高一数学解斜三角形
- 格式:doc
- 大小:48.00 KB
- 文档页数:4
下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
正弦、余弦定理 解斜三角形建构知识网络1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A +(2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c a A bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。
正弦、余弦定理可用向量方法证明。
要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
章节能力测试题(一)(测试范围:解三角形)一.填空题(本大题共14小题,每小题5分,共70分)1.三角形ABC 中,如果A=60º,C=45º,且a=则c= 。
1.3。
提示:由正弦定理得sin 45sin sin 603a C c A ===。
2. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。
2.12。
提示:B A sin sin =1sin cos sin 22A A A =,故B A sin sin 的最大值是12。
3.在△ABC 中,若=++=A c bc b a 则,222_________。
3. 1200.提示:2221cos 22b c a A bc +-==-,A=1200.4.在△ABC 中,若====a C B b 则,135,30,200_________。
4.26-。
提示:A=1800-300-1350=150.sin150=sin(450-300.由正弦定理得 0sin 2sin15sin sin 30b A a B ===5. 三角形的两边分别为5和3,它们夹角的余弦是方程57602x x --=的根,则三角形的另一边长为 .提示:∵三角形两边夹角为方程57602x x --=的根,不妨假设该角为θ,则易解得得53c o s -=θ或cos θ=2(舍去),∴据余弦定理可得13252cos 3523522==⨯⨯⨯-+=θ三角形的另一边长。
6.在△ABC 中,已知a=5 2 , c=10, A=30°, 则∠B= 。
6.B=105º或B=15º。
提示:由正弦定理可得sinC=sin2c A a == ,∴C=45º或者C=135º,∴B=105º或者B=15º。
7.科学家发现,两颗恒星A与B分别与地球相距5亿光年与2亿光年,且从地球上观测,它们的张角为60º,则这两颗恒星之间的距离为 亿光年。
高一数学解斜三角形试题答案及解析1.在△ABC中,角A、B、C所对的对边长分别为、、,、、成等比数列,且,则的值为()A. B. C. D.【答案】B.【解析】由于、、成等比数列,,由正弦定理得. 由于,,由余弦定理推论得.【考点】余弦定理的应用.2.在△ABC中,a=4,b=4,角A=30°,则角B等于 ().A.30°B.30°或150°C.60°D.60°或120°【解析】D由正弦定理得,由于,,符合大边对大角.【考点】正弦定理的应用.3.已知中,的对边分别为且.(1)判断△的形状,并求的取值范围;(2)如图,三角形的顶点分别在上运动,,若直线直线,且相交于点,求间距离的取值范围.【答案】(1)为直角三角形,;(2).【解析】(1)法一,根据数量积的运算法则及平面向量的线性运算化简得到,从而可确定,为直角三角形;法二:用数量积的定义,将数量积的问题转化为三角形的边角关系,进而由余弦定理化简得到,从而可确定为直角,为直角三角形;(2)先引入,并设,根据三角函数的定义得到,进而得到,利用三角函数的图像与性质即可得到的取值范围,从而可确定两点间的距离的取值范围.试题解析:(1)法一:因为所以即所以,所以所以是以为直角的直角三角形法二:因为所以是以为直角的直角三角形即(2)不仿设,所以所以.【考点】1.平面向量的数量积;2.余弦定理;3.三角函数的应用.4.边长为2的等边三角形,求它水平放置时的直观图的面积 .【答案】【解析】等边三角形ABC的边长为2,故面积为,而原图和直观图面积之间的关系故直观图△A/B/C/的面积为.【考点】斜二测画法,直观图5.