介质损耗角正切值的测量讲解
- 格式:ppt
- 大小:666.50 KB
- 文档页数:17
关于片状独石陶瓷电容器的 静电容量和介质损耗角正切的测量1.前言 (2)2.片状独石陶瓷电容器的特性 (2)2-1.温度特性 (2)2-2.电压特性 (3)2-3.频率特性 (5)2-4.总结 (6)3.LCR仪表和测试夹具 (6)3-1.LCR仪表 (6)3-2.测试夹具 (7)4.LCR仪表的测量原理 (7)4-1.测量原理 (8)4-2.测量电压 (8)4-3.静电容量的测量电路模式 (9)5.根据LCR仪表4284A的静电容量的测量方法 (10)5-1.接通LCR仪表的电源 (10)5-2.已安装测试夹具的状态 (10)5-3.测量器的设定 (10)5-4.校正 (14)5-5.测量 (15)6.根据LCR仪表4278A的静电容量的测量方法 (15)6-1.LCR仪表的电源接通 (15)6-2.已安装测试夹具的状态 (15)6-3.测量器的设定 (15)6-4.校正 (16)6-5.测量 (17)7.后记 (18)TD.No.C101.前言用LCR仪表测量高诱电率型(B特性,F特性)的片状独石陶瓷电容器时,有时不能获得与标称静电容量值一样的值。
其主要原因是,第一:片状独石陶瓷电容器的B、F特性的静电容量和介质损耗角正切,虽然随温度、电压(AC、DC)及频率而改变,但却无法按照规定的条件而测量。
第二:测量装置的设定不符合或测量装置的功能不能满足规定条件。
其解决方法是,第一:理解片状独石陶瓷电容器的特性,要规定温度、电压(AC、DC)、频率3种条件以后测量。
实际上,已经规定在国家标准JISC5101-1-1998的静电容量(4.7项)及介质损耗角正切(4.8项)上,其高诱电率型电容器的静电容量和介质损耗角正切的测量条件如表1所示。
此时的测量温度为20℃。
表1测量条件标称静电容量 测量频率 测量电压C≤10μF(10V以上) 1±0.1kHz 1.0±0.2VrmsC≤10μF(6.3V以下) 1±0.1kHz 0.5±0.1VrmsC>10μF 120±24Hz 0.5±0.1Vrms第二:要充分理解测量装置的功能,确认是否满足表1的测量条件以后请使用测量装置。
1、介质损耗什么就是介质损耗:绝缘材料在电场作用下,由于介质电导与介质极化得滞后效应,在其内部引起得能量损耗。
也叫介质损失,简称介损。
2、介质损耗角δ在交变电场作用下,电介质内流过得电流相量与电压相量之间得夹角(功率因数角Φ)得余角(δ)。
简称介损角。
3、介质损耗正切值tgδ又称介质损耗因数,就是指介质损耗角正切值,简称介损角正切。
介质损耗因数得定义如下:如果取得试品得电流相量与电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic与电阻电流IR合成,因此:这正就是损失角δ=(90°-Φ)得正切值。
因此现在得数字化仪器从本质上讲,就是通过测量δ或者Φ得到介损因数。
测量介损对判断电气设备得绝缘状况就是一种传统得、十分有效得方法。
绝缘能力得下降直接反映为介损增大。
进一步就可以分析绝缘下降得原因,如:绝缘受潮、绝缘油受污染、老化变质等等。
测量介损得同时,也能得到试品得电容量。
如果多个电容屏中得一个或几个发生短路、断路,电容量就有明显得变化,因此电容量也就是一个重要参数。
4、功率因数cosΦ功率因数就是功率因数角Φ得余弦值,意义为被测试品得总视在功率S中有功功率P所占得比重。
功率因数得定义如下:有得介损测试仪习惯显示功率因数(PF:cosΦ),而不就是介质损耗因数(DF:tgδ)。
一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。
(1) 容量与误差:实际电容量与标称电容量允许得最大偏差范围、一般使用得容量误差有:J级±5%,K 级±10%,M级±20%、精密电容器得允许误差较小,而电解电容器得误差较大,它们采用不同得误差等级、常用得电容器其精度等级与电阻器得表示方法相同、用字母表示:D级—±0、5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%、(2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受得最大直流电压,又称耐压、对于结构、介质、容量相同得器件,耐压越高,体积越大、(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量得相对变化值、温度系数越小越好、(4) 绝缘电阻:用来表明漏电大小得、一般小容量得电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆、电解电容得绝缘电阻一般较小、相对而言,绝缘电阻越大越好,漏电也小、(5) 损耗:在电场得作用下,电容器在单位时间内发热而消耗得能量、这些损耗主要来自介质损耗与金属损耗、通常用损耗角正切值来表示、(6) 频率特性:电容器得电参数随电场频率而变化得性质、在高频条件下工作得电容器,由于介电常数在高频时比低频时小,电容量也相应减小、损耗也随频率得升高而增加、另外,在高频工作时,电容器得分布参数,如极片电阻、引线与极片间得电阻、极片得自身电感、引线电感等,都会影响电容器得性能、所有这些,使得电容器得使用频率受到限制、不同品种得电容器,最高使用频率不同、小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ、不同材质电容器,最高使用频率不同、COG(NPO)材质特性温度频率稳定性最好,X7R次之,Y5V(Z5U)最差、贴片电容得材质规格贴片电容目前使用NPO、X7R、Z5U、Y5V等不同得材质规格,不同得规格有不同得用途、下面我们仅就常用得NPO、X7R、Z5U与Y5V来介绍一下它们得性能与应用以及采购中应注意得订货事项以引起大家得注意、不同得公司对于上述不同性能得电容器可能有不同得命名方法,这里我们引用得就是敝司三巨电子公司得命名方法,其她公司得产品请参照该公司得产品手册、NPO、X7R、Z5U与Y5V得主要区别就是它们得填充介质不同、在相同得体积下由于填充介质不同所组成得电容器得容量就不同,随之带来得电容器得介质损耗、容量稳定性等也就不同、所以在使用电容器时应根据电容器在电路中作用不同来选用不同得电容器、一NPO电容器NPO就是一种最常用得具有温度补偿特性得单片陶瓷电容器、它得填充介质就是由铷、钐与一些其它稀有氧化物组成得、NPO电容器就是电容量与介质损耗最稳定得电容器之一、在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率得变化小于±0、3ΔC、NPO电容得漂移或滞后小于±0、05%,相对大于±2%得薄膜电容来说就是可以忽略不计得、其典型得容量相对使用寿命得变化小于±0、1%、NPO电容器随封装形式不同其电容量与介质损耗随频率变化得特性也不同,大封装尺寸得要比小封装尺寸得频率特性好、NPO 