轴向力及其平衡
- 格式:ppt
- 大小:1004.50 KB
- 文档页数:13
平衡轴向力的方法平衡轴向力的方法背景介绍在物体的运动过程中,轴向力的平衡是非常重要的。
如果轴向力不平衡,将导致物体运动不稳定甚至出现危险。
因此,掌握平衡轴向力的方法是每位资深创作者必备的技能。
方法一:调整载荷分布1.观察物体的载荷分布情况,如果发现某个区域的载荷过大,可以采取以下方法进行调整:–转移载荷:将过重的载荷从一个区域转移到另一个区域,以实现平衡。
–重新分配载荷:将较轻的载荷移动到过重的区域,实现平衡。
2.通过合理设计物体的结构,实现载荷分布的平衡:–增加支撑点:在物体上增加支撑点,使得载荷分散到更多的支撑点上,实现平衡。
–使用支撑材料:在物体的关键区域使用更坚固的材料,增加支撑力,实现平衡。
方法二:调整运动速度1.调整转速:如果物体的轴向力不平衡是由于旋转速度过快或过慢导致的,可以采取以下方法进行调整:–减速:降低旋转速度,减小轴向力。
–加速:增加旋转速度,平衡轴向力。
2.调整运动方向:–改变物体运动的方向,使得轴向力得到平衡。
方法三:使用平衡器1.在物体上添加平衡器,例如平衡块,以实现轴向力的平衡。
2.使用电子平衡器进行实时监测,根据监测结果进行相应的调整,保持轴向力的平衡状态。
方法四:考虑空气动力学效应1.分析物体在运动过程中的空气动力学特性,了解空气对物体产生的阻力和轴向力。
2.根据分析结果,采取相应的措施,减小或者平衡空气对物体产生的轴向力。
方法五:实施质量调整1.增加或减小物体的质量,在合适的位置添加质量块,实现轴向力的平衡。
2.通过质量调整,改变物体的转动惯量,从而影响轴向力的平衡。
以上是一些针对平衡轴向力的方法,创作者可以根据实际需求选择合适的方法来实现轴向力的平衡。
通过合理应用这些方法,将能够提高物体的稳定性和安全性,为创作活动提供有力支持。
离心泵轴向力产生原因及平衡方法
离心泵轴向力是指泵转轴非对称运动时侧向受力产生的向力,主要有它的重力和压力及其流体动作、离心力及它所伴随的中间体及相关共振引起的振动负责。
离心泵的轴向力会引起机械设备的振动,受力部位的设计和动态特性容易导致系统发生故障,影响机械设备的安全运行。
要解决离心泵轴的力的问题,可以采取几种方法来平衡轴向力。
首先,应注重设备运行的稳定性和安全性,平衡轴向力的设计方法平衡前驱和滞后力已经成为离心泵轴向力平衡的主要方法。
使用特制的前驱和滞后比例和补偿调整环可以控制转子位移,使转子在设定点位置得到控制,这样可以最大限度地降低轴向力。
其次,采用改变泵头形状的方法平衡轴向力,不仅减小了轴向力,还提高了泵的效率。
再次,改变离心泵的安装方式和改变叶轮的支撑结构,也可以减小轴向力。
最后,应注意定期检查离心泵的中间体的物理和化学特性,防止出现可能引起振动的化学或物理性变化,同时增加阻尼器的频率也能减小轴向力产生的振动。
总之,要想有效地平衡离心泵轴向力,需要主要综合采取以上几种措施。
一方面,针对轴向力分析,检测设备的稳定性和安全性,利用特制的前驱和滞后力方法控制轴的位移;另一方面,要注重改变离心泵的安装方法和支撑形状,使泵头变化成矩形,以提高泵的效率。
还要定期检查离心泵中间体,并增加阻尼器的频率,控制泵轴的动态平衡。
