牛顿运动定律应用专题七 滑块木板模型
- 格式:pptx
- 大小:855.70 KB
- 文档页数:30
《牛顿运动定律》专题--滑块-木板模型一、单选题1.如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m .现施水平力F 拉B (如图甲),A 、B 刚好不发生相对滑动,一起沿水平面运动.若改用水平力F ′拉A (如图乙),使A 、B 也保持相对静止,一起沿水平面运动,则F ′不得超过 ( )A . F B. 2FC. 3F D . F 2 2.如图甲所示,静止在光滑水平面上的长木板B (长木板足够长)的左端放着小物块A .某时刻,A 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示,即F =kt ,其中k 为已知常数.若物体之间的滑动摩擦力(f )的大小等于最大静摩擦力,且A 、B 的质量相等,则下列图中可以定性地描述长木板B 运动的v -t 图象的是 ( ) A. B. C.D.3.如图所示,绷紧的长为6m 的水平传送带,沿顺时针方向以恒定速率v 1=2m/s 运行。
一小物块从与传送带等高的光滑水平台面滑上传送带,其速度大小为v 2=5m/s 。
若小物块与传送带间动摩擦因数μ=0.2,重力加速度g =10m/s 。
下列说法中正确的是( )A. 小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动B. 若传送带的速度为1m/s ,小物块将从传送带左端滑出C. 若传送带的速度为5m/s ,小物块将以5m/s 的速度从传送带右端滑出D. 若小物块的速度为4m/s ,小物块将以4m/s 的速度从传送带右端滑出4.如图,质量m =10kg 的物块甲与质量为M =4kg 长木板(足够长)乙,静止于水平地面上,已知甲、乙之间动摩擦因数μ1=0.1,地面和长木板之间动摩擦因数μ2=0.2,若将木板乙从物块甲下面抽出,则力F 应满足条件( ) A. F >28N B. F >38NC. F ≥38ND. F >42N5.如图所示,在光滑的水平面上,叠放着两个质量分别为m 、M 的物体(m <M ),用一水平恒力作用在m 物体上,两物体相对静止地向右运动,现把此水平力作用在M 物体上,则以下说法正确的是( )A. 两物体间的摩擦力大小不变B. m 受到的合外力与第一次相同C. M 受到的摩擦力增大D. 两物体间可能有相对运动6.如图,质量m =10kg 的物块甲与质量为M =4kg 长木板乙(足够长),静止于水平地面上,已知甲、乙之间动摩擦因数μ1=0.1,地面和长木板之间动摩擦因数μ2=0.2,若将木板乙从物块甲下面抽出,则力F 应满足条件( ) A. F >28NB. F >38NC. F ≥38ND. F >42N二、多选题 7.如图所示,水平传送带左右两端相距L =3.5m ,物体A 以水平速度v =4m /s 滑上传送带左端,物体与传送带之间的动摩擦因数μ=0.1。
高中物理第04章牛顿定律微型专题能力突破 07滑块—木板模型与传送带模型Lex Li一、滑块—木板模型1.1.模型概述:一个物体在另一个物体上发生相对滑动,两者之间有相对运动.问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一定的关系.1.2.常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.1.3.解题方法分别隔离两物体,准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.例1如图所示,厚度不计的薄板A长l=5 m,质量M=5 kg,放在水平地面上.在A上距右端x=3 m处放一物体B(大小不计),其质量m=2 kg,已知A、B间的动摩擦因数μ1=0.1,A 与地面间的动摩擦因数μ2=0.2,原来系统静止.现在板的右端施加一大小恒定的水平力F=26 N,持续作用在A上,将A从B下抽出.g=10 m/s2,求:(1)A从B下抽出前A、B的加速度各是多大;(2)B运动多长时间离开A.求解“滑块—木板”类问题的方法技巧01.搞清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.02.正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.针对训练1如图所示,质量为M=1 kg的长木板静止在光滑水平面上,一质量为m=0.5 kg 的小滑块(可视为质点)以v0=3 m/s的初速度从左端沿木板上表面冲上木板,带动木板向前滑动.已知滑块与木板上表面间的动摩擦因数μ=0.1,重力加速度g取10 m/s2,木板足够长.求:(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小和方向;(2)滑块在木板上滑动过程中,滑块相对于水平面的加速度a的大小;(3)滑块与木板达到的共同速度v的大小.二、传送带类问题2.1.