纤维增强环氧树脂基复合材料的研究进展_苏航
- 格式:pdf
- 大小:201.00 KB
- 文档页数:4
综合实验研究玻璃纤维增强环氧树脂基复合材料的制备院系:航空航天工程学部专业:高分子材料与工程专业指导教师:于祺学生姓名:王娜目录第1章概述1.1 玻璃纤维增强环氧树脂基复合材料的研究现状 1.2 本次试验的目的及方法第2章手糊法制备玻纤/环氧树脂复合材料2.1实验原料2.1.1环氧树脂2.1.2玻璃纤维2.1.3咪唑固化剂2.1.4活性稀释剂2.2手糊成型简介2.4实验部分2.4.1实验仪器2.4.2实验步骤第3章力学性能测试3.1剪切强度3.2弯曲强度3.3实验数据的分析3.3.1 浸胶的用量及均匀度3.3.2 固化时间与温度的影响3.3.3 活性稀释剂的用量第4章结论与展望4.1结论与展望参考文献第1章概述1.1 玻璃纤维增强环氧树脂复材的研究现状EP/玻璃纤维(GF)复合材料是目前研究比较成熟、应用最广的一种复合材料。
EP/GF复合材料具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛、工艺性好、加工成型简便、生产效率高等特点,并具有材料可设计性及特殊的功能性如屏蔽电磁波、消音等特点,现已成为国民经济、国防建设和科技发展中无法代替的重要材料。
且复合材料的研究水平已成为一个国家或地区科技经济水平的标准之一。
目前美,日,西欧的水平较高,北美,欧洲,日本的产量分别占33%,32%,30%。
毋庸置疑,EP/玻璃纤维(GF)复合材料的质量轻,高强度等优于金属的特性,会在某些领域更广泛的使用,目前复材的粘接性能与力学性能成为主要的研究方面。
目前主要的成型方法有手糊成型,缠绕成型,热压管成型,RTM成型,拉挤成型。
1.2 本次试验的目的及方法实验由学生自行设计采用一种固化体系,用手糊成型方法制备EP/玻璃纤维(GF)复合材料,再测量材料的力学性能如,弯曲,剪切。
目的在于1,了解材料科学实验所涉及到的设备的基本使用。
2,掌握环氧树脂固化体系的配置及设计。
3,对手糊成型操作了解,及查找文献完成论文的能力。
碳纤维增强环氧树脂基复合材料的制备及力学性能研究碳纤维增强环氧树脂基复合材料的制备及力学性能研究摘要:碳纤维增强环氧树脂基复合材料具有出色的力学性能和优异的耐腐蚀性能,因此在许多领域广泛应用。
本研究使用真空浸渍工艺制备了碳纤维增强环氧树脂基复合材料,并对其力学性能进行了详细研究。
结果表明,制备过程中的浸渍时间、浸渍压力和固化温度对复合材料的力学性能有显著影响。
1. 引言碳纤维增强环氧树脂基复合材料被广泛应用于航空航天、汽车制造、体育器材等领域。
其具有轻质、高强度、高模量、优异的耐腐蚀性能等特点,因此在替代传统金属材料方面具有巨大潜力。
本研究旨在通过真空浸渍工艺制备碳纤维增强环氧树脂基复合材料,并对其力学性能进行评估和分析。
2. 实验方法2.1 材料准备碳纤维和环氧树脂材料被选作本实验的主要原料。
碳纤维具有优良的力学性能和导电性能,是制备复合材料的理想选择。
环氧树脂具有良好的粘接性能和化学稳定性,可以作为基体材料。
同时,活性固化剂和助剂用于提高复合材料的性能。
2.2 制备过程(1)将环氧树脂均匀涂布在碳纤维上;(2)将涂布好的碳纤维经过真空排气处理;(3)将预处理好的碳纤维进行真空浸渍;(4)浸渍后的碳纤维进行固化过程。
2.3 力学性能测试采用传统的拉伸试验和冲击试验评估复合材料的力学性能。
拉伸试验用于评估复合材料的拉伸强度、弹性模量和断裂应变,冲击试验用于评估复合材料的冲击强度。
3. 结果与讨论3.1 浸渍时间通过改变浸渍时间,研究了浸渍时间对复合材料力学性能的影响。
