1<x≤e时,f'(x)>0,此时f(x)单调递增.∴f(x)的单调递减区间为(0,1),单调递增区间
为(1,e],f(x)的极小值为f(1)=1,无极大值.
课堂考点探究
变式题1 已知f(x)=ax-ln
ln
x,x∈(0,e],g(x)= ,x∈(0,e],其中e是自然对数的底数,
a∈R.
1
1
上的最大值为- ,f(x)在 ,2
2
2
上的最小值为ln 2-2.
课堂考点探究
变式题2 [2021·重庆八中模拟] 已知函数f(x)=ln
1 2
x- x .
2
(2)若不等式f(x)>(2-a)x2有解,求实数a的取值范围.
解:原不等式即为ln
1 2
ln
1
ln
1
x- x >(2-a)x2,可化简为2-a< 2 - .记g(x)= 2 - ,则原不等式
用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结
构特征构造一个可导函数是用导数证明不等式的关键.
课堂考点探究
(2)可化为不等式恒成立问题的基本类型:
类型1:函数f(x)在区间[a,b]上单调递增,只需f'(x)≥0在[a,b]上恒成立.
类型2:函数f(x)在区间[a,b]上单调递减,只需f'(x)≤0在[a,b]上恒成立.
值的过程中常用的放缩方法有函数放缩法、基本不等式放缩法、叠加不等式
放缩法等.
课堂考点探究
探究点一
恒成立与能成立问题
例1 [2022·南京调研] 设函数f(x)=(x2-a)ex,a∈R,e是自然对数的底数.