电容器适合用于振荡器、谐振器得槽路电容,以及高频电路中得耦合电容、二X7R电容器X7R电容器被称为温度稳定型得陶瓷电容器、当温度在-55℃到+125℃时其容量变化为15%,需要注意得就是此时电容器容量变化就是非线性得、X7R电容器得容量在不同得电压与频率条件下就是不同得,它也随时间得变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%、X7R电容器主要应用于要求不高得工业应用,而且当电压变化时其容量变化就是可以接受得条件下、它得主要特点就是在相同得体积下电容量可以做得比较大、三Z5U电容器Z5U电容器称为”通用”陶瓷单片电容器、这里首先需要考虑得就是使用温度范围,对于Z5U电容器主要得就是它得小尺寸与低成本、对于上述三种陶瓷单片电容起来说在相同得体积下Z5U电容器有最大得电容量、但它得电容量受环境与工作条件影响较大,它得老化率最大可达每10年下降5%、尽管它得容量不稳定,由于它具有小体积、等效串联电感(ESL)与等效串联电阻(ESR)低、良好得频率响应,使其具有广泛得应用范围、尤其就是在退耦电路得应用中、Z5U电容器得其她技术指标如下:工作温度范围+10℃--- +85℃温度特性+22% ---- -56%介质损耗最大4%四Y5V电容器Y5V电容器就是一种有一定温度限制得通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%、Y5V得高介电常数允许在较小得物理尺寸下制造出高达4、7μF电容器、Y5V电容器得其她技术指标如下:工作温度范围-30℃--- +85℃温度特性+22% ---- -82%介质损耗最大5%For personal use only in study and research; not for mercial use。
培训科目2 电流互感器介质损耗角正切值tanδ的测试(JN18-2-2-04)【模块描述】本模块介绍电流互感器介质损耗角正切值tanδ的测试方法和技术要求。
通过测试工作流程的介绍,掌握电流互感器介质损耗角正切值tanδ测试前的准备工作和相关安全、技术措施、测试方法、技术要求及测试数据分析判断。
【正文】一、测试目的电流互感器介质损耗角正切值tanδ的测试能灵敏地发现油浸链式和串级绝缘结构电流互感器绝缘受潮、劣化及套管绝缘损坏等缺陷,对油纸电容型电流互感器由于制造工艺不良造成电容器极板边缘的局部放电和绝缘介质不均匀产生的局部放电、端部密封不严造成底部和末屏受潮、电容层绝缘老化及油的介电性能下降等缺陷,也能灵敏地反映。
所以介质损耗角正切值tanδ是判定电流互感器绝缘介质是否存在局部缺陷、气泡、受潮及老化等的重要指标。
二、测试仪器、设备的选择tanδ的测试可选用QSl型高压西林电桥或数字式自动介损测试仪。
所选仪器必须符合《高压介质损耗测试仪通用技术条件》(DL/T962)要求,并按期进行校验,保证其测量准确性。
三、危险点分析及控制措施1.防止高处坠落应使用专用绝缘梯上下,在电流互感器上作业应系好安全带。
对220kV及以上电流互感器,需解开高压引线时,宜使用高处作业车(或高处检修作业架),严禁徒手攀爬电流互感器。
2.防止高处落物伤人高处作业应使用工具袋,上下传递物件应用绳索拴牢传递,严禁抛掷。
3.防止人员触电拆、接试验接线前,应将被试设备对地充分放电,以防止剩余电荷、感应电压伤人及影响测量结果。
试验仪器的金属外壳应可靠接地,仪器操作试验人员必须站在绝缘垫上或穿绝缘鞋操作仪器。
测试前应与检修负责人协调,不允许有交叉作业。
四、测试前的准备工作1.了解被试设备现场情况及试验条件查勘现场,查阅相关技术资料,包括该设备历年试验数据及相关规程等,掌握该设备运行及缺陷情况。
2.测试仪器、设备准备选择合适的QSl型高压西林电桥、标准电容、操作箱、10kV升压器(或数字式自动介质损耗测试仪)、测试线、温(湿)度计、放电棒、接地线、梯子、安全带、安全帽、电工常用工具、试验临时安全遮栏、标示牌等,并查阅测试仪器、设备及绝缘工器具的检定证书有效期。
实验二.介质损耗角正切值的测量一.实验目的:学习使用QS1型西林电桥测量介质损耗正切值的方法。
二.预习要点:概念:介质损耗、损耗角、交流电桥判断:介质损耗是表征介质交流损耗的参数(直流损耗用电导就可表征),包括电导损耗和电偶损耗;测量tgδ值对检测大面积分布性绝缘缺陷或贯穿性绝缘缺陷较灵敏和有效,但对局部性非贯穿性绝缘缺陷却不灵敏和不太有效。
推理:中性介质的介质损耗主要是电导损耗,极性介质的介质损耗则由电导损耗和电偶损耗两部分组成。
相关知识点:介质极化、偶极子、漏导。
三.实验项目:1.正接线测试2.反接线测试四.实验说明:绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值( tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。
用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷:绝缘介质的整体受潮;绝缘介质中含有气体等杂质;浸渍物及油等的不均匀或脏污。
测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法及瓦特表法。
目前,我国多采用平衡电桥法,特别是工业现场广泛采用QS1型西林电桥。
这种电桥工作电压为10Kv,电桥面板如图2-1所示,其工作原理及操作方法简介如下:⑴.检流计调谐钮⑵.检流计调零钮⑶.C4电容箱(tgδ)⑷.R3电阻箱⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮⑺.检流计电源开关⑻.检流计标尺框⑼.+tgδ/-tgδ及接通Ⅰ/断开/接通Ⅱ切换钮⑽.检流计电源插座⑾.接地⑿.低压电容测量⒀.分流器选择钮⒁.桥体引出线1.工作原理:原理接线图如图2-2所示,桥臂BC接入标准电容 C N(一般CN=50pf),桥臂BD由固定的无感电阻R 4和可调电容C 4并联组成,桥臂AD接入可调电阻R 3,对角线AB上接入检流计G,剩下一个桥臂AC就接被试品 C X。