结果表明,随着浸渍时间的增加,复合材料的拉伸强度和弹性模量呈增加趋势,但当浸渍时间过长时,力学性能开始下降。
这是由于过长的浸渍时间导致材料内部产生孔隙和缺陷。
3.2 浸渍压力通过改变浸渍压力,研究了浸渍压力对复合材料力学性能的影响。
结果显示,随着浸渍压力的增加,复合材料的强度和韧性都得到了提高。
这是由于高压可以更好地填充碳纤维与环氧树脂之间的空隙,提高界面的粘合强度。
基于材料力学的纤维增强复合材料研究进展纤维增强复合材料是一种具有高强度、高模量和轻质特性的材料,广泛应用于航空航天、汽车制造、建筑工程等领域。
而基于材料力学的纤维增强复合材料研究是指利用力学原理和实验手段对纤维增强复合材料的力学性能进行研究和分析。
本文将介绍纤维增强复合材料的基本原理、研究方法和一些研究进展。
首先,纤维增强复合材料由纤维和基体组成。
纤维通常采用碳纤维、玻璃纤维、聚合物纤维等,基体通常采用环氧树脂、树脂胶粘剂等。
纤维增强复合材料的性能取决于纤维的性质、排列方式和基体的性质。
因此,研究如何改善纤维增强复合材料的性能成为学者关注的焦点。
在基于材料力学的纤维增强复合材料研究中,有多种研究方法被广泛应用。
一种常用的方法是拉伸试验,通过对材料进行拉伸,得到其应力-应变曲线,从而分析材料的强度、刚度和断裂性能等。
另外,压缩试验、剪切试验、弯曲试验等也是常用的研究方法。
这些试验能够揭示纤维增强复合材料的力学特性,为其性能改进和设计提供依据。
随着科学技术的不断发展,研究者不断提出新的方法和理论,推动了纤维增强复合材料的研究进展。
例如,在计算力学方面,有限元分析被广泛应用于模拟纤维增强复合材料的力学行为。
这种方法能够精确地预测材料的应力分布、应变分布和破坏模式,为复合材料的设计和优化提供了有力的工具。
此外,还有许多新的纤维增强复合材料的研究方向,如多尺度力学、多功能复合材料等。
多尺度力学研究了不同尺度下材料的力学行为,从宏观到微观的尺度。
这种方法能够更准确地描述纤维增强复合材料的性能和异常行为,为新材料的开发提供了重要的理论基础。
而多功能复合材料则是指具有多种功能的复合材料,如耐磨、防火、导电等。
研究者通过改变复合材料的组分和结构,使其具有特定的功能,满足不同领域的需求。
总结起来,基于材料力学的纤维增强复合材料研究是一个广泛而深入的领域,涉及到材料力学原理、研究方法和研究进展等方面。
通过对纤维增强复合材料的力学性能进行研究和分析,可以为其性能的改进和设计提供有力的依据。
军民两用技术与产品2010·1先进纤维增强树脂基复合材料在航空航天工业中的应用航天材料及工艺研究所赵云峰!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!"一、引言随着航空航天工业的发展,先进飞机、运载火箭和导弹、卫星等的高性能、高可靠性和低成本,很大程度上是由于新材料和新工艺的广泛应用。
先进复合材料是航空航天高技术产品的重要组成部分,它能有效降低飞机、运载火箭、导弹和卫星的结构重量,增加有效载荷和射程,降低成本。
国外各类航空航天器结构已经广泛采用了先进的纤维增强树脂基复合材料,其中应用最多的是碳纤维增强环氧树脂复合材料。
目前,先进复合材料已经取代了铝合金,成为现代大型飞机的首要结构材料。
二、先进纤维增强树脂基复合材料的特点先进纤维增强树脂基复合材料由高性能增强纤维和基体树脂按一定的工艺方法复合而成。
与其它材料相比,具备如下特点:(1)与金属材料相比,复合材料具有高的比强度和比模量,可以大幅减轻结构重量;(2)各向异性,具有良好的可设计性,可以充分发挥增强纤维的性能;(3)具有优异的耐疲劳、耐腐蚀和抗振动等特性;(4)成型工艺性好,易于制造一次整体成型复杂零件。
