介质损耗试验
- 格式:ppt
- 大小:8.12 MB
- 文档页数:27
align="center">图5-2 绝缘介质的等效电路表5-2 绝缘电阻测量结果绝缘电阻/MΩ(每隔60s测一次)tanδ与施加电压的关系决定于绝缘介质的性能、绝缘介质工艺处理的好坏和产品结构。
当绝缘介质工艺处理良好时,外施电压与tanδ之间的关系近似一水平直线,且施加电压上升和下降时测得的tanδ值是基本重合的。
当施加电压达到某一极限值时,tanδ曲线开始向上弯曲,见图5-8曲线1。
如果绝缘介质工艺处理得不好或绝缘介质中残留气泡等,则绝缘介质的tanδ比良好绝缘时要大。
另外,由于工艺处理不好的绝缘介质在极低电压下就会发生局部放电,所以,tanδ曲线就会较早地向上弯曲,且电压上升和下降时测得的tanδ值是不相重合的,见图5-8曲线2。
当绝缘老化时,绝缘介质的tanδ反而比良好绝缘时要小,但tanδ开始增长的电压较低,即tanδ曲线在较低电压下即向上弯曲,见图5-8曲线3。
另外,老化的绝缘比较容易吸潮,一旦吸潮,tanδ就会随着电压的上升迅速增大,且电压上升和下降时测得的tanδ 值不相重合,见图5-8曲线4。
2.2 温度特性图5-6 绝缘介质等值电流相量图I C—吸收电流的无功分量I R—吸收电流的有功分量—功率因数角δ—介质损失角图5-7 绝缘介质简化等效电路和等值电流相量图(a)等效电路(b)等值电流相量图C x—绝缘介质的总电容R x—绝缘介质的总泄漏电阻I Cx—绝缘介质的总电容电流I Rx—绝缘介质的总泄漏电流图5-8 绝缘介质tanδ的电压特性tanδ随温度的上升而增加,其与温度之间的关系与绝缘材料的种类、性能和产品的绝缘结构等有关,在同样材料、同样绝缘结构的情况下与绝缘介质的工艺干燥、吸潮和老化程度有关。
对于油浸式变压器,在10℃~40℃范围内,干燥产品的tanδ增长较慢;温度高于40℃,则tanδ的增长加快,温度特性曲线向上逐渐弯曲。
为了比较产品不同温度下的tanδ,GB/T6451—1999国家标准规定了不同温度t下测量的tanδ的换算公式。
介质损耗试验的原理及应用摘要:论述变电站介质损耗试验的概念及意义,引出介质损耗因数tgδ的定义,介绍介质损耗因数试验原理,测量方法及影响试验结果的因素和解决方法,结合工作实际简述现场试验应注意事项。
关键词:介质损耗因数;影响因素;注意事项引言近年来随着电力用户用电量大幅度增高,新型能源供电的加入,特高压交流、直流输电线路建成并投用,将变电站在电网中的地位提升到新的高度,各种电压等级的变电站兴建,变电站内电气一次设备种类的增多。
使电气一次设备高压试验显得尤为重要,在众多的电气设备高压试验项目中,介质损耗试验是必不可少的一环。
1.介质损耗因数的概念及意义在电场作用下,电气设备在输电过程中有一部分能量转变为其他形式的能量,通常为热能。
排除电气设备之间导线连接不紧密、铜铝接触无过渡、输电量过大、户外温度过高等因素,设备发热是由介质损耗引起,所谓介质损耗就是指在电场作用下电介质内部,如果损耗很大,会使电气设备温度升高,导致电气设备绝缘材料发热老化,如果介质温度不断上升,严重时会使电气设备绝缘部分融化、烧焦,丧失绝缘能力,造成击穿,影响变电站正常运行。
因此,介质损耗的大小是衡量绝缘性能的一项重要指标。
但不同设备由于运行电压、结构尺寸等不同,不能通过介质损耗的大小来衡量对比设备的绝缘性能好坏。
因此引入了介质损耗因数tgδ(又称介质损失角正切值)的概念。