第10讲:轴向力径向力及平衡10.1 轴向力产生的原因1. 泵在运转时,叶轮前后盖板压力不对称产生轴向力,其力的方向指向吸入口方向。
2. 动反力:液体从吸入口到排出口改变方向时作用在叶片上的力,该力指向叶轮后面。
3. 泵内叶轮进口压力与外部大气压不同在轴端和轴台阶上产生的轴向力。
4. 立式泵转子重量引起的轴向力,力的方向指下面。
5. 其它因素:泵腔内的径向流动影响压力分布;叶轮二侧密封环不同产生轴向力。
10.2 轴向力的计算10.2.1 叶轮前后盖板不对称产生的盖板力A 1假设盖板二侧腔的液体无泄漏流动,并以叶轮旋转角速度之半ω/2旋转,则任意半径R 处的压头h ‘为:h ‘=(ω2/8g )(R 22-R 2) R 2-叶轮外径半径假定叶轮进口轴面速度与出口轴面速度相等,V m1=V m2, 进口圆周分速度V u1=0叶轮出口势扬程H P =H T -((g H T /u 2)2/2g )= H T (1-(g H T //2u 22)叶轮后盖板任意半径处,作用的压头差为:h =H P -h ‘=H P -(ω2/8g )(R 22-R 2)将上式二侧乘以液体密度ρ和重力加速度g ,并从轮毂半径积分到密封环半径,则得盖泵轴向力A 1=πρg(R m 2-R h 2)[H P -(ω2/8g )((R 22-(R m 2+R h 2)/2))] 10.2.2 动反力A 2A 2=ρQ t (V mo -V m3COO α) (N )其中ρ-流体密度 (Kg/m 3) Q t -泵理论流量V mo V m3 -叶片进口稍前和出口稍后的轴面流速 α-叶轮出口轴面速度与轴线方向的夹角 10.2.3 总的轴向力:A= A 1-A 2 对多级泵:A =(i -1)(A C )+ A S i -叶轮级数 A C -次级叶轮轴向力 A S -首级叶轮轴向力按上述方法计算得到的轴向力,通常比实际的要小15~20%。
离心泵轴向力分析和平衡方法探讨曹昆朋摘要:在离心泵工作的过程中,转子会受到一个轴向推力,其和轴心线相互平行。
如果该力得不到有效的控制,在其作用下转子可能会出现一种轴向窜动的情况,这时就会引发转动部件以及固定部件之间直接接触,当这种情况发生就会引发泵零部件非正常运行。
对离心泵的轴向力产生和平衡方法作了详细的叙述,希望可以起到一定的作用。
关键词:离心泵;轴向力分析;平衡方法前言:高速离心泵的轴向力平衡方法有平衡孔、平衡管、背叶片、平衡鼓及平衡盘等方式。
背叶片通过降低叶轮盘侧流体压力,从而来减少叶轮盘侧的方向指向进口的轴向力,但会增加轴功,致使效率降低,不是高速泵轴向力平衡的首选方法。
叶轮对称分布是多级高速泵较有效的轴向力平衡方法,但结构较复杂,因此也不是理想的轴向力平衡方法。
在本文中对平衡方法进行了相关的探讨。
1.离心泵工作原理及基本性能1.1工作原理离心泵起到主要作用的是叶轮,液体能量主要是依靠叶轮旋转来获得的,其减速液体动能在蜗壳中被收集起来,将液体所具有的动能转变成压力能,而起到压送液体的作用。
当离心泵内充满液体的情况下,叶轮旋转产生离心力,在离心力作用下叶道内部的液体借助于叶片的作用甩向外围流进泵壳,通过排出管排出;另外液体还会受到离心力的作用从中心高速向四周流动,于是叶轮的中心部位压力降低,形成真空状态,且低于大气压力;因此,液体在这个压力差的作用下,由吸液池进入泵内,使离心泵能连续不断地进而进行一系列液体的吸入和流出。