表1列出了几类典型的树脂基复合材料和金属材料的性能。
三、先进纤维增强树脂基复合材料在航天产品上的典型应用欧洲的“阿里安4”运载火箭采用了大量的碳纤维增强环氧树脂复合材料。
卫星发射支架,仪器舱,大型整流罩,第一、二级之间的分离壳,助推器前锥和第二、三级级间段均采用碳纤维增强环氧树脂复合材料制造而成。
“阿里安4”运载火箭卫星整流罩最大外径4米、长约12米。
由端头、前锥段、圆柱段和倒锥几部分组成。
端头为铝合金加强筋环结构。
碳纤维增强复合材料用环氧树脂研究进展摘要:综述了环氧树脂的合成方法、固化方法以及改性的研究现状以及理论知识,介绍了碳纤维增强环氧树脂复合材料的生产和性能,重点讲述了环氧树脂的改性方法。
关键词:环氧树脂;碳纤维;复合材料;改性碳纤维(carbon fiber,简称CF),是一种含碳量在90%以上的高强度、高模量、综合性能优异的新型纤维材料,其中含碳量高于99%的称石墨纤维。
碳纤维作为一种高性能纤维,具有高强度、高模量、耐高温、抗化学腐蚀、抗蠕变、耐辐射、耐疲劳、导电、传热和热膨胀系数小等诸多优异性能。
此外,还具有纤维的柔曲性和可编性[1]。
碳纤维既可用作结构材料来承载负荷,又可用作功能材料。
因此在国外碳纤维及其复合材料近几年的发展都十分迅速。
碳纤维的制备是有机纤维进行碳化的过程,在惰性气体中将含碳的有机物加热到3000℃左右,非碳元素脱离,碳元素含量逐步增大并最终形成碳纤维。
其典型的宏观结构如图1所示。
图1 碳纤维的宏观结构a 整体效果b 局部效果1891年德国的Lindmann用对苯二酚和环氧氯丙烷合成了树脂状产物,1909年俄国化学家Prileschajew发现用过氧化苯甲醚和烯烃反应可生成环氧化合物,在19世纪末20世纪初的这两个重大发现揭开了环氧树脂走向世界的帷幕。
环氧树脂是一类重要的热固性树脂,是聚合物复合材料中应用最广泛的基体树脂。
环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能,以及收缩率低、易加工成型和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、电子电气绝缘材料及先进复合材料等领域得到广泛应用[2]。
我国环氧树脂的研制开始于1956年,在、两地首获成功,并在1958年于首先开始了工业化生产。
到了60年代中期国开始研究新型的环氧树脂,如脂环族环氧树脂、酚醛环氧树脂、缩水甘油酯环氧树脂、聚丁二烯环氧树脂等种类,70年代末着手开发了元素改性环氧树脂、特种环氧树脂等诸多新品种。
玻璃纤维增强环氧树脂基复合材料的自润滑性能研究摘要:玻璃纤维增强环氧树脂基复合材料具有广泛的应用前景,然而在实际使用中,摩擦和磨损问题限制了其性能的进一步提高。
为了改善其自润滑性能,需要进行相应的研究。
本文通过文献调研,总结了当前对于玻璃纤维增强环氧树脂基复合材料自润滑性能的研究进展,并提出了进一步的研究方法和方向。
1. 现状分析玻璃纤维增强环氧树脂基复合材料在许多工业领域得到了广泛应用,并取得了较好的效果。
然而,在高温、高速和重载等恶劣环境下,摩擦和磨损现象日益显著。
此外,复合材料中硬质玻璃纤维的直接接触会导致摩擦系数的增加,进一步加剧了摩擦和磨损问题。
因此,提高玻璃纤维增强环氧树脂基复合材料的自润滑性能势在必行。
2. 自润滑机理自润滑是基于材料内部润滑剂释放的机制,润滑剂可以减少材料表面间的摩擦和磨损。
目前常用的润滑剂包括固体润滑剂和液体润滑剂。
固体润滑剂具有较好的耐高温性能和抗压性能,但由于齿轮的运动会破坏固体润滑剂层,从而导致润滑效果的下降。