座落于我市红梅公园边的天宁宝塔堪称中华之最,也堪称佛塔世界之最.如图,已知天宁宝塔AB高度为150米,某大楼CD高度为90米,从大楼CD顶部C看天宁宝塔AB的张角,求天宁宝塔AB与大楼CD底部之间的距离BD.【答案】180米.【解析】本题难点在于选择函数解析式模型,是用余弦定理解三角形,还是取直角三角形表示边.如用余弦定理解三角形,则得,解此方程成为难点;如构造直角三角形就会减少运算量,即作CE AB于E,构造直角三角形CBE和直角三角形CAE,利用两角和的正切公式得到关于BD的方程,解此方程的运算量要少得多.将一个已知角分为两个角的和,这种思维不常见,须多加注意,深刻体会.试题解析:解:如图作CE AB于E.因为AB∥CD,AB=150,CD=90,所以BE=90,AE=60.设CE=,,则. 2分在和中,, 4分因为,所以. 8分化简得,解得或(舍去). 10分答:天宁宝塔AB与大楼CD底部之间的距离为180米. 12分【考点】两角和的正切公式,函数与方程.6.已知为的内角,且,则 .【答案】或【解析】依题意可知,且在单调递增,所以当时,,当时,,所以,即,综上可知或.【考点】1.三角形内角的取值范围;2.正弦函数的单调性.7.已知的周长为,且,(Ⅰ)求边AB的长;(Ⅱ)若的面积为,求角C的度数。
第一章 解斜三角形1.1 正弦定理、余弦定理例1在ABC ∆中,已知,30,10,50===A c a 则=∠B ( )A.105°B.60°C.15°D.105°或15° 变式1-1在ABC ∆中,若045,25,50===A b a 则=∠B .变式1-2(06)在△ABC 中,已知BC =12,A =60°,B =45°,则AC = .变式1-3在等腰三角形ABC 中,已知2:1sin :sin =B A ,底边10=BC ,则ABC ∆的周长是 .例2在ABC ∆中,已知三边c b a 、、满足ab c b a c b a 3)()(=-+⋅++, 则=∠C ( ) A.15° B.30° C.45° D.60°变式2-1若平行四边形两条邻边的长度分别是4cm 和4cm ,它们的夹角是45°,则这个平行四边形的两条对角线的长度分别为 . 变式2-2(06)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c , A =3π,a =3,b =1,则c = ( ) A .1 B.2 C.3—1 D.3变式2-3边长为5、7、8的三角形的最大角与最小角之和为( )A.90°B.120°C.135°D.150°例3在ABC ∆中,若2cos2cos2cosC c B b A a ==,则ABC ∆的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形 变式3-1在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么ABC ∆的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形变式3-2在ABC ∆中,A 为锐角,2lg sin lg 1lg lg -==⎪⎭⎫⎝⎛+A c b ,则ABC ∆的形状是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形例4在ABC ∆中,若,2,2,300===∠AC AB B 则ABC ∆的面积是 . 变式4-1(06)在△ABC 中,已知5,8==AC BC ,三角形面积为12,则=C 2cos . 变式4-2在ABC ∆中,07050sin 2,10sin 4=∠==C b a ,则ABC ∆的面积为( )A.81 B.41 C.21D.1 例5(06)在ABC △中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC △,求最小边的边长.变式5-1(06)已知ABC △1,且sin sin A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.变式5-2(06全国Ⅰ)设锐角三角形ABC 的角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =5c =,求b .6(06)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若25=⋅,且9a b +=,求c .