高压试验电压加在CD之间,测量时只要调节R 3和C4就可使G中的电流为零,此时电桥达到平衡。
变压器试验之绕组介质损耗试验变压器之绕组介质损耗试验绕组介质损耗试验试验目的测试变压器绕组连同套管的介质损耗角正切值的目的主要是检查变压器整体是否受潮、绝缘油及纸是否劣化、绕组上是否附着油泥及存在严重局部缺陷等。
它是判断变压器绝缘状态的一种较有效的手段,近年来随着变压器绕组变形测试的开展,测量变压器绕组的及电容量可以作为绕组变形判断的辅助手段之一。
试验仪器选择全自动抗干扰介质损耗测试仪。
试验试验步骤及接线图(1)变压器绕组连同套管tgδ和电容量的测量1) 首先将介损测试仪接地。
2) 将高压侧A、B、C三绕组短接起来。
3) 将其他非被试绕组三相及中性点短接起来,并接地(2#)。
4) 将红色高压线一端芯线插入测试仪“高压输出”插座上,注意要将红色高压线的外端接地屏蔽线接地。
5) 红色高压线另一端接高压绕组的短接线(1#)。
6) 连接好电源输入线。
7) 检查试验接线正确,操作人员征得试验负责人许可后方可加压试验。
8) 打开电源,仪器进入自检。
9) 自检完毕后选择反接线测量方式。
10) 预置试验电压为10KV。
11) 接通高压允许开关。
12) 按下启动键开始测量。
注意:加压过程中试验负责人履行监护制度。
13) 测试完成后自动降压到零测量结束。
14) 关闭高压允许开关后,记录所测量电容器及介损值。
15) 打印完实验数据后,关闭总电源。
16) 用专用放电棒将被试绕组接地并充分放电,变更试验接线,同理的方法测量变压器低压绕组连同套管tgδ值和电容量。
17) 首先断开仪器总电源。
18) 在高压端短接线上挂接地线。
19) 拆除高压测试线。
20) 拆除高压套管短接线。
21) 拆除其他非被试绕组的接地线及短接线。
22) 最后拆除仪器其它试验线及地线。
23) 试验完毕后,填写试验表格。
(2)变压器电容型套管tgδ和电容量的测量1) 首先将介损测试仪接地。
2) 将高压侧A、B、C三绕组短接起来。
3) 将非测试的其他绕组中压侧三相及中性点短接起来,并接地。
介质损耗角tanδ的解释序号:1介质损耗角tanδ的解释在电学和电子领域中,我们经常会遇到一个参数,被称为介质损耗角(tanδ)。
这个参数用于衡量介质中电能转化为热能的能力。
在本文中,我们将深入探讨介质损耗角的定义、原因、测量方法以及其在实际应用中的重要性。
2. 介质损耗角的定义和解释介质损耗角(tanδ)是指在交流电场中,介质对电能的损耗程度。
它是介质电导率和介质电容率之间相对的比例。
介质损耗角的具体定义是介质中的有功损耗与无功损耗之比的正切值。
3. 介质损耗角的原因介质损耗角的存在是由于介质中的散射、吸收、导电等因素造成的。
当交流电场作用于介质中的分子或原子时,它们会因为电场的变化而发生运动,导致能量的转化和损耗。
4. 介质损耗角的测量方法测量介质损耗角是通过使用特定的测试仪器来完成的。
其中最常用的方法是使用沉浸在介质中的金属电极。
通过施加不同频率和电压的交流电,测量介质中的电流和相位差,从而计算出介质损耗角的值。
5. 介质损耗角在实际应用中的重要性介质损耗角在许多领域中都有重要的应用。
在电力系统中,高压电缆和电力变压器中的绝缘材料的损耗角直接影响电能的传输效率。
在电子器件中,介质损耗角的大小与电容器和电感器的性能密切相关。
它还在射频和微波电路设计中发挥关键作用,因为介质损耗角的大小会影响电路的带宽和纹波。
在无线通信和光纤通信领域中,了解介质损耗角有助于提高信号的传输质量和系统的可靠性。
6. 我对介质损耗角的观点和理解介质损耗角是一个非常重要的参数,它揭示了介质中电能转化为热能的过程。
在我看来,了解介质损耗角的原因和测量方法对于工程师和科研人员来说都至关重要。
只有通过深入理解和准确测量介质损耗角,我们才能提出有效的解决方案来改善介质中电能的传输和转化效率。
通过本文的讨论,我们希望读者对介质损耗角有了更清晰的认识,并且能够将其应用于实际工程和科学研究中。
介质损耗角是电学和电子领域中一个复杂而又有挑战性的概念,但它也是推动技术进步和创新的重要因素之一。
1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。
也叫介质损失,简称介损。
2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。
简称介损角。
3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。
介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。
因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。
测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。
绝缘能力的下降直接反映为介损增大。
进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。
测量介损的同时,也能得到试品的电容量。
如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。
4、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。
功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。
一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。