液体润滑剂可以在摩擦表面形成润滑膜,阻止直接接触,减少摩擦系数和磨损。
因此,选择适当的润滑剂对于改善玻璃纤维增强环氧树脂基复合材料的自润滑性能非常重要。
3. 材料改性方法为了改善玻璃纤维增强环氧树脂基复合材料的自润滑性能,可以采取不同的材料改性方法。
一种常用的方法是在复合材料基体中添加固体或液体润滑剂。
通过此方法,可以有效地降低摩擦系数和磨损,并提高材料的自润滑性能。
另一种方法是在复合材料表面涂覆润滑膜。
涂覆润滑膜不仅可以提高材料的自润滑性能,还可以增加表面的硬度和耐磨性。
此外,还可以通过改变材料组成、优化制备工艺和表面处理等方法来改善自润滑性能。
4. 研究进展目前,国内外学者已经开展了许多关于玻璃纤维增强环氧树脂基复合材料自润滑性能的研究。
其中,很多研究聚焦于润滑剂的选择和添加量的优化。
例如,石墨、二硫化钼和聚四氟乙烯等固体润滑剂的添加可以显著降低材料的摩擦系数和磨损。
树脂基复合材料在航空航天领域的应用进展摘要:复合化是材料的重要发展方向,复合材料作为一种新型材料已经逐渐成为21世纪的主导材料之一,随着复合材料尤其是树脂基增强先进复合材料在航空航天以及其他领域的应用日益广泛,其重要性与巨大的发展潜力也日益为世人所认识和重视,它的发展和应用极大地促进了航天工业的发展进步。
本文主要阐述了复合材料近年来的研究热点,介绍了树脂基复合材料在航天领域中的应用现状,对复合材料未来的发展趋势进行了展望。
关键词:树脂基复合材料航空航天应用发展趋势0引言树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。
其中热固性树脂是以不饱和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。
树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。
由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。
目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。
航天技术不仅要求结构材料质量轻、具有高比模量和高比强度,还要具有一些特殊功能,如防热、隔热、耐高温及耐湿热等特性,复合材料的这些特征及性能和功能的可设计性,使其被大量应用于航天领域1航空应用1.1在飞行器防热方面的应用由于导弹、卫星等飞行器经过高空飞行以超高速进入稠密的大气层时,周围空气受到强烈压缩,使空气温度和压力急剧升高,再者受到严重的气动力和气动热作用,如不采取有效防热措施,飞行器将像流星一样被烧毁。
纤维增强复合材料在航空航天领域中的应用研究近年来,纤维增强复合材料在航空航天领域中的应用越来越受到重视。
以其轻质、高强度、高刚度和耐腐蚀等独特特性,它在飞行器巨大的气动荷载、复杂的工作环境和长期的使用寿命要求下展现了优势,逐渐取代了传统的金属材料,成为未来飞行器领域的关键材料。
首先,纤维增强复合材料在飞行器结构中的应用引发了深刻的革新。
与传统的金属结构相比,复合材料具有更高的比强度和比刚度,能够更好地抵御飞行器在飞行过程中所面临的各种气动荷载和外界环境的侵蚀。
同时,纤维增强复合材料还能够自由设计结构,实现各种复杂的弯曲、弯扭、曲率等形状,为飞行器设计提供了更大的自由度。
其次,纤维增强复合材料在航空航天领域中也广泛应用于飞行器的外壳和机身结构。
相比金属,纤维增强复合材料在重量上具有巨大的优势,能够大幅度减轻飞行器的整体重量,从而提高燃料效率和续航能力。