变式6-1(09理)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满cos25A =,3AB AC ⋅=.(Ⅰ)求ABC ∆的面积;(Ⅱ)若6b c +=,求a 的值.变式6-2(09理)在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,5A b ==.(Ⅰ)求sin C 的值;(Ⅱ)求ABC ∆的面积.变式6-3(09理)在∆ABC 中,31sin ,2==-B A C π.(Ⅰ)求A sin 的值;(Ⅱ)设,求∆ABC 的面积.变式6-4(09理)△ABC 中,,,A B C 所对的边分别为,,a b c ,sin sin tan cos cos A BC A B+=+,sin()cos B A C -=.(Ⅰ)求,A C ;(Ⅱ)若3ABC S ∆=,求,a c .1.2 正弦定理、余弦定理的应用例1(09理)如图,A,B,C,D 都在同一个与水平面垂直的平面,B ,D 为两岛上的两座灯塔的塔顶。
高一数学解斜三角形试题答案及解析1.△ABC中,若,则△ABC的形状为.【答案】等腰三角形【解析】由余弦定理可知,代入中得,因此答案是等腰三角形.【考点】余弦定理及其变形应用2..中,角的对边分别为,且,则的面积为 .【答案】【解析】,.【考点】三角形的面积公式.3.在中,若,则△ABC的面积是= ( ).A.9B.9C.18D.18【答案】A【解析】在中,,是等腰三角形,,由三角形的面积公式得.考点:解三角形.4.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.5.已知为的内角,且,则 .【答案】或【解析】依题意可知,且在单调递增,所以当时,,当时,,所以,即,综上可知或.【考点】1.三角形内角的取值范围;2.正弦函数的单调性.6.在中,若,,则的最大值为__________.【答案】【解析】设,最大值为【考点】解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只需将三角函数化简为的形式7.在△ABC中,已知cos A=.(1)求sin2-cos(B+C)的值;(2)若△ABC的面积为4,AB=2,求BC的长.【答案】(1).(2) BC=.【解析】(1)sin2-cos(B+C)=+cos A=+=. 5分(2)在△ABC中,∵cos A=,∴sin A=.=4,得bcsin A=4,得bc=10.∵c=AB=2,∴b=5.由S△ABC∴BC2=a2=b2+c2-2bccos A=52+22-2×5×2×=17.∴BC=. 10分【考点】本题考查了三角恒等变换及余弦定理的运用点评:已知三角形的三个独立条件(不含已知三个角的情况),应用两定理,可以解三角形8.在中,如果,那么= .【答案】【解析】因为,所以令a=2k,b=3k,c=4k,由余弦定理得,==。
高中数学解三角形解题方法高中数学解三角形的开放型题型的解法研究也是很重要的只有解决了解三角形的难题,数学成绩才会整体上升,高考成绩也会有所提高。
下面是小编为大家整理的关于高中数学解三角形解题方法,希望对您有所帮助。
欢迎大家阅读参考学习!1高中数学解三角形解题方法解三角形,要求记忆三角函数公式,不仅要熟练记忆,牢牢掌握解三角形的解题技巧,还要能够将已经掌握的知识灵活运用。
开放型题型更是需要结合题目要求开拓新思路,以一个全新的思考方式去思考解决问题,这也就是开放型题型的新颖之处,也是开放型题型的难点。
一般开放型题型在题目阅读中增加了难度,相应来说,解题的难度就会减少,那么只要能够读懂题目,了解题目要求,理清楚解题的思路就可以轻松的完成三角函数题目的解答。
但是对于高中生来说对于解三角形函数的了解已经很深入了,只是高中生一般就掌握了解三角形的基本解题思路,对照相应的题型进行练习解答,这么一来,高中生也就变成了解题机器,只会一种思路,一种思考方式,不会变通,如果在这时候遇到了开放型题型,就会完全傻了眼。
这时候,在大形势趋向于开放型题型,高中生只能在自己掌握的知识基础上,多练练开放型题型,运用自己了解的三角函数知识根据开放型题型的题目要求去解答问题。