1.2离心泵基本性能(1)离心泵的特点是具有大流量,而且相对稳定,但是需要注意的是可能会随着扬程发生变化。
(2)扬程在这一原理中的主要作用就是决定了离心泵当中的叶轮外径,以及叶轮自身的转速大小。
(3)扬程不仅仅与叶轮的外径与转速有关系,还与轴功率与流量之间存在一种对应关系。
(4)离心泵的吸入高度通常比较小,在实际操作当中可能会出现汽蚀现象。
(5)具有很高的转速,而且如果相对流量比较低,那么就会降低效率,如果相对流量比较高,效率也就会提高。
第五节多级汽轮机的轴向推力及其平衡2. 5.1 轴向推力在轴流式汽轮机中,通常是高压蒸汽由一端进入,低压蒸汽由另一端流出,从整体看,蒸汽对汽轮机转子施加了一个由高压端指向低压端的轴向力,使汽轮机转子有向低压端移动的趋势,这个力就称为转子的轴向推力。
(一)冲动式汽轮机的轴向推力整个转子上的轴向推力主要是各级轴向推力的总合。
作用在冲动级上的轴向推力是由作用在动叶上的轴向推力、作用在叶轮面上的轴向推力以及作用在轴的凸肩上的轴向推力三部分组成。
1.作用在动叶上的轴向推力如图2.5.1所示作用在动叶上的轴向推力是由动叶前后的静压差和汽流在动叶中轴向分速度改变所生成的。
(2.5.1)在冲动级中,一般轴向分速度都不大,加之动叶进口的轴向通流面积和蒸汽比容的改变都不大,因此汽流流经动叶时的轴向分速度的改变一般都很小。
由汽流轴向分速度的改变和产生的轴向推力一般都可忽略不计。
引入压力反动度的概念,压力反动度定义为(2.5.2)于是(2.5.3)则作用在动叶上的轴向推力可写成(2.5.4)对于速度级,应计算在两列动叶上所受静压差产生的推力之和,若是部分进汽级,则应乘以部分进汽度e。
由于h-s图上同一压差的等压线距离越向下越大,因此各级压力反动度都小于该级比焓降反动度,用代替所算得的轴向推力偏大,偏于安全,故可认为作用在动叶上的轴向推力正比于。
2.作用在叶轮面上的轴向推力根据图2.5.1的符号,作用在叶轮面上的轴向推力可写成(2.5.5)如果叶轮两侧的轮毂直径相同,即则有(2.5.5a)定义叶轮反动度,则又有(2.5.5b)由式2.5.5b可见,叶轮面上的轴向推力正比于。
3.作用在轴的凸肩上轴向推力在汽轮机轴的轴封套和隔板轴封内轴上的凸肩等处,都会承受轴向推力。
一般情况下,可先算出凸肩上的受压面积和各面积上所受的压力,在算出总的向前与向后的推力之差值,就得净轴向推力,一般的数值很小。
作用在一个级上的轴向推力即为上述三部分推力之和,可写成(2.5.17)对于有n个级的转子,其总轴向推力为:(2.5.18)(二)、反动式汽轮机的轴向推力在反动式汽轮机中,作用在流通部分转子上的轴向推力由下列三部分组成:1)作用在叶片上的轴向推力;2)作用在轮鼓锥形面上的轴向推力;3)作用在转子阶梯上的轴向推力。
泵轴的轴向力平衡一、引言泵轴是泵的重要组成部分,负责将电机的动力传递给泵的叶轮,使其转动。
在泵的运行过程中,泵轴所受的轴向力是一个重要的问题,它会影响泵的稳定性、工作效率和使用寿命。
本文将就泵轴的轴向力平衡进行探究。
二、泵轴的轴向力产生原因泵轴的轴向力产生主要有以下几个原因: 1. 叶轮不平衡:泵运行时,叶轮可能存在不平衡情况,导致泵轴承受轴向力。