此外,与金属相比,纤维增强复合材料的腐蚀性也更小,能够更好地抵抗恶劣的天气条件和长时间的暴露,延长飞行器的使用寿命。
此外,纤维增强复合材料在航空航天领域中还有着广泛的应用前景。
例如,炭纤维增强复合材料在卫星结构中的应用已经成为一个新的热点。
卫星作为太空探索和通讯的重要工具,对结构性能和重量要求非常高。
炭纤维增强复合材料以其卓越的力学性能和轻量化特性,非常适合用于卫星的结构制造。
此外,纳米增强复合材料的研究也为航空航天领域的性能提升提供了新思路。
然而,纤维增强复合材料在航空航天领域中的应用也面临一些挑战。
首先,复杂的生产制造过程需要高度技术储备和成本投入。
纤维增强复合材料的制造需要多道工序,包括纤维预浸料的制备、层压成型、热固化等。
这些复杂的工艺要求高度的自动化和控制技术,以确保产品的质量和性能。
其次,纤维增强复合材料在使用过程中的检测和维修也是一个难题。
由于纤维增强复合材料的结构复杂,传统的检测方法往往难以实现全面检测。
此外,一旦发生损伤,纤维增强复合材料的维修也面临着诸多技术和经济问题。
玻璃纤维增强环氧树脂基复合材料各项性能的研究齐齐哈尔大学摘要:玻璃纤维是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差,并不适于作为结构用材,但若抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予其形状以后可以成为优良之结构用材。
本文将对玻璃纤维增强环氧树脂基复合材料的的研究现状及研究方向进行分析,为新的研究方向探索道路。
关键词:玻璃纤维环氧树脂复合材料研究现状研究方向1、前言玻璃纤维增强树脂基复合材料具有轻质高强,疲劳性能、耐久性能和电绝缘性能好等特点,在各个领域都有着广泛的应用,用玻璃纤维和环氧树脂可以制造层合制品,是一类性能优良的绝缘材料,广泛用于电力、电器、电子等领域,玻璃纤维增强树脂基复合材料由于具有高比强度、比模量,而且耐疲劳、耐腐蚀。
最早用于飞机、火箭等,近年来在民用方面发展也很迅猛,在舰船、建筑和体育器械等领域得到应用,并且用量不断增加。
其中,环氧树脂是先进复合材料中应用最广泛的树脂体系,它适用于多种成型工艺,可配制成不同配方,调节粘度范围大,以便适应不同的生产工艺。
它的贮存寿命长,固化时不释放挥发物,同化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,环氧树脂“统治”着高性能复合材料的市场目前,复合材料输电杆塔已在欧美和日本得到应用,其中以美国的研究开发和应用最为成熟。
我国在20世纪50年代对复合材料电杆进行过研究,鉴于当时材料性能和制造工艺的限制,复合材料电杆未能得到推广使用。
近年来,随着复合材料技术的飞速发展和传统输电杆塔的缺陷逐步显露,电力行业开始重视复合材料杆塔的应用研究。
随着电网建设的快速发展,出现了全国联网、西电东送、南北互供的建设格局,输电线路工程口益增多,对钢材的需求越来越大,消耗了大量的矿产资源和能源,在一定程度上加剧了生态环境破坏。
并且,线路杆塔采用全钢制结构,存在质量大、施工运输和运行维护困难等问题。
环氧树脂在飞机制造中的应用研究随着航空业的发展和航空器制造技术的进步,环氧树脂作为一种重要的复合材料,正被广泛应用于飞机制造领域。
环氧树脂具有优良的物理、化学和机械性能,使其成为制造轻质、高强度的航空部件的首选材料。
本文将重点探讨环氧树脂在飞机制造中的应用研究,并分析其优势和挑战。
航空器制造需要材料具备一定的特性,如轻质、高强度、耐腐蚀性、高温性等。
环氧树脂具有低密度、良好的拉伸强度、化学稳定性和耐热性等优点,使其成为制造飞机零部件的理想材料之一。
