2016年全国硕士研究生入学考试数学二真题及答案
- 格式:pdf
- 大小:830.61 KB
- 文档页数:15
2016年考研(数学二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设a1=x(cos一1),a2=,a3=一1.当x→0+时,以上3个无穷小量按照从低阶到高阶的排序是__________.A.a1,a2,a3B.a2,a3,a1C.a2,a1,a3D.a3,a2,a1正确答案:B2.已知函数f(x)=则厂(x)的一个原函数是___________.A.F(x)=B.F(x)=C.F(x)=D.F(x)=正确答案:D3.反常积分①,②的敛散性为___________.A.①收敛,②收敛B.①收敛,②发散C.①发散,②收敛D.①发散,②发散正确答案:B4.设函数厂(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则_________.A.函数f(x)有2个极值点,曲线y=f(x)有2个拐点B.函数f(x)有2个极值点,曲线y=f(x)有3个拐点C.函数f(x)有3个极值点,曲线y=f(x)有1个拐点D.函数f(x)有3个极值点,曲线y=f(x)有2个拐点正确答案:B5.设函数fi(x)(i=1,2)具有二阶连续导数,且fi(x0),则_________.A.fx一fy=0B.fx+fy=0C.fx-fy=fD.fx+fx=f正确答案:D7.设A,B是可逆矩阵,且A与B相似,则下列结论错误的是_______.A.AT与BT相似B.A-1与B-1相似C.A+AT与B+BT相似D.A+A-1与B+B-1相似正确答案:C8.设二次型f(x1,X2,X3)=a()+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则___________.A.a>1B.a<一2C.一2<a<1D.a=1或a=一2正确答案:C填空题9.曲线y=+arctan(1+x2)的斜渐近线方程为_________·正确答案:y=x+10.极限____________.正确答案:sinl—cosl11.以y=x2一ex和y=x2为特解的一阶非齐次线性微分方程为________.正确答案:y一y=2x—x212.已知函数f(x)在(一∞,+∞)上连续,且f(x)=(x+1)2+2 f(t)dt,则当n≥2时,f(n)(0)=_________.正确答案:5.2n-113.已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为ι.若点P的横坐标对时间的变化率为常数υ0,则当点P运动到点(1,1)时,ι对时间的变化率是____________.正确答案:14.设矩阵等价,则a=________.正确答案:2解答题解答应写出文字说明、证明过程或演算步骤。
2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)下列反常积分中收敛的是(A) (B)(C) (D)【答案】D。
【解析】题干中给出4个反常积分,分别判断敛散性即可得到正确答案。
;;;,因此(D)是收敛的。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数积分学—反常积分(2)函数在(-,+)内(A)连续 (B)有可去间断点(C)有跳跃间断点 (D)有无穷间断点【答案】B【解析】这是“ ”型极限,直接有,在 处无定义,且 所以 是的可去间断点,选B。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—两个重要极限(3)设函数,().若在处连续,则(A) (B) (C) (D)【答案】A【解析】易求出,再有不存在, ,于是,存在,此时.当 时, ,=不存在, ,因此,在 连续。
选A综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数连续的概念,函数的左极限和右极限(4)设函数在(-,+)内连续,其二阶导函数的图形如右图所示,则曲线的拐点个数为 A O B(A) (B)(C) (D)【答案】C【解析】在(-,+)内连续,除点 外处处二阶可导。
的可疑拐点是的点及不存在的点。
的零点有两个,如上图所示,A点两侧恒正,对应的点不是拐点,B点两侧异号,对应的点就是的拐点。
虽然 不存在,但点 两侧 异号,因而() 是 的拐点。
综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—函数单调性,曲线的凹凸性和拐点(5)设函数满足,则与依次是(A) (B)(C) (D)【答案】D【解析】先求出令于是因此综上所述,本题正确答案是D。
【考点】高等数学-多元函数微分学-多元函数的偏导数和全微分(6)设D是第一象限中由曲线 与直线围成的平面区域,函数 在D上连续,则(A)(B)(C)(D)【答案】 B【解析】D是第一象限中由曲线 与直线 围成的平面区域,作极坐标变换,将化为累次积分。