高中生对于三角函数的知识已经掌握的很熟练了,只是对于这些开放型题型就是缺少练习,多找一些开放型题型来练习,增加高中生对开放型题型题目的理解程度,因为题目要求难度增加,对应的解题难度就会减少,这样一来只要能够多练习开放型题型,熟练掌握解题思路,能够读懂题目要求,就会很简单的解答这方面的问题。
2高中数学解三角形的技巧正弦定理●教学目标。
知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
高一数学解斜三角形试题答案及解析1.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.2.已知ABC中,,, 则= .【答案】【解析】根据题意,由于ABC中,,,则有正弦定理可知,由于b<a,则可知B<A,因此可知=,故答案为。
【考点】解三角形点评:主要是考查了解三角形的运用,属于基础题。
3.在△ABC中,BC=a,AC=b,a,b是方程的两个根,且。
求:⑴角C的度数;⑵ AB的长度。
【答案】(1)C=120°;(2)【解析】(1)C=120°(2)由题设:【考点】三角形内角和定理,诱导公式,两角和的三角函数,余弦定理的应用。
点评:中档题,本题综合性较强,三角形问题,一般要注意应用三角形内角和定理,适时的变角。
在确定三角形边长的过程中,有时须正弦定理与余弦定理综合应用。
4.在中,内角的对边分别为.已知.(Ⅰ)求的值;(Ⅱ)若为钝角,,求的取值范围.【答案】(Ⅰ)3(Ⅱ)【解析】(1)由正玄定理,设所以又:A+B+C=因此(2)由,得c=3a由题意【考点】解三角形点评:解三角形时常借助于正弦定理,余弦定理,实现边与角的互相转化5.如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【答案】米【解析】先根据三角形内角和求得∠BAC,进而根据正弦定理求得BC,最后在在Rt△BCD中,根据CD=BC•sin∠CBD求得答案。
解:在△ABC中,∵∠ABC=30°,∠ACB=15°,∴∠BAC=135°.又AB=20,由正弦定理,得BC= +1).∴在Rt△BCD中,CD=BC•sin∠CBD=10(3+).故山高为10(3+)m.【考点】解三角形点评:本题主要考查了解三角形的实际应用.考查了考生综合运用所学知识的能力6.在△ABC中,A、B、C的对边分别为a、b、c, 且( 1 )求;( 2 )若,的面积为,求的值.【答案】(1). ( 2 ) =7。
课 题:解斜三角形应用举例(2)教学目的: 进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 教学重点:12解斜三角形的方法教学难点:实际问题向数学问题转化思路的确定授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学方法: 自学辅导法在上一节学习的基础上,引导学生根据上节所总结的转化方法及解三角形的类型,自己尝试求解应用题在解题的关键环节,教师应给予及时的启发或点拨,以真正使学生解题能力得到锻炼教学过程: 一、复习引入:上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决二、讲解范例:例1如图,是曲柄连杆机的示意图当曲柄CB 0绕C 点旋转时,通过连杆AB 的传递,活塞作直线往复运动当曲柄在CB 0位置时,曲柄和连杆成一条直线,连杆的端点A 在A O 处设连杆AB 长为340 mm,曲柄CB 长为85 mm,曲柄自CB 0按顺时针方向旋转80°,求活塞移动的距离(即连杆的端点A 移动的距离A 0A )(精确到1 mm)分析:如图所示,因为A 0A =A O C -AC ,又知A O C =AB +BC =340+85=425,所以只要求出AC 的长,问题就解决了ABC 中,已知两边和其中一边的对角,可由正弦定理求出AC解:在△ABC 中,由正弦定理可得sin A =.2462.034080sin 85sin =︒⨯=AB C BC 因为BC <AB ,所以A 为锐角,得A =14°15′∴B =18O °-(A +C )=18O °-(14°15′+8O °)=85°45′ 由正弦定理,可得AC =.3.3449848.05485sin 340sin sin mm C B AB ='︒⨯= 因此,A O A =A O C -AC =(AB +BC )-AC =(34O +85)-3443=8O 7≈81(mm) 答:活塞移动的距离约为81mm 评述:注意在运用正弦定理求角时应根据三角形的有关性质具体确定角的范围要求学生注意解题步骤的总结:用正弦定理求A −−−→−内角和定理求B −−−→−正弦定理求AC →求A O A 例2 如图,为了测量河对岸A 、B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =α,∠BCD =β,∠BDC =γ,∠ADC =s,试求AB 的长分析:如图所示:对于AB 求解,可以在△ABC 中或者是△ABD 中求解,若在△ABC 中,由∠ACB =α-β,故需求出AC 、BC ,再利用余弦定理求解而AC 可在△ACD 内利用正弦定理求解,BC 可在△BCD 内由正弦定理求解 解:在△ACD 中,已知CD =a ,∠ACD =α,∠ADC =δ,由正弦定理得AC =[])sin(sin )(180sin sin δαδδαδ+=+-︒a a 在△BCD 中,由正弦定理得BC =[])sin(sin )(180sin sin γββγββ+=+-︒a a在△ABC 中,已经求得AC 和BC ,又因为∠ACB =α-β,所以用余弦定理,就可以求得AB =)cos(222βα-⋅⋅-+BC AC BC AC评述:(1)要求学生熟练掌握正、余弦定理的应用(2)注意体会例2求解过程在实际当中的应用例3 据气象台预报,距S 岛300 km的A 处有一台风中心形成,并以每小时30 km的速度向北偏西30°的方向移动,在距台风中心270 km以内的地区将受到台风的影响问:S 岛是否受其影响?若受到影响,从现在起经过多少小时S 岛开始受到台风的影响?持续时间多久?说明理由分析:设B 为台风中心,则B 为AB 边上动点,SB 也随之变化S 岛是否受台风影响可转化为SB ≤27O 这一不等式是否有解的判断,则需表示SB ,可设台风中心经过t小时到达B 点,则在△ABS 中,由余弦定理可求SB 解:设台风中心经过t小时到达B 点,由题意,∠SAB =9O °-3O °=6O °在△SAB 中,SA =3OO ,AB =3O t,∠SAB =6O °,由余弦定理得:SB 2=SA 2+AB 2-2SA ·AB ·cos SAB=3OO 2+(3O t)2-2·3OO ·3O t cos6O °若S 岛受到台风影响,则应满足条件|SB |≤27O 即SB 2≤27O 2化简整理得 t2-1O t+19≤O解之得 5-6≤t≤5+6所以从现在起,经过5-6小时S 岛开始受到影响,(5+6)小时后影响结束 持续时间:(5+6)-(5-6)=26小时答:S 岛受到台风影响,从现在起,经过(5-6)小时,台风开始影响S 岛,且持续时间为26小时例 4 假定自动卸货汽车装有一车货物,货物与车箱的底部的滑动摩擦系数为0,油泵顶点B 与车箱支点A 之间的距离为195米,AB 与水平线之间的夹角为6︒20’,AC 长为1米,求货物开始下滑时BC 的长解:设车箱倾斜角为θ,货物重量为mgθμμcos mg N f ==当θθμsin cos mg mg ≤即θμtan ≤时货物下滑当θμtan = 时, θtan 3.0=, '42163.0arctan==θ∠BAC='0223'206'4216 =+在△ABC 中: BAC AC AB AC AB BC ∠⋅-+=cos 2222787.10'0223cos 40.195.1240.195.122=⨯⨯⨯-+= ,28.3=BC三、课堂练习: 1B ,周围3.8海里有暗礁,军舰由西向东航行到A ,望见岛在北75°东,航行8海里到C ,望见岛B 在北6O °东,若此舰不改变航向继续前进,有无触礁危险? 答案:不会触礁 2AB 外有一点C ,∠ABC =6O °,AB =2OO km,汽车以8O km/h速度由A 向B 行驶,同时摩托车以5O 公里的时速由B 向C 行驶,问运动开始几小时后,两车的距离最小答案:约13小时四、小结 通过本节学习,要求大家进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力五、课后作业:1.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶4,那么cos C 的值为( )A .-41 B .41 C .