⇔
或
或
4-2 > 10,
2-4 > 10
10 > 10
⇔x>7或x<-3.
所以不等式的解集为{x|x<-3或x>7}.
专题一
专题二
专题三
专题四
(2)设f(x)=|x+3|+|x-7|,有f(x)≥|(x+3)-(x-7)|=10,当且仅当(x+3)(x7)≤0,即-3≤x≤7时,f(x)取得最小值10,
域为[8,+∞),因为原不等式无解,所以只需a≤8,故a的取值范围是(∞,8].
方法二:由绝对值不等式,得|x-5|+|x+3|≥|(x-5)-(x+3)|=8,
故不等式|x-5|+|x+3|<a无解时,a的取值范围为(-∞,8].
答案:(-∞,8]
1
2
3
4
5
6
7
3(陕西高考)已知a,b,m,n均为正数,且a+b=1,mn=2,则
号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出
来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数
式在每一个区间上的符号,转化为不含绝对值的不等式去解.
专题一
专题二
专题三
专题四
应用1解下列关于x的不等式:
(1)|x-x2-2|>x2-3x-4;
(2)|x-2|-|2x+5|>2x.
(-)
16
≥2 4(-)·
=
(-)
16
(-)
16,
当且仅当 a=2b,(a-b)b=2,即 a=2 2,b= 2时等号成立,