介质损耗因数的定义为:介质损耗因数tgδ=(P/Q))*100%通过tgδ的定义可以看出tgδ只与材料特性有关,与材料的尺寸、体积无关,这样以来便于不同设备之间进行比较。
测量介质损耗因数tgδ是判断电气设备的绝缘状况得一种传统且十分有效的方法。
2.介质损耗因数试验的原理测量介质损耗因数的原理分为三种:1)西林电桥是80年代以前广泛使用的现场介损测试仪器。
试验时需配备外部标准电容器,以及10kV升压器及电源控制箱。
需要调节平衡,是由:交流阻抗器、转换开关、检流计、高压标准电容器组成。
电流互感器介质损耗试验方法和接线
电流互感器的介质损耗试验方法可以采用频率变化法或电压比对法。
其中,频率变化法是通过改变电流频率来测量介质损耗,而电压比对法则是通过将互感器与标准电容进行串联并施加相同电压来测量互感器的损耗。
接线方面,一般采用三相四线制,即将互感器的一次侧与被测电流的正相线、零线和负相线分别连接,而二次侧则通过接线端子与继电器或仪表相连。
具体的接线方法可根据互感器的型号和规格来确定,一般需要参考相应的接线图或说明书进行接线。
在进行接线时,要注意接触良好、接线牢固以及避免导线的交叉干扰等问题。
设备介质损耗试验常见问题及对策探讨在设备介质损耗试验中,作为电气绝缘中的重要参数,介质损耗因素的准确测量直接关系到对设备绝缘状况的评价。
由于受到各种因素的影响,介质损耗测量的实际结果与真实值会存在一定程度的偏离,因此,导致试验设备中的试验数据在某些情况下出现负值,影响其有效性。
例如:在无损耗标准电容器的电流大于电压90°时,该电流与试品电容电流之间的夹角为:介质损耗角δ,δ=0°。
当试验存在δ时,试品电容电流受到电压相位有功电流分量的影响将低于无损耗标准电容器电流的角度,那么出现正值;在受到某种因素的影响下,电容电流与电压之间相位差如果超过90°,那么电流有功分量与电压出现两个相反的方向,其介质损耗δ就会出现负值。
1 现场设备介质损耗试验导致负值问题出现的原因介质损耗因素,简写成tanδ。
导致设备tanδ出现负值的因素有许多种:例如:外部对电流的干扰、测量仪器接地不良和仪器中标准电容介质损耗大、电压互感器接地铁芯和底座接地不良以及电磁单元等影响。
1.1 外部对电流的干扰设备介质损耗试验时,外部干扰电流一旦投影直电压相量上,并与电压方向相同的时候,介质损耗因素tanδ也将随着介质损耗角δ的增大而增大;相反,如果投影的方向与电压的方向相反的时候,那么随着介质损耗角δ的缩小而出现负值。
1.2 测量仪器接地不良和标准电容介质损耗过大如下图1所示,互感器一次绕组介质损耗与二次介质损耗时,等值电容为Cx;对地电容为:C10、C20;测量仪器接地不良的时候,接触电阻为:R0。
当等值电容在无损耗的情况下,测量仪器接地正常或不良时所产生的状况分别为:正常R0为0,试验电流中的电流I2超过电压U角度90°,δ为0°;不良,试验电流中的电流I2超过电压U2角度90°,测量电容的结果过大。
由于R0、I1低于I2,因此,电流I2始终超过试验其他支路的电流,导致介质损耗测量出现负值或较小。
介质损耗因数tanδ试验第一节tanδ测量的原理和意义在电压作用下,电介质产生一定的能量损耗,这部分损耗介质损耗或介质损失。
产生介质损耗的原因主要是电介质电导、极化和局部放电。
一、电介质电导引起的损耗...--介质损耗因数tanδ试验第一节tanδ测量的原理和意义在电压作用下,电介质产生一定的能量损耗,这部分损耗介质损耗或介质损失。
产生介质损耗的原因主要是电介质电导、极化和局部放电。