特点:传送带运输是利用货物和传送带之间的摩擦力将货物运送到别的地方去.它涉及摩擦力的判断、运动状态的分析和运动学知识的运用.2.2.解题思路:(1)判断摩擦力突变点(含大小和方向),给运动分段;(2)物体运动速度与传送带运行速度相同,是解题的突破口;(3)考虑物体与传送带共速之前是否滑出.例2如图所示,水平传送带正在以v=4 m/s的速度匀速顺时针转动,质量为m=1 kg的某物块(可视为质点)与传送带之间的动摩擦因数μ=0.1,将该物块从传送带左端无初速度地轻放在传送带上(g取10 m/s2).(1)如果传送带长度L=4.5 m,求经过多长时间物块将到达传送带的右端;(2)如果传送带长度L=20 m,求经过多长时间物块将到达传送带的右端.分析水平传送带问题的注意事项当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质的突变.静摩擦力达到最大值,是物体和传送带恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(滑动摩擦力为0或变为静摩擦力).针对训练2(多选)如图甲所受为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙模型,紧绷的传送带始终保持v=1 m/s的恒定速率运行.旅客把行李(可视为质点)无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离为2 m,g取10 m/s2.若乘客把行李放到传送带的同时也以v=1 m/s的恒定速率平行于传送带运动到B处取行李,则()A.乘客与行李同时到达B处B.乘客提前0.5 s到达B处C.行李提前0.5 s到达B处D.若传送带速度足够大,行李最快也要2 s才能到达B处例3如图所示,传送带与水平地面的夹角为θ=37°,AB的长度为64 m,传送带以20 m/s 的速度沿逆时针方向转动,在传送带上端A点无初速度地放上一个质量为8 kg的物体(可视为质点),它与传送带之间的动摩擦因数为0.5,求物体从A点运动到B点所用的时间.(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)物体沿着倾斜的传送带向下加速运动到与传送带速度相等时,若μ≥tan θ,物体随传送带一起匀速运动;若μ<tan θ,物体将以较小的加速度a=g sin θ-μg cos θ继续加速运动.01.(滑块—木板模型)如图所示,质量为m1的足够长木板静止在水平面上,其上放一质量为m2的物块.物块与木板的接触面是光滑的.从t=0时刻起,给物块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、物块的加速度和速度大小,下列图象符合运动情况的是()02.(传送带问题)(多选)如图所示,一足够长的水平传送带以恒定的速度向右传动.将一物体轻轻放在传送带的左端,以v、a、x、F表示物体速度大小、加速度大小、位移大小和所受摩擦力的大小.下列选项正确的是()03.(传送带问题)如图所示,物块在静止的足够长的传送带上以速度v 0匀速下滑时,传送带突然启动,方向如图中箭头所示,在此传送带的速度由零逐渐增加到2v 0后匀速运动的过程中,下列分析正确的是 ( )A.物块下滑的速度不变B.物块开始在传送带上加速到2v 0后匀速C.物块先向下匀速运动,后向下加速,最后沿传送带向下匀速运动D.物块受的摩擦力方向始终沿斜面向上04.(滑块—木板模型)如图所示,长度l =2 m ,质量M =23 kg 的木板置于光滑的水平地面上,质量m =2 kg 的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F =10 N ,取g =10 m/s 2.求:(1)将木板M 固定,小物块离开木板时的速度大小;(2)若木板M 不固定:①m 和M 的加速度a 1、a 2的大小;②小物块从开始运动到离开木板所用的时间.05.(传送带问题)如图所示为一水平传送带装置示意图,绷紧的传送带AB 始终保持v =1 m/s 的恒定速率运行,一质量为m =4 kg 的行李(可视为质点)无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,A 、B 间的距离l =2 m ,g 取10 m/s 2.求:(1)行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.高中物理第04章牛顿定律微型专题能力突破 07滑块—木板模型与传送带模型Lex Li例1(1)2 m/s2 1 m/s2(2)2 s解析(1)对于B:μ1mg=ma B解得a B=1 m/s2对于A:F-μ1mg-μ2(m+M)g=Ma A解得a A=2 m/s2(2)设经时间t抽出,则x A=12a A t2 xB=12a B t2Δx=x A-x B=l-x解得t=2 s.针对训练1(1)0.5 N向右(2)1 m/s2(3)1 m/s解析(1)滑块所受摩擦力为滑动摩擦力F1=μmg=0.5 N,方向向左根据牛顿第三定律,滑块对木板的摩擦力方向向右,大小为0.5 N.