2. 泵的进口和出口压力差:泵的进口和出口之间存在压力差,这会产生轴向力。
3. 流体介质的温度变化:流体介质的温度变化会引起泵轴的轴向热膨胀,从而产生轴向力。
4. 泵轴和轴承的磨损:泵轴和轴承的磨损也会导致轴向力的产生。
三、泵轴的轴向力平衡方法为了保证泵的稳定运行和延长泵的使用寿命,需要对泵轴的轴向力进行平衡处理。
以下是几种常见的泵轴的轴向力平衡方法:1. 叶轮调平通过对叶轮进行精确的动平衡处理,可以减小轴向力的产生。
叶轮调平可以采用动平衡机进行操作。
2. 轴向力调节装置安装轴向力调节装置,可以通过调节装置对轴向力进行控制和平衡。
常见的轴向力调节装置有液力轴向力平衡装置、弹簧轴向力平衡装置等。
3. 使用自平衡泵自平衡泵是一种能够自动平衡轴向力的泵型。
其设计采用了特殊的结构和工作原理,能够减小或抵消泵轴的轴向力。
四、泵轴的轴向力平衡设计思路在泵轴的轴向力平衡设计过程中,需要考虑以下几个因素:1. 泵的工作条件根据泵的工作条件,包括流量、扬程、介质温度等参数,确定泵轴的轴向力大小和平衡要求。
2. 泵轴和轴承的选择选择合适的泵轴和轴承,能够减小泵轴的轴向力。
需要考虑材料的强度、刚度以及耐磨性等因素。
3. 叶轮的调平对泵的叶轮进行精确的动平衡处理,能够减小泵轴的轴向力。
调平时需要考虑叶轮的结构和几何参数。
4. 轴向力调节装置的设计根据泵轴的轴向力大小和平衡要求,设计合适的轴向力调节装置,对轴向力进行控制和平衡。
五、结论泵轴的轴向力平衡是确保泵运行稳定和延长泵使用寿命的重要因素。
平衡轴向力的方法
平衡轴向力的方法包括:
1. 使用力的平衡方程:在一个闭合系统内,可以通过应用力的平衡方程来计算平衡的轴向力。
这个方程通常是通过将所有作用于系统内物体的外部力相加,并设置为零来实现的。
2. 使用牛顿第三定律:牛顿第三定律告诉我们对于任何两个物体之间的相互作用,两个物体所受到的力相等且方向相反。
通过使用这一定律,可以计算出系统内各个物体之间的平衡轴向力。
3. 使用受力分析:通过对系统内各个物体受到的所有外部和内部力进行分析,可以计算出平衡的轴向力。
这种方法在物体之间相互作用复杂且存在多个相互作用力时特别有效。
4. 使用动力学方程:通过使用牛顿的第二定律和动量定理等动力学方程,可以通过计算加速度和质量来得到轴向力。
这些方法可以根据具体情况选择合适的方法来计算平衡的轴向力。
第七章轴向⼒径向⼒及其平衡图7—1 轴向⼒计算原理图第七章轴向⼒径向⼒及其平衡第⼀节产⽣轴向⼒的原因及计算⽅法泵在运转中,转⼦上作⽤着轴向⼒,该⼒将拉动转⼦轴向移动。
因此,必须设法消除或平衡此轴向⼒,⽅能使泵正常⼯作。
泵转⼦上作⽤的轴向⼒,由下列各分⼒组成:1.叶轮前、后盖板不对称产⽣的轴向⼒,此⼒指向叶轮吸⼊⼝⽅向,⽤1A 表⽰;2.动反⼒,此⼒指向叶轮后⾯,⽤2A 表⽰;3.轴台、轴端等结构因素引起的轴向⼒,其⽅向视具体情况⽽定,⽤3A 表⽰;4.转⼦重量引起的轴向⼒,与转⼦的布置⽅式有关,⽤4A 表⽰;5.影响轴向⼒的其它因素。
下⾯分别计算各轴向⼒。
⼀. 盖板⼒1A 的计算(图17—1)由图可知,叶轮前后盖板不对称,前盖板在吸⼊眼部分没有盖板。
另⼀⽅⾯,叶轮前后盖板象轮盘⼀样带动前后腔内的液体旋转,盖板侧腔内的液体压⼒按抛物线规律分布。
