液力变矩器
- 格式:pdf
- 大小:1.27 MB
- 文档页数:96
液力变矩器的名词解释液力变矩器(Fluid Coupling)是一种常见的传动装置,用于传递动力和变换转矩,并在起步、换挡和降低转速时提供顺畅的驱动力。
它由一个外壳、一个泵和一个涡轮组成,通过油液的粘滞性实现动力传递。
液力变矩器的工作原理源自流体力学和运动守恒定律。
液力变矩器的外壳通常由钢铁材质制成,具有高度耐磨和耐腐蚀的特性。
外壳内有涂有摩擦材料的摩擦片,用于提高摩擦系数。
摩擦片上有刻有扇形槽的泵轮,又被称为泵。
泵的作用是将油液加压并产生流动。
液力变矩器内还装有一个涡轮,又被称为扇轮或轮子。
涡轮的作用类似于风扇,将流动的油液转化为动力。
涡轮内有叶片,可以使用液压力量作用于其上,从而生成转动力。
泵和涡轮通过油液流动的力量相连,实现转矩的传递。
在液力变矩器的运行过程中,油液被压入泵轮,产生高速的液体流动。
这种高速流动会将动能转化为液压能,并传递到涡轮上。
涡轮随即开始转动,同时传递动力到传动轴和其他相关部件。
这种方式使得液力变矩器能够在不引起机械磨损的情况下实现转矩的调节和传递。
液力变矩器的一个关键特点是其变矩性能。
通过调整油液的流动,液力变矩器可以提供不同的转矩输出。
在起步时,液力变矩器可以实现较大的转矩输出,而在高速行驶时,转矩输出相对较小,以提供更好的经济性和燃油效率。
这种变矩调节的能力使得液力变矩器在汽车、工程机械和船舶等各种交通和工业领域广泛应用。
尽管液力变矩器具有许多优点,如顺滑的驱动、良好的冷却和减振效果,但也存在一些局限性。
由于液力传递机制的特性,液力变矩器在传递动力时会有一定损耗。
这导致一部分输入功率会被浪费,使得液力变矩器的效率相对较低。
另外,液力变矩器还有一定的体积和质量,这可能对整个传动系统的重量和尺寸产生不利影响。
为了解决这些问题,现代汽车工程领域已经开发出了许多其他的传动装置,如离合器和自动变速器。
这些装置在某些情况下可以替代液力变矩器,并提供更高的效率和性能。
然而,液力变矩器仍然广泛应用于许多领域,特别是在大型车辆和工程机械中,因为它们在起步和低速行驶时提供了极佳的驱动性能和可靠性。
4.1.1液力变矩器构造1、三元一级双相型液力变矩器三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。
一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。
双相是指液力变矩器的工作状态分为变矩区和偶合区。
图4-1为液力变矩器三个主要元件的零件图2、液力变矩器的结构和作用泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。
变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。
发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的主动元件。
1-变速器壳体 2-泵轮 3-导轮 4-变速器输出轴 5-变矩器壳体6-曲轮 7-驱动端盖 8-单向离合器 9-涡轮涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。
在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。
它是液力变矩器的输出元件。
涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。
它将液体的动能转变为机械能。
导轮的直径大约是泵轮或涡轮直径的一半。
并位于两者之间。
导轮是变矩器中的反作用力元件,用来改变液体流动的方向。
导轮叶片的外缘一般形成三段式油液导流环内缘。
分段导流环可以引导油液平稳的自由流动,避免出现紊流。
导轮支承在与花键和导轮轴连接的单向离合器上。
单向离合器使导轮只能与泵轮同向转动。
涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。
图4-3为液力变矩器油液流动示意图。
图上通过箭头示意液体流动方向。
油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰好和泵轮的旋转方向一致。
3、液力变矩器的锁止和减振液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。
其余的动力都被转化为热量,散发到油液里。
液力变矩器原理
液力变矩器是一种利用液流的转动动能转换为机械动能的装置。