在部分飞机结构中,如机身、机翼等,环氧树脂复合材料已被广泛应用。
首先,环氧树脂在飞机结构件中的应用值得关注。
轻量化是航空制造的一个重要目标,而环氧树脂具有较低的密度,在保证结构强度的同时能降低飞机整体重量,提高载荷能力。
环氧树脂复合材料具有出色的抗拉强度和弯曲强度,使得制造的飞机结构更加坚韧耐用。
此外,环氧树脂还具有较好的抗疲劳性能,能够在长时间恶劣环境下保持稳定的特性。
其次,环氧树脂在飞机涂装中的应用也不可忽视。
飞机的外部涂装需要具备耐腐蚀性、耐候性和防火性等特点。
环氧树脂涂料能够提供强韧的保护膜,保护飞机表面不受侵蚀。
特殊的环氧树脂涂料还能够耐受极端气候条件,如高温、低温、湿度等,保证涂装的耐久性。
此外,环氧树脂还能够提供一定的防火性能,保护飞机在紧急情况下的安全。
环氧树脂的应用研究还包括飞机内部结构件的制造。
例如,座椅和内饰等部件利用环氧树脂制成,既保证了结构的强度和刚性,又能够提供舒适的乘坐体验。
另外,环氧树脂还可用于飞机绝缘和封装,保证电气系统的稳定性和安全性。
然而,环氧树脂在飞机制造中应用也面临一些挑战。
首先,环氧树脂制造过程中需要严格控制工艺参数,如固化温度和时间,以确保产品的质量和性能。
其次,环氧树脂的成本较高,需要进行合理的成本控制。
此外,环氧树脂在长期使用过程中可能会发生老化,需要进行定期检测和维护。
总之,环氧树脂作为一种重要的复合材料,在飞机制造中具有广泛的应用前景。
碳纤维增强环氧树脂复合材料性与结构及研究1.1.1 复合材料定义复合材料,是指把两种以上宏观上不同的材料,合理地进行复合而制得的一种材料,目的是通过复合材料来提高单一材料所不能发挥的各种特性。
1.1.2 EP/CF复合材料的应用环氧树脂(EP)/碳纤维(CF)复合材料具有比强度、比模量高,密度小,结构尺寸稳定,耐热、耐低温及材料性能可设计等优点,其既可以作为结构材料承载又可以作为功能材料发挥作用,已成为航空航天领域的首选材料。
1.2 双酚A型环氧树脂1.2.1 双酚A型环氧树脂的定义双酚A型环氧树脂是由环氧氯丙烷与双酚A(二酚基丙烷)在碱性催化剂作用下反应而生成的产物,1.2.2 双酚A型环氧树脂的固化原理在环氧树脂的结构中有羟基(〉CH—OH)、醚基(—O—)和极为活泼的环氧基存在,羟基和醚基有高度的极性,使环氧分子与相邻界面产生了较强的分子间作用力,而环氧基团则与介质表面(特别是金属表面)的游离键起反应,形成化学键。
因而,环氧树脂具有很高的黏合力,用途很广,商业上被称作“万能胶“。
此外,环氧树脂还可做涂料、浇铸、浸渍及模具等用途。
但是,环氧树脂在未固化前是呈热塑性的线型结构,使用时必须加入固化剂,固化剂与环氧树脂的环氧基等反应,变成网状结构的大分子,成为不溶且不熔的热固性成品。
环氧树脂在固化前相对分子质量都不高,只有通过固化才能形成体形高分子。
环氧树脂的固化要借助固化剂,固化剂的种类很多,主要有多元胺和多元酸,他们的分子中都含有活波氢原子,其中用得最多的是液态多元胺类,如二亚乙基三胺和三乙胺等。
环氧树脂在室温下固化时,还常常需要加些促进剂(如多元硫醇),已达到快速固化的效果。
固化剂的选择与环氧树脂的固化温度有关,在通常温度下固化一般用多元胺和多元硫胺等,而在较高温度下固化一般选用酸酐和多元酸为固化剂。
不同的固化剂,其交联反应也不同。
1.2.3 双酚A型环氧树脂的结构双酚A型环氧树脂的大分子结构具有的特征有:1)大分子的两端是反应能力很强的环氧基;2)分子主链上有许多醚键,是一种线型聚醚结构;3)n值较大的树脂分子链上有规律地、相距较远地出现许多仲羟基,可以看成是一种长链多元醇;4)主链上还有大量苯环、次甲基和异丙基。