(2)根据牛顿第二定律得:μmg=ma 解得a=μg=1 m/s2(3)木板的加速度a′=mMμg=0.5 m/s2设经过时间t,滑块和长木板达到共同速度v,则满足:对滑块:v=v0-at对长木板:v=a′t由以上两式得:滑块和长木板达到的共同速度v=1 m/s.例2(1)3 s(2)7 s解析物块放到传送带上后,在滑动摩擦力的作用下先向右做匀加速运动.由μmg=ma 得a=μg,若传送带足够长,匀加速运动到与传送带同速后再与传送带一同向右做匀速运动.物块匀加速运动的时间t1=va=vμg=4 s物块匀加速运动的位移x1=12at12=12μgt12=8 m(1)因为4.5 m<8 m,所以物块一直加速,由L=12at2得t=3 s(2)因为20 m>8 m,所以物块速度达到传送带的速度后,摩擦力变为0,此后物块与传送带一起做匀速运动,物块匀速运动的时间t2=L-x1v=20-84s=3 s故物块到达传送带右端的时间t′=t1+t2=7 s.针对训练2 BD解析 行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s达到共同速度,位移x 1=v 2t 1=0.5 m ,此后行李匀速运动t 2=2 m -x 1v =1.5 s ,到达B 共用2.5 s.乘客到达B ,历时t =2 m v =2 s ,故B 正确.若传送带速度足够大,行李一直加速运动,最短运动时间t min =2x a =2×21 s =2 s ,D 正确.例3 4 s解析 开始时物体下滑的加速度:a 1=g (sin 37°+μcos 37°)=10 m/s 2运动到与传送带共速的时间为:t 1=v a 1=2010 s =2 s 下滑的距离:x 1=12a 1t 12=20 m ;由于tan 37°=0.75>0.5故物体2 s 后继续加速下滑,且此时:a 2=g (sin 37°-μcos 37°)=2 m/s 2根据x 2=vt 2+12a 2t 22,解得:t 2=2 s ,故共用时间t =4 s.01、D 木板一定保持静止,加速度为0,选项A 、B 错误;物块的加速度a =F m 2,即物块做匀加速直线运动,物块运动的v -t 图象为倾斜的直线,而木板保持静止,速度一直为0,选项C 错误,D 正确.02、AB 物体在传送带上先做匀加速运动,当达到共同速度后再做匀速运动,A 、B 正确.03、C 在传送带的速度由零逐渐增加到v 0的过程中,物块相对于传送带下滑,故物块受到的滑动摩擦力仍然向上,故这段过程中物块继续匀速下滑,在传送带的速度由v 0逐渐增加到2v 0过程中,物块相对于传送带上滑,物块受到的滑动摩擦力沿传送带向下,物块加速下滑,当物块的速度达到2v 0时,物块相对传送带静止,随传送带匀速下滑,故选项C 正确.04、(1)4 m/s (2)①4 m/s 2 3 m/s 2 ②2 s解析 (1)对小物块进行受力分析,由牛顿第二定律得F -μmg =ma 解得a =4 m/s 2 小物块离开木板时,有v 2=2al 解得v =4 m/s.(2)①对m ,由牛顿第二定律:F -μmg =ma 1 解得a 1=4 m/s 2对M ,由牛顿第二定律:μmg =Ma 2 解得a 2=3 m/s 2.②由位移公式知x 1=12a 1t 2,x 2=12a 2t 2小物块从开始运动到离开木板,有x 1-x 2=l联立解得t =2 s.05、(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s解析(1)行李刚开始运动时所受的滑动摩擦力F=μmg将题给数据代入,得F=4 N由牛顿第二定律,得F=ma 代入数值,得a=1 m/s2(2)设行李做匀加速直线运动的时间为t,行李加速运动的末速度为v=1 m/s,则v=at 代入数据,得t=1 s.(3)行李从A处匀加速运动到B处时,传送时间最短,则l=12at2min,代入数据得t min=2 s.传送带对应的最小运行速率v min=at min,代入数据得v min=2 m/s.。
高考备考重点题型——滑块木板模型解题攻略滑块木板模型是高考题构建中一个重要插件,也是一个高频的考察模型。
简单的道具为牛顿运动定律、功能关系的应用提供了广阔的舞台。
在备考中理应收到师生的重视。
【模型分析】1、相互作用:滑块之间的摩擦力分析2、相对运动:具有相同的速度时相对静止。
两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。
3、通常所说物体运动的位移、速度、都是对地而言。
在相对运动的过程中相互作用的物体之间位移、速度、时间一定存在关联。
它就是我们解决力和运动突破口。
画出运动草图非常关键。
4、求时间通常会用到牛顿第二定律加运动学公式。
5、求位移和速度通常会用到牛顿第二定律加运动学公式或动能定理。
例1:如图所示,质量为M=100kg的平板车放在光滑水平面上,车高为h=1.25m,一个质量为m=50kg的可视为质点的物体放在车上,距左端b=1m,物体与平板车上表面间的动摩擦因数为μ=0.2,取g=10m/s2。