(1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围.一般使用的容量误差有:J级±5%,K级±10%,M级±20%.精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级.常用的电容器其精度等级和电阻器的表示方法相同.用字母表示:D级—±0.5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受的最大直流电压,又称耐压.对于结构、介质、容量相同的器件,耐压越高,体积越大.(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值.温度系数越小越好.(4) 绝缘电阻:用来表明漏电大小的.一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越大越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通常用损耗角正切值来表示.(6) 频率特性:电容器的电参数随电场频率而变化的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能.所有这些,使得电容器的使用频率受到限制.不同品种的电容器,最高使用频率不同.小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ.不同材质电容器,最高使用频率不同.COG(NPO)材质特性温度频率稳定性最好,X7R次之,Y5V(Z5U)最差.贴片电容的材质规格贴片电容目前使用NPO、X7R、Z5U、Y5V等不同的材质规格,不同的规格有不同的用途.下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意.不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是敝司三巨电子公司的命名方法,其他公司的产品请参照该公司的产品手册.NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同.在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同.所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器.一NPO电容器NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器.它的填充介质是由铷、钐和一些其它稀有氧化物组成的.NPO电容器是电容量和介质损耗最稳定的电容器之一.在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC.NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的.其典型的容量相对使用寿命的变化小于±0.1%.NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好.NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容.二X7R电容器X7R电容器被称为温度稳定型的陶瓷电容器.当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的.X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%.X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下.它的主要特点是在相同的体积下电容量可以做的比较大.三Z5U电容器Z5U电容器称为”通用”陶瓷单片电容器.这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本.对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量.但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%.尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围.尤其是在退耦电路的应用中.Z5U电容器的其他技术指标如下:工作温度范围+10℃--- +85℃温度特性+22% ---- -56%介质损耗最大4%四Y5V电容器Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%.Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器.Y5V电容器的其他技术指标如下:工作温度范围-30℃--- +85℃温度特性+22% ---- -82%介质损耗最大5%For personal use only in study and research; not for commercial use。
介质损耗介质损耗角介质损耗正切值tgδ关于介质损耗的一些基本概念1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。
也叫介质损失,简称介损。
2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。
简称介损角。
3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。
介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。
因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。
测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。
绝缘能力的下降直接反映为介损增大。
进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。
测量介损的同时,也能得到试品的电容量。
如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。
4、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。
功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。
一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。
5、高压电容电桥高压电容电桥的标准通道输入标准电容器的电流、试品通道输入试品电流。
通过比对电流相位差测量tgδ,通过出比电流幅值测量试品电容量。
因此用电桥测量介损还需要携带标准电容器、升压PT和调压器。
接线也十分烦琐。
国内常见高压电容电桥有:6、高压介质损耗测量仪简称介损仪,是指采用电桥原理,应用数字测量技术,对介质损耗角正切值和电容量进行自动测量的一种新型仪器。
一般包含高压电桥、高压试验电源和高压标准电容器三部分。
1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。
也叫介质损失,简称介损。