- 32 D .32 分析:先用正弦定理:C c B b A a sin sin sin ==可求出a ∶b ∶c =3∶2∶4, 所以可设a =3k ,b =2k ,c =4k ,再用余弦定理:kk k k k C ab c b a C 2321649cos 2cos 222222⋅⋅-+=-+=可得即.41cos -=C 答案:A2.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度解:如图所示,∠SMN =15°+30°=45°,∠SNM =180°-45°-30°=105° ∴∠NSM=180°-45°-105°=30°)26(2021)26(10)26(10105sin 2030sin -=÷--=∴︒=︒MN MN 由正弦定理 答:货轮的速度为)26(20-里/小时3.△ABC 中,a+b =10,而cos C 是方程2x 2-3x -2=0的一个根,求△ABC 周长的最小值分析:由余弦定理可得C ab b a c cos 2222-+=,然后运用函数思想加以处理解:02322=--x x 21,221-==∴x x 又∵cos C 是方程2x 2-3x -2=0的一个根 21c o s-=∴C 由余弦定理可得ab b a ab b a c -+=-⋅-+=2222)()21(2则75)5()10(10022+-=--=a a a c当a=5时,c 最小且c =3575= 35103555+=++=++c b a 此时∴△ABC 周长的最小值为10+4.在湖面上高h 米处,测得云的仰角为α,而湖中云之影(即云在湖中的像)的俯角为β,试证:云高为)sin()sin(αββα-+⋅h 米 分析:因湖而相当于一平面镜,故云C 与它在湖中之影D 关于湖面对称,设云高为x =CM ,则从△ADE ,可建立含x 的方程,解出x 即可解:如图所示,设湖面上高h 米处为A ,测得云的仰角为α,而C 在湖中的像D 的俯角为β,CD 与湖面交于M ,过A 的水平线交CD 于E ,设云高CM =x 则CE =x -h ,DE =x+hh x h x h x h x AE h x AE ⋅-+=+=-∴+=-=αβαββαβαtan tan tan tan cot )(cot )(cot )(cot )(解得且 h ⋅-+=αβαβαβαβαβαβc o sc o s s i n c o s c o s s i n c o s c o s s i n c o s c o s s i n )()s i n ()s i n (米αββα-+⋅=h 5.在某定点A 测得一船初始位置B 在A 的北偏西α1处,十分钟后船在A 正北,又过十分钟后船到达A 的北偏东α2处若船的航向与程度都不变,船向为北偏东θ,求θ的大小(α1>α2)分析:根据题意画示意图,将求航向问题转化为解三角形求角问题解:如图所示,在△ABC 中,由正弦定理可得:)sin(sin ,)](sin[sin 1111αθααθπα+=+-=AC BC AC BC 即 ① 在△ACD 中,由正弦定理可得:)sin(sin ,)sin(sin 2222αθααθα-=-=AC CD AC CD 即 ② 根据题意,有BC=CD ∴由①、②得:)sin(sin )sin(sin 2211αθααθα-=+ 即 )sin(sin )sin(sin 1221αθααθα+⋅=-⋅)sin(sin sin 2tan sin sin cos 2)sin(sin )sin cos cos (sin sin )sin cos cos (sin sin 21212121112221ααααθααθααθαθαθααθαθα-==-+=-∴则即)sin(sin sin 2arctan 2121ααααθ-=所以(α1>α2) 6.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c =2b ,A -C =3π,求sin B 的值解:∵a+c =2b ,∴sin A +sin C =2sin B 由和差化积公式得2cos 2sin 42cos 2sin 2B B C A C A =-+ 3,02cos 2sin π=->=+C A B C A 432s i n 2s i n 223==∴B B 即 20π<<B 4132sin 12cos 2=-=∴B B 8394134322cos 2sin 2sin =⨯⨯==B B B 于是 六、板书设计(略)七、课后记:。