液力变矩器的主要原理是利用携带动能的工作液体在叶轮和导向叶片之间产生流动,并通过液体的阻力来达到变矩的目的。
液力变矩器主要由泵、液力涡轮和导向叶片组成。
泵是液力变矩器的动力源,它通过转子和叶轮之间的传递力,将动力传输给工作液体。
液力涡轮是液力变矩器的传递装置,将来自泵的动能转化为液体的动能。
液力涡轮旋转起来,推动液体形成旋涡流动,然后经过导向叶片的引导,使液体重新进入泵来实现循环。
当液力变矩器处于空转状态时,工作液体从泵中的转子中吸入,然后经过泵的叶轮的动力传输给液力涡轮,液力涡轮开始旋转。
由于液体的阻力作用,液力涡轮的旋转速度较泵的旋转速度慢,形成了一种转速比。
当液力变矩器连接到负载上时,液力涡轮带动负载一起旋转,使液体在液力涡轮和导向叶片之间产生流动,并通过流动的液体来传递转矩。
转矩的大小取决于液体的流动量和液流的速度。
液力变矩器通过调节工作液体的流量和转速比来实现变矩的效果。
当负载较大时,液力变矩器会自动调整液流量和转速比,进而实现输出更大的转矩。
这使得液力变矩器在汽车、船舶、工程机械等领域中得到广泛应用。
液力变矩器结构与原理液力变矩器(Torque Converter)是一种被广泛应用于汽车、船舶等动力传动系统中的液力传动装置。
它的主要作用是将发动机输出的高速低扭矩转化成低速大扭矩,从而实现汽车启动、加速、变速和传动的功能。
液力变矩器的结构复杂而精密,它包含了泵轮、涡轮、导叶轮等不同的部件,其中每个部件都扮演着特定的角色。
本文将详细介绍液力变矩器的结构与原理。
一、液力变矩器的结构液力变矩器是由泵轮、涡轮、导叶轮和油封等部件组成的。
泵轮和涡轮是液力变矩器的两个主要组成部分,其结构和相互配合决定液力变矩器的工作性能。
1. 泵轮(Pump Impeller)泵轮是液力变矩器的输入元件,它由一定数量的楔形叶片组成,其主要作用是将发动机输出的动力转化成液力。
当发动机运转时,泵轮产生旋转的动力,它通过离心力作用将工作介质(液体)强制送入涡轮。
2. 涡轮(Turbine Runner)涡轮是液力变矩器的输出元件,它与泵轮相对应,也由楔形叶片组成。
当泵轮发送液力流入涡轮时,涡轮受到液压的作用转动,从而输出扭矩。
涡轮的运转速度受到扭矩的大小以及返转器的变矩比的影响。
3. 导叶轮(Stator)导叶轮是液力变矩器的第三个组成部分,它位于泵轮和涡轮之间,主要用于改变流体的流向。
导叶轮的叶片可以自由调节,可以根据工作状态的需求来改变流体的流向,协助转化扭矩和提高效率。
4. 油封(Oil Seal)油封是用于保持液力变矩器内压力稳定的部件,它位于泵轮和涡轮之间,防止液体泄漏。
油封的质量和性能直接影响液力变矩器的工作效果和寿命。
二、液力变矩器的工作原理液力变矩器主要依靠流体的转化和涡旋流的原理来工作,通过泵轮、涡轮和导叶轮之间复杂的相互作用来实现转矩的变化。
液力变矩器的工作原理分为四个工作区域:冲击区、变矩区、松开区和高效率区。
1. 冲击区当发动机启动并带动泵轮开始旋转时,泵轮产生的涡旋流体流向涡轮,但此时导叶轮的叶片处于开启状态。
液力变矩器的结构和工作原理1. 液力变矩器的简介液力变矩器,听起来有点高大上,其实它就像汽车的“肚子”,负责传递动力,控制转速。
我们平时开车,尤其是自动挡的车,几乎每天都在跟这个小家伙打交道。
你知道吗?在你轻轻踩下油门的一瞬间,液力变矩器就开始发挥它的魔法了,让车子如同飞一样顺畅。
就像打了一针兴奋剂,车子在起步时,竟然能比我们想象的更快,真是神奇得让人瞠目结舌。
2. 液力变矩器的结构2.1 主要部件液力变矩器主要有三个关键部分:泵轮、涡轮和定子。
首先,泵轮就像一个健身教练,负责将发动机的动力转换成液体的流动。
它一转,油液就开始欢快地舞动,冲向涡轮。
涡轮呢,就像个追求者,拼命追赶泵轮,把动力接住,然后将其转化为车轮的旋转。
再说说定子,定子就像个调皮的孩子,负责改变液体流动的方向,确保动力的输出更有效。
各个部件就像一场默契的舞蹈,步伐一致,配合得天衣无缝。
2.2 工作过程说到液力变矩器的工作过程,那可真是千姿百态。
简单来说,当你踩下油门,泵轮的转速瞬间飙升,油液被猛地甩出,形成强大的液体动力。
这个时候,涡轮会接收这股力量,开始转动,带动车轮。
而且呀,液力变矩器可以根据车速和负载的变化自动调节动力传递的比例,让你在不同的路况下,都能感觉到如同飞翔的感觉,真是顺风顺水。
3. 液力变矩器的工作原理3.1 动力传递液力变矩器的核心就是利用液体的流动来传递动力。
当泵轮转动时,油液被加速,形成一个强大的液压流。
涡轮接收到这个液流后,开始转动,这时候就好比是一场能量的接力赛。
无论你是从静止到加速,还是在高速公路上风驰电掣,液力变矩器都能灵活应对,让你在各种情况下都能获得最佳的驾驶体验。