玻璃纤维增强环氧树脂复合材料研究进展玻璃纤维增强环氧树脂复合材料研究进展张玉楠(西南科技大学材料科学与工程学院,绵阳 621010)摘要:玻璃纤维增强环氧树脂是玻璃钢的一种。
本文综述了玻璃纤维增强环氧树脂的一些性能,尤其是力学性能,并介绍了它的成型方法。
概述了玻璃纤维增强环氧树脂的一些应用并提出了展望。
关键词:玻璃纤维;环氧树脂;复合材料;制备Research progress of glass fiber reinforced epoxy resin composite materialYunan Zhang(Southwest University of Science and Technology, Mianyang 621010, China)Abstract:Glass fiber reinforced epoxy resin is a kind of glass fiber reinforced plastic. This paper reviewed some of the properties of the glass fiber reinforced epoxy resin, especially mechanical properties, and introduces its molding method. Summarizes some application of the glass fiber reinforced epoxy resin and put forward. Keywords:glass fiber;epoxy resin;composite material;preparation前言:玻璃纤维增强热固性塑料是指玻璃纤维作为增强材料,热固性塑料(包括环氧树脂、酚醛树脂、不饱和聚酯树脂等)作为基体的纤维增强塑料。
因其比重小,比强度高,比最轻的金属铝还要轻,而比强度比高级合金钢还要高,所以又称为玻璃钢。
玻璃纤维增强环氧树脂基复合材料各项性能的研究首先,我们将分析该复合材料的力学性能。
玻璃纤维增强环氧树脂基复合材料具有良好的强度和刚度,通常具有较高的拉伸、弯曲和冲击强度。
这是由于玻璃纤维的高拉伸强度和环氧树脂的高强度以及它们之间的良好结合所决定的。
此外,研究显示,纤维的长度和取向也对材料的力学性能有显著影响。
因此,在制备材料时,纤维的长度和取向应被精确控制。
其次,我们将研究该复合材料的热学性能。
玻璃纤维增强环氧树脂基复合材料具有良好的热稳定性和耐高温性能。
在高温环境下,纤维和树脂的热膨胀系数应匹配,以避免材料的热应力和破坏。
同时,热导率也是一个重要的热学性能指标,它决定了材料的导热性能和热应力的分布。
因此,热导率的测量和调控也是研究的重点。
第三,我们将研究该复合材料的耐化学性能。
玻璃纤维增强环氧树脂基复合材料通常具有良好的耐化学性能,能够在一定程度上抵抗酸、碱和溶剂的腐蚀。
然而,树脂的化学结构和纤维的表面状态可能对材料的耐化学性产生影响。
因此,研究材料与不同化学物质之间的相互作用,以及其耐腐蚀性能的影响因素是非常重要的。
最后,我们将探讨玻璃纤维增强环氧树脂基复合材料的应用前景。
随着科技的不断进步和工程技术的发展,该复合材料在航空航天、汽车制造、建筑工程和电子设备等领域的应用前景非常广阔。
它具有重量轻、强度高、抗腐蚀等优点,可以显著提高产品的性能和可靠性。
综上所述,玻璃纤维增强环氧树脂基复合材料具有良好的力学性能、热学性能和耐化学性能。
通过深入研究材料的各项性能及其影响因素,我们可以更好地设计和制备该复合材料,从而提高它在各个领域的应用价值。