作⽤在后盖板上的压⼒,除⼝环以上部分与前盖板对称作⽤的压⼒相抵消外,⼝环下部减去吸⼊压⼒1P 所余压⼒,产⽣的轴向⼒,⽅向指向叶轮⼊⼝,此⼒即是1A 。
假设盖板两侧腔的液体⽆泄漏流动,并以叶轮旋转⾓速度之半2ω旋转,则任意半径R 处的压头h '为(推导见⼗⼋章))R R (g)u u (g g )u (g )u (h h h 22222222228812222-=-=-='''-''='ω(7—1)叶轮出⼝势扬程,当假定21m m v v =,01=u v 时,为 g)v v ()v v (H g v v H g p p H u m u m t t p 222121222222212+-+-=--=-=ρ g)u gH (H g v H t u t 2222122-=-= 即 )u gH (H H t t p 2221-= (7—2)叶轮后盖板任意半径处,作⽤的压头差为)R R (g H h H h p p 22228--='-=ω将上式两侧乘以液体密度ρ和重⼒加速度g ,并从轮毂半径积分到密封环直径,则得盖板轴向⼒1A--==m h m h R R p R R RdR )]R R (gH [g g RdRh A 22221822ωπρρπ )R R (g g )R R (g gR )R R (gH h m h m h m p 482282224422222222-+---=ωπρπρωπρ即 )]R R R (g H )[R R (g A h m p h m 2822222221+---=ωπρ(7—3)这部分轴向⼒也可很⽅便地按压⼒体体积来计算。
离心泵轴向力平衡方法全解 1 / 4
离心泵轴向力平衡方法汇总
如果不设法消除或平衡作用在叶轮上(传到轴上)的轴向力,此轴向力将拉动转子轴向串动,与固定零件接触,将造成泵零件的损坏以致不能工作。
一般常
用以下7种方法来平衡泵的轴向力。
1. 推力轴承
对于轴向力不大的小型泵,采用推力轴承承受轴向力,通常是简单而经济的方法。
即使采用其他平衡装置,考虑到总有一定的残余轴向力,有时也装设推力轴承。
2. 平衡孔或平衡管
在叶轮后盖板上附设密封环,密封环所在直径一般与前密封
环相等,同时在后盖板下部开孔,或设专用连通管与吸入侧连通。
由于液体流经密封环间隙的阻力损失,使密封下部的液体的压力下降,从而减小作用在后盖板上的轴向力。
减小轴向力的程度取决于孔的数量和孔径的大小。
在这种
情况下,仍有10~15%的不平衡轴向力。
要完全平衡轴向力必须
进一步增大密封环所在直径,需要指出的是密封环和平衡孔是相辅相成的,只设密封环无平衡孔不能平衡轴向力;只设平衡孔不设密封环,其结果是泄漏量很大,平衡轴向力的程度甚微。
采用这种平衡方法可以减小轴封的压力,其缺点是容积损失增加(平衡孔的泄漏量一般为设计流量的2~5%)。
另外,经平衡孔的泄漏流与进入叶轮的主液流相冲击,破坏了正常的流动状态,会使泵的抗汽蚀性能下降。
为此,有的泵体上开孔,通过管线与吸入管连通,但结构变得复杂。
采用上述平衡方法,轴向力是不能达到完全平衡的,剩余轴向力需由泵的轴承来承受。
用平衡孔平衡轴向力的结构使用较广,不仅单级离心泵上使用,而且多级离心泵上也使用。
1-1推力轴承 1-1平稳孔
2-2平衡管。