高一数学下册知识点梳理第4章 幂函数、指数函数和对数函数1、内容要目:幂函数的概念及其在(0,)+∞内的单调性。
对数;反函数;指数函数、对数函数及其性质;简单的指数方程和对数方程。
2、基本要求:掌握幂函数的定义域及其性质,特别是在(0,)+∞内的单调性。
会画幂函数的图像,熟练地将指数式与对数式互化。
对数积、商、幂的运算性质,掌握换底公式并会灵活运用,掌握函数与它的反函数在定义域、值域以及图像上的关系。
指数函数与对数函数互为反函数的结论,会解简单的指数方程和对数方程。
3、重难点:幂函数性质的探求及其运用。
对数的意义与运算性质,反函数的概念,指数函数与对数函数的图像和性质(单调性)。
说明:①幂函数(,)y x Q ααα=∈是常数的定义域D 由常数α确定,但总有+∞⊆∞∞∞⋃∞∞∞(0,) D.D 不外乎是(0,+),[0,+),(-,0)(0,+),(-,+)四种。
当(,0)(0,)D =-∞+∞∞∞或D=(-,+)时,幂函数y x α=是奇函数或偶函数,因此研究幂函数的性质,主要是研究幂函数在(0,)+∞上的性质。
当0+y x αα>=∞时,在(0,)是增函数;当0+y x αα<=∞时,在(0,)上是减函数,幂函数的图像都经过(1,1)。
②指数函数(0,1)x y a a a =>≠且有些同学常会与幂函数(,)y x Q ααα=∈是常数混淆。
③换底公式log log .(0,1,0,1,0)log a b a N N a a b b N b=>≠>≠>其中 ④函数()y f x =的定义域是它的反函数1()y f x -=的值域;函数()y f x =的值域就是它的反函数1()y f x -=的定义域。
互为反函数的两个函数的图像关于直线y x =对称。
⑤对数函数log (0,1)a y x a a =>≠且与指数函数(0,1)x y a a a =>≠且互为反函数。
解 斜 三 角 形
一、基本知识:
(1)掌握正弦定理、余弦定理,能根据条件,灵活选用正弦定理、余弦定理解斜三角形.
(2)能根据确定三角形的条件,三角形中边、角间的大小关系,确定解的个数.
(3)能运用解斜三角形的有关知识,解决简单的实际问题.
二、例题分析:
例1 在△ABC 中,已知a=3,c=3 3 ,∠A=30°,求∠C 及b
分析 已知两边及一边的对角,求另一边的对角,用正弦定理.注意已知两边和一边的对
角所对应的三角形是不确定的,所以要讨论.
解 ∵∠A=30°,a <c ,c ·sinA=3 3 2
<a , ∴此题有两解. sinC=csinA a = 33×12 3 = 3 2
, ∴∠C=60°,或∠C=120°. ∴当∠C=60°时,∠B=90°,b=a 2+b 2 =6.
当∠C=120°时,∠B=30°,b=a=3.
点评 已知两边和一边的对角的三角形是不确定的,解答时要注意讨论. 例2 在△ABC 中,已知acosA=bcosB ,判断△ABC 的形状.
分析 欲判断△ABC 的形状,需将已知式变形.式中既含有边也含有角,直接变形难以
进行,若将三角函数换成边,则可进行代数变形,或将边换成三角函数,则可进行三角变换.
解 方法一:由余弦定理,得 a ·(b 2+c 2—a 22bc )=b ·(a 2+c 2—b 2
2ac )
, ∴a 2c 2-a 4-b 2c 2+b 4=0 .
∴(a 2-b 2)(c 2-a 2-b 2)=0 .
∴a 2-b 2=0,或c 2-a 2-b 2=0.
∴a=b ,或c 2=a 2+b 2.
∴△ABC 是等腰三角形或直角三角形.
方法二:由acosA=bcosB ,得 2RsinAcosA=2RsinBcosB .
∴sin2A=sin2B . ∴2A=2B ,或2A=π-2B . ∴A=B ,或A+B=π2
. ∴△ABC 为等腰三角形或直角三角形.
点评 若已知式中既含有边又含有角,往往运用余弦定理或正弦定理,将角换成边或将边换成角,然后进行代数或三角恒等变换.
例3 已知圆内接四边形ABCD 的边长分别为AB=2,
BC=6,CD=DA=4,求四边形ABCD 的面积.
分析 四边形ABCD 的面积等于△ABD 和△BCD 的
面积之和,由三角形面积公式及∠A+∠C=π可知,只需
求出∠A 即可.所以,只需寻找∠A 的方程.
