的一点。
第21讲 等腰三角形与直角三角形(特殊的三角形)一、【课标考点解读】1.了解等腰三角形的有关概念,掌握等腰三角形的性质和判定;了解等边三角形的概念并掌握等边三角形的性质和判定。
2.了解真角三角形的概念,掌握直角三角形的性质和判定,勾股定理及其逆定理。
二、【课前热身---经典链接】(磨刀不误砍柴功!!!) 得分:1.(2012•广州)如图,在等边三角形ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 .2.(2008•肇庆)如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,写出图中一对相等的线段(答案不唯一,只需写出一对即可)____________________ .3.(2011•茂名)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= _____度.4.(2007•中山)到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点5.(2012•肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A .16B .18C .20D .16或20三、【知识要点梳理—知识链接】1.等腰三角形(1)定义:_____相等的三角形叫做等腰三角形。
(2)性质:①等腰三角形的_______相等;②等腰三角形的_______相等(即等边对等角);③等腰三角形的顶角平分线、底边上的中线、底边的高互相_____(即三线合一);④等腰三角形是________图形,有一条对称轴,对称轴是底边的_______________。
(3)判定:①有_______相等的三角形是等腰三角形;②有________相等的三角形是等腰三角形。
2.等边三角形(1)定义:_________相等的三角形叫做等边三角形。
(2)性质:①等边三角形的_______相等;②等边三角形的_______相等,都等于______;等边三角形的“三线合一”;③等边三角形是________图形,有_____条对称轴,对称轴是边的垂直平分线。
(3)判定:①有_______相等的三角形是等边三角形;②有_______相等的三角形是等边三角形;③有一个角是_________的等腰三角形是等边三角形。
3.直角三角形(1)性质:①直角三角形的两锐角_____;②直角三角形中,斜边上的中线等于斜边的______。
(2)判定:①有一个角是_____的三角形是直角三角形;②有一边上的______是这边的一半的三角形是直角三角形。
③勾股定理逆定理4. 勾股定理及其逆定理(1)勾股定理:直角三角形中,两直角边的________等于斜边的______。
第1题 第2题 第3题(2)勾股定理逆定理:若一个三角形中有两边的________等于第三边的______,则这个三角形是直角三角形(第三边所对的角是直角)。
四、【中考名题---考点链接】考点 等腰三角形的性质和判定例1. (2012•海南)如图,在△ABC 中,∠B 与∠C 的平分线交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .若AB=5,AC=4,则△ADE 的周长是_______【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB 与△EOC 是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.答案为:9.考点 直角三角形的性质和判定例2. (2012•河北)如图,AB 、CD 相交于点O ,AC ⊥CD 于点C ,若∠BOD=38°,则∠A=____ .【点评】本题考查了直角三角形的性质及对顶角的性质,解题的关键是知道直角三角形两锐角互余.答案为52°。
考点 勾股定理及其逆定理例3. (2012•黔东南州)如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A .()0,2B .()0,15-C .()0,110-D .()0,5 【点评】此题考查了勾股定理及坐标轴的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.答案选C .五、【中考链接一湛江真题】快乐一练! 得分___________1.(2010•湛江)下列四组线段中,可以构成直角三角形的是( )A .1,2,3B .2,3,4C .3,4,5D .4,5,62.(2012•湛江).如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF 、再以对角线AE 为边作笫三个正方形AEGH ,如此下去….若正方形ABCD 的边长记为a 1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,…,a n ,则a n = .3.(2009•湛江)如图,在等边ABC △中,D E 、分别是AB AC 、的中点,3DE =,则ABC △的周长是( )A .6B .9C .18D .244.(2008•湛江) 如图2所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是( )A.2008 B.2009 C.2010 D.2011图2C AB ┅┅AB C D E 第3题图第2题六、【中考演练二----2010-2012年中考题】 得分___________1.(2012•黄冈) 如图,在△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线交AC 于点E ,垂足为点D ,连接BE ,则∠EBC 的度数为 ____.2.(2011•梅州)如图,在 Rt △ABC 中,∠B=90°.ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,已知∠BAE=30°,则∠C 的度数为 ______°3.(2011•茂名)如图,两条笔直的公路l1、l2相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A 、B 、D ,已知AB=BC=CD=DA=5公里,村庄C 到公路l 1的距离为4公里,则村庄C 到公路l 2的距离是( )A .3公里B .4公里C .5公里D .6公里4.(2012•深圳)如图,已知:∠MON=30°,点A 1、A 2 、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .645.(2012•益阳)如图,已知AE ∥BC ,AE 平分∠DAC . 求证:AB=AC .6.(2011•广安)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形.求扩建后的等腰三角形花圃的周长.第1题第2题 第3题第4题第5题七、【中考演练三---备考核心演练】 得分___________1.等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边为( )A .7cmB .3cmC .7cm 或3cmD .8cm2.已知等腰三角形的一个外角等于100°,则它的顶角是( )A .80°B .20°C .80°或20°D .不能确定3.等边△ABC 中,边长AB=4,则△ABC 的面积为( )A .14B .8C .38D .344.(2012•威海)如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=90°AB=AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°5.(2009•湛江).如图,在梯形ABCD 中,90511AB CD A B CD AB ∠+∠===∥,°,,,点M N 、分别为AB CD 、的中点,则线段MN = .6.如图,AB ∥CD ,O 为∠BAC ,∠ACD 平分线的交点,OE ⊥AC 交AC 于E ,且OE=2,则AB 与CD 之间的距离等于_______7.有一个内角为60°的等腰三角形,腰长为6cm ,那么这个三角形的周长为_______ cm .8.在△ABC 中,已知∠B=30°,AB=6cm ,则BC 边上的高为_________ cm .9.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若∠A=40度.(1)则∠NMB 的度数为______度;(2)如果将(1)中∠A 的度数改为70°,其余条件不变,则∠NMB 的度数为_______度;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的∠A 改为钝角,你对这个规律性的认识是否需要加以修改10.如图所示,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,∠A=90°,求四边形ABCD 的面积.第9题第4题第6题B M 第5题。