一、电介质电导引起的损耗在电场作用下电介质电导(又称漏导)产生的泄漏电流会造成能量损耗。
这种损耗在交流与直流作用下都存在,且这种损耗与极化、局部放电引起的损耗比较是很小的。
二、极化引起的损耗在交流电压作用下,电介质由于周期性的极化过程,电介质中的带电质点要沿交变电场的方向作往复的有限位移并重新排列。
这时,质点需要克服极化分子间的内摩擦力而造成能量损耗。
极化损耗的大小与电介质的性能、结构、温度、交流电压频率等有关。
三、局部放电引起的损耗绝缘材料中,不可避免地会有些气隙或油隙。
在交流电压下,电场分布主要与该材料的介电系数ε成反比,气体的介电系数一般比固体绝缘材料的要低得多,因此承受的电场强度就大,当外加电压足够高时,气隙中首先发生局部放电。
固体中气隙放电前后电场示意图,如图4-1所示。
气隙放电形成的电荷,在外施电场E0作用下移动到气隙壁上;这些电荷又形成反电场E,削弱了气隙中的电场,很可能使气隙中放电不再继承下去,如图4—1(b)所示。
但是如外加的为交流电压,半周后外施电场E0就反向了,正好与前半周气隙中电荷形成的反电场E 同向,加强了气隙中电场强度,使气隙中放电在更低电压下发生。
所以交流电压下绝缘体里的局部放电及介质损耗比直流电压下强烈。
在油浸电容器、电容套管等的设计制造及运行气隙放电形成的电荷,在外施电场E0作用下移动到气隙壁上;这些电荷又形成反电场E,削弱了气隙中的电场,很可能使气隙中放电不再继续下去,如图4—1(b)所示。
变压器试验之绕组介质损耗试验变压器之绕组介质损耗试验绕组介质损耗试验试验目的测试变压器绕组连同套管的介质损耗角正切值的目的主要是检查变压器整体是否受潮、绝缘油及纸是否劣化、绕组上是否附着油泥及存在严重局部缺陷等。
它是判断变压器绝缘状态的一种较有效的手段,近年来随着变压器绕组变形测试的开展,测量变压器绕组的及电容量可以作为绕组变形判断的辅助手段之一。
试验仪器选择全自动抗干扰介质损耗测试仪。
试验试验步骤及接线图(1)变压器绕组连同套管tgδ和电容量的测量1) 首先将介损测试仪接地。
2) 将高压侧A、B、C三绕组短接起来。
3) 将其他非被试绕组三相及中性点短接起来,并接地(2#)。
4) 将红色高压线一端芯线插入测试仪“高压输出”插座上,注意要将红色高压线的外端接地屏蔽线接地。
5) 红色高压线另一端接高压绕组的短接线(1#)。
6) 连接好电源输入线。
7) 检查试验接线正确,操作人员征得试验负责人许可后方可加压试验。
8) 打开电源,仪器进入自检。
9) 自检完毕后选择反接线测量方式。
10) 预置试验电压为10KV。
11) 接通高压允许开关。
12) 按下启动键开始测量。
注意:加压过程中试验负责人履行监护制度。
13) 测试完成后自动降压到零测量结束。
14) 关闭高压允许开关后,记录所测量电容器及介损值。
15) 打印完实验数据后,关闭总电源。
16) 用专用放电棒将被试绕组接地并充分放电,变更试验接线,同理的方法测量变压器低压绕组连同套管tgδ值和电容量。
17) 首先断开仪器总电源。
18) 在高压端短接线上挂接地线。
19) 拆除高压测试线。
20) 拆除高压套管短接线。
21) 拆除其他非被试绕组的接地线及短接线。
22) 最后拆除仪器其它试验线及地线。
23) 试验完毕后,填写试验表格。
(2)变压器电容型套管tgδ和电容量的测量1) 首先将介损测试仪接地。
2) 将高压侧A、B、C三绕组短接起来。
3) 将非测试的其他绕组中压侧三相及中性点短接起来,并接地。