今对平板车施加水平向右的恒力F,当车运动的位移为s=2m时,物体恰从车的左端滑离平板车,求物体着地时距平板车左端多远?例2:如图所示,质量为M的汽车载着质量为m的木箱以速度v运动,木箱与汽车上表面间的动摩擦因数为μ,木箱与汽车前端挡板相距L,若汽车遇到障碍物制动而静止时,木箱恰好没碰到汽车前端挡板,求:(1)汽车制动时所受路面的阻力大小;(2)汽车制动后运动的时间。
尝试练习1、如图所示,在光滑水平面上有一小车A,其质量为0.2=m kg,小车上放一个A物体B,其质量为0.1=m kg,如图(1)所示。
给B一个水平推力F,当F增B大到稍大于3.0N时,A、B开始相对滑动。
如果撤去F,对A施加一水平推力F′,如图(2)所示,要使A、B不相对滑动,求F′的最大值Fm图(1)图(2)2.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数 =0.2,小车足够长(取g=l0 m/s 2)。
牛顿运动定律的应用 滑板模型例题:如图所示,滑块A 的质量m =1kg ,初始速度向右v 1=8.5m/s ;滑板B 足够长,其质量M =2kg ,初始速度向左v 2=3.5m/s 。
已知滑块A 与滑板B 之间动摩擦因数μ1=0.4,滑板B 与地面之间动摩擦因数μ2=0.1。
取重力加速度g =10m/s 2。
且两者相对静止时,速度大小:,s m v /5 ,在两者相对运动的过程中: 问题(1):刚开始a A 、a B1问题(2):B 向左运动的时间t B1及B 向左运动的最大位移S B2问题(3):A 向右运动的时间t 及A 运动的位移S A问题(4):B 运动的位移S B 及B 向右运动的时间t B2问题(5):A 对B 的位移大小△S 、A 在B 上的划痕△L 、A 在B 上相对B 运动的路程x A问题(6):B 在地面的划痕L B 、B 在地面上的路程x B问题(7):摩擦力对A 做的功W fA 、摩擦力对A 做的功W fB 、系统所有摩擦力对A 和B 的总功W f问题(8):A 、B 间产生热量Q AB 、B 与地面产生热量Q B 、系统因摩擦产生的热量Q问题(9):画出两者在相对运动过程中的示意图和v -t 图象例题:(1)由牛顿第二定律:aA =μ1mgm =μ1g =4m/s ,方向向左;aB1=μ1mg +μ2(mg+Mg)M =3.5m/s2,方向向右。
(2)tB1=v2aB1=1s ,SB1=v222aB1=1.75m ,方向向左。
(3)t =v1-v aA =2s >tB1=1s ,说明B 先向左减速然后向右加速直到与A 达到相同速度,A 运动的位移SA =v12-v22aA =9m(4)B 经过tB1=1s 后开始向右加速运动,达到v =0.5m/s ,加速度为aB2=μ1mg -μ2(mg+Mg)M =0.5m/s2,tB 2=vaB2=1s ,则向右运动的位移SB2=v22aB2=0.25m ,方向向右。
突破12牛顿运动定律的应用之滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f>f m,则发生相对滑动;否则不会发生相对滑动。
3.分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4.对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5.计算滑块和木板的相对位移(即两者的位移差或位移和);6.如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7.滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动. 2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A =1 kg ,m B =2 kg ,A 、B 间动摩擦因数是0.5,水平面光滑. 用10 N 水平力F 拉B 时,A 、B 间的摩擦力是 用20N 水平力F 拉B 时,A 、B 间的摩擦力是例2、如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加, 若使AB 不发生相对运动,则F 的最大值为针对练习1、如图5所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则 ( )A .当拉力F <12 N 时,物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对运动C .两物体从受力开始就有相对运动D .两物体始终没有相对运动例3、如图所示,质量M =8 kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10 m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?1、动力学问题【例1】如图,A是小木块,B是木板,A和B都静止在地面上。