解 连结BD ,则有四边形ABCD 的面积
S=S △ABD +S △CDB =12AB ·AD ·sinA+12
BC ·CD ·sinC . ∵A+C=180°, ∴sinA=sinC .
故S=12
(2×4+6×4)sinA=16sinA . 在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·ADcosA=20-16cosA .
在△CDB 中,由余弦定理,得BD 2=CB 2+CD 2-2CB ·CD ·cosC=52-48cosC .
∴20-16cosA=52-48cosC .
∵cosC=-cosA , ∴64cosA=-32,cosA=- 12
. 又∵0°<A <180°,∴A=120°.
故S=16sin120°=8 3 . 点评 注意两个三角形的公用边在解题中的运用. 例4 墙壁上一幅图画,上端距观察者水平视线b 下端距水平视线a 米,问观察者距墙壁多少米时,才能使观察者上、下视角最大.
分析 如图,使观察者上下视角最大,即使∠APB
最大,所以需寻找∠APB 的目标函数.由于已知有关边长,
所以考虑运用三角函数解之.
解 设观察者距墙壁x 米的P 处观察,PC ⊥AB ,AC=b ,BC=a(0<a <b),
则∠APB=θ为视角. y=tan θ=tan(∠APC -∠BPC)= tan ∠APC —tan ∠BPC 1+ tan ∠APC ·tan ∠BPC =x
a x
b x a x b ⋅+-1 =
b —a x+ab x ≤b —a 2ab , 当且仅当x= ab x , 即x=ab 时,y 最大.
由θ∈(0,π2)且y=tan θ在(0,π2
)上为增函数,故当且仅当x=ab 时视角最大. 点评 注意运用直角三角形中三角函数的定义解决解三角形的有关问题. · A B C D O
三、训练反馈:
1.在△ABC 中,已知a= 2 ,b=2,∠B=45°,则∠A 等于 ( A )
A .30°
B .60°
C .60°或120°
D .30°或150°
2.若三角形三边之比为3∶5∶7,则这个三角形的最大内角为 ( C )
A .60°
B . 90°
C . 120°
D . 150°
3.货轮在海上以40千米/小时的速度由B 到C 航行,航向的方
位角∠NBC=140°,A 处有灯塔,其方位角∠NBA=110°,
在C 处观测灯塔A 的方位角∠N ′CA=35°,由B 到C 需
航行半小时,则C 到灯塔A 的距离是 ( C )
A .10 6 km
B .10 2 km
C .10( 6 - 2 ) km
D .10( 6 + 2 )km
4.△ABC 中,tanA+tanB+ 3 = 3 tanAtanB ,sinAcosA=
3 4,则该三角形是 ( A ) A .等边三角形 B .钝角三角形
C .直角三角形
D .等边三角形或直角三角形
5.在△ABC 中,已知(b+c )∶(c+a)∶(a+b)=4∶5∶6,则此三角形的最大内角为 ( A )
A .120°
B .150°
C .60°
D .90°
6.若A 、B 是锐角△ABC 的两个内角,则点P (cosB -sinA ,sinB -cosA )在 ( B )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7.△ABC 中,若sinAsinB <cosAcosB ,则△ABC 的形状为 .钝角三角形
8.在△ABC 中,已知c=10,A=45°,C=30°,则b= .5( 6 + 2 )
9.在△ABC 中,若sinA ∶sinB ∶sinC=5∶12∶13,则cosA= .1213
10.在△ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为 .π6
11.已知a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积,若a=4,b=5,s=5 3 ,
求c 的长度.21 或61
12.在△ABC 中,sin 2A -sin 2B+sin 2C=sinAsinC ,试求角B 的大小. π3
13.半圆O 的直径为2,A 为直径延长线上一点,且OA=2
B 为半圆上任意一点,以AB 为边向外作等边△AB
C 点在什么位置时,四边形OACB 大面积.设∠AOB=θ,θ
= 5π6 时,S 最大值 =2+5 3 4。