更牛的是,它还能在你停车时,自动切断动力传递,这样就不会让你在红灯前“煎熬”了。
3.2 效率与优势说到效率,液力变矩器也有一套自己的诀窍。
它通过调节液体的流动,实现无级变速。
你想想看,这种不依赖于齿轮的设计,减少了机械磨损,延长了使用寿命。
液力变矩器(Hydraulic Torque Converter)是一种用于传递动力和变换扭矩的机械装置,广泛应用于自动变速器系统中。
液力变矩器的主要功能包括以下几个方面:
动力传递:液力变矩器可以将内燃机的动力传递给传动系统,实现车辆的运动。
当发动机运转时,液力变矩器将引擎输出的旋转动力传递给传动系统,驱动车辆前进。
扭矩变换:液力变矩器可以通过液力传动的方式实现扭矩的变换。
当车辆启动或行驶过程中需要较大的起动扭矩或爬坡扭矩时,液力变矩器可以通过液力传递,提供额外的转矩增益,以满足车辆的需求。
车速调节:液力变矩器能够通过调节内部液体的流动状态,实现车辆的速度调节和传动比的变化。
根据车辆驾驶需求和工况变化,液力变矩器可以自动调整液体的流动特性,以实现不同车速和传动比的变化。
隔离振动:液力变矩器具有一定的缓冲和隔离振动的功能。
在发动机运转时,液力变矩器可以通过液体的阻尼效应,减轻或消除发动机运转时的振动和冲击,提高车辆的平稳性和乘坐舒适性。
总之,液力变矩器作为自动变速器系统中重要的传动装置,具有动力传递、扭矩变换、车速调节和隔离振动等功能,为车辆提供了平稳的动力输出和灵活的变速控制。
简述液力变矩器的工作原理液力变矩器(Hydraulic Torque Converter)是一种利用液力传递力矩的装置,广泛应用于各种机械设备和车辆中,如汽车、船舶、起重机等。
液力变矩器通过液体的静压力和动力转换产生驱动力和加速扭矩,从而实现动力传递和变速的功能。
下面将详细介绍液力变矩器的工作原理。
液力变矩器由三个主要部件组成:泵轮(pump impeller)、涡轮(turbine impeller)和导向叶片组(stator)。
液力变矩器的工作原理可以分为三个阶段:涡流阶段(Torque Phase)、过渡阶段(Stall Phase)和轴向转动阶段(Acceleration Phase)。
1.涡流阶段(Torque Phase):在涡流阶段,发动机中的转动动力通过传动轴传递给液力变矩器的泵轮。
泵轮旋转产生离心力,使工作液体由泵轮中心向边缘流动,并向外界形成一个旋转的涡流区。
在该涡流区中,工作液体与涡轮叶片接触,产生一个相反的涡流方向。
由于涡轮上的涡流方向与泵轮的涡流方向相反,涡轮受到一个阻碍旋转的力矩。
该旋转涡流的力矩正是液力变矩器实现加速转动的原理。
2.过渡阶段(Stall Phase):当涡流阶段的涡流产生足够大的力矩时,涡轮开始转动。
转动的涡轮将工作液体重新引导回泵轮,形成一个封闭的液体环流,进入到下一阶段。
在此阶段中,液力变矩器起到传递转动力矩和承载转动负载的作用。
3.轴向转动阶段(Acceleration Phase):一旦涡轮开始转动,液力转换器就进入了轴向转动阶段,同时涡轮的旋转速度也开始加速。
液体在泵轮和涡轮之间的流动变得更加强烈,通过液流的不断加速转换能量,并继续传递转动力矩。
在此阶段中,液力变矩器将转动的动力传递给驱动轴,实现机械设备或车辆的加速。
总结起来,液力变矩器的工作原理是利用液体的静压力和动力转换产生驱动力和加速扭矩。
通过涡流阶段、过渡阶段和轴向转动阶段的连续工作,液力变矩器实现了动力传递和变速的功能。
液力变矩器工作原理
液力变矩器是一种利用液体传动力和转矩的装置。
它的工作原理主要有以下几个方面:
1. 回转运动:液力变矩器内部由两个相互嵌套的螺旋桨组成,一个称为泵轮,另一个称为涡轮。
泵轮和涡轮之间有一个密封的螺纹连接。
当发动机输出动力传递到泵轮时,泵轮会以高速旋转,将工作液体(通常是液体)分散到涡轮周围的密封螺纹空间中。
2. 工作液体传动力:当工作液体进入螺纹空间后,由于泵轮的旋转动力,工作液体会形成离心力,使其产生高速运动。
这种高速运动形成的动能会传递给涡轮上,使涡轮也以相对高速旋转。
3. 转矩传递:通过涡轮的高速旋转,液体会迫使涡轮与驱动轴相互连接,并将转动力传递给驱动轴。
这样一来,液力变矩器就可以实现将发动机的动力传递到车辆的驱动轴上。
4. 变矩效应:液力变矩器还具有自动变矩的特性。
在低速行驶或启动时,液力变矩器的工作液体会产生充分的转矩,使车辆具备足够的起步动力。
而在高速行驶时,液力变矩器的工作液体会流经特殊设计的螺纹空间,减小转矩传递的能力,从而减小发动机的负载。
总体来说,液力变矩器利用液体的运动和动能传递的原理,实
现了发动机动力的传递和转矩的变化,提高了车辆的行驶性能和平稳性。