2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。
简称介损角。
3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。
介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。
因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。
测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。
绝缘能力的下降直接反映为介损增大。
进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。
测量介损的同时,也能得到试品的电容量。
如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。
4、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。
功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。
一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。
(1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围.一般使用的容量误差有:J级±5%,K级±10%,M级±20%.精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级.常用的电容器其精度等级和电阻器的表示方法相同.用字母表示:D级—±0.5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受的最大直流电压,又称耐压.对于结构、介质、容量相同的器件,耐压越高,体积越大.(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值.温度系数越小越好.(4) 绝缘电阻:用来表明漏电大小的.一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越大越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通常用损耗角正切值来表示.(6) 频率特性:电容器的电参数随电场频率而变化的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能.所有这些,使得电容器的使用频率受到限制.不同品种的电容器,最高使用频率不同.小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ.不同材质电容器,最高使用频率不同.COG(NPO)材质特性温度频率稳定性最好,X7R次之,Y5V(Z5U)最差.贴片电容的材质规格贴片电容目前使用NPO、X7R、Z5U、Y5V等不同的材质规格,不同的规格有不同的用途.下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意.不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是敝司三巨电子公司的命名方法,其他公司的产品请参照该公司的产品手册.NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同.在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同.所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器.一NPO电容器NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器.它的填充介质是由铷、钐和一些其它稀有氧化物组成的.NPO电容器是电容量和介质损耗最稳定的电容器之一.在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC.NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的.其典型的容量相对使用寿命的变化小于±0.1%.NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好.NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容.二X7R电容器X7R电容器被称为温度稳定型的陶瓷电容器.当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的.X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%.X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下.它的主要特点是在相同的体积下电容量可以做的比较大.三Z5U电容器Z5U电容器称为”通用”陶瓷单片电容器.这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本.对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量.但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%.尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围.尤其是在退耦电路的应用中.Z5U电容器的其他技术指标如下:工作温度范围+10℃--- +85℃温度特性+22% ---- -56%介质损耗最大4%四Y5V电容器Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%.Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器.Y5V电容器的其他技术指标如下:工作温度范围-30℃--- +85℃温度特性+22% ---- -82%介质损耗最大5%For personal use only in study and research; not for commercial use。