2016年全国硕士研究生入学统一考试数学二试题答案及解析一、选择题(1)设1231),1a x a a =,则( ).A. 123,,a a aB. 231,,a a aC. 213,,a a aD. 321,,a a a 【答案】B 【解析】21151362231101()22ln(1113x a x x x x a x x x a x +→=-=-=+==当时,所以,从低到高的顺序为a 2,a 3,a 1,选B.(2)已知函数2(1),1()ln ,1x x f x x x -<⎧=⎨≥⎩,则()f x 的一个原函数是( ).A. 2(1),1()(ln 1),1x x F x x x x ⎧-<=⎨-≥⎩B. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨+-≥⎩C. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨++≥⎩D. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨-+≥⎩【答案】D【解析】对函数()f x 做不定积分可得原函数,1ln ln ln xdx x x x dx x x x C x=-⋅=-+⎰⎰,因此选择D.(3)反常函数①121x e dx x -∞⎰,②1201x e dx x+∞⎰的敛散性为( ). A. ①收敛,②收敛 B. ①收敛,②发散 C. ①发散,②收敛 D. ①发散,②发散 【答案】B【解析】①111102011[lim lim ](01)1xxx x x x e dx e d e e x x--∞-∞→∞→=-=--=--=⎰⎰收敛。
②111110200011[lim lim ]xx x xxx x e dx e d e e e x x+∞+∞+∞→∞→=-=-=--=+∞⎰⎰发散。
所以,选B.(4)设函数()f x 在(,)-∞+∞内连续,其导函数的图形如图所示,则( ).A. 函数()f x 有2个极值点,曲线()y f x =有2个拐点B. 函数()f x 有2个极值点,曲线()y f x =有3个拐点C. 函数()f x 有3个极值点,曲线()y f x =有1个拐点D. 函数()f x 有3个极值点,曲线()y f x =有2个拐点 【答案】B【解析】根据图像可知导数为零的点有3个,但是最右边的点左右两侧导数均为正值,因此不是极值点,故有2个极值点,而拐点是一阶导数的极值点或者是不可导点,在这个图像上,一阶导数的极值点有2个,不可导点有1个,因此有3个拐点.(5)设函数()(1,2)i f x i =具有二级连续导数,且0''()0(1,2)i f x i <=,若两条求曲线()(1,2)i y f x i ==在点00(,)x y 处具有公切线()y g x =,且在该点曲线1()y f x =的曲率大于曲线2()y f x =,则在0x 的某个邻域内,有( ). A. 12()()()f x f x g x ≤≤ B. 21()()()f x f x g x ≤≤ C. 12()()()f x g x f x ≤≤ D. 21()()()f x g x f x ≤≤ 【答案】A【解析】因y=f 1(x)与y=f 2(x)在(x 0,y 0)有公切线,则f 1(x 0)=f 2(x 0), f 1’ (x 0)=f 2’(x 0) 又y=f 1(x)与y=f 2(x) 在(x 0,y 0)处的曲率关系为k 1>k 2.10201233121222101010201020|''()||''()|,[1()][1()]"()0,"()0,"()"()0.f x f x k k f x f x f x f x f x f x ==++<<<<因又则从而在x 0的某个领域内f 1(x)与f 2(x)均为凸函数,故f 1(x)≤g(x), f 2(x)≤g(x),排除C,D. 令F(x)=f 1(x)-f 2(x),则F(x 0)=0,F ’(x 0)=0, F ”(x 0)<0. 由极值的第二充分条件得x=x 0为极大值点。
2016年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.1、设1(cos 1)a x x =-,32l n(1)a x x =+,3311a x =+-.当0x +→时,以上3个无穷小量按照从低阶到高阶的排序是()(A )123,,a a a .(B )231,,a a a .(C )213,,a a a .(D )321,,a a a .【答案】(B )【解析】当0x +→时,211(cos 1)~2a x x x =--,5362l n(1)~a x x x =+,33111~3a x x=+-所以3个无穷小量按照从低阶到高阶的排序是231,,a a a ,故选B.2、已知函数2(1),1,()ln ,1,x x f x x x -<⎧=⎨≥⎩则()f x 的一个原函数是(A )2(1), 1.()(ln 1), 1.x x F x x x x ⎧-<=⎨-≥⎩(B )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨+-≥⎩(C )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨++≥⎩(D )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨-+≥⎩【答案】(D )【解析】2(1)1()()ln 1x x F x f x dx x x x Cx ⎧-<==⎨-+>⎩⎰,()F x 需连续,(1)(1)F F +-=1C ⇒=3、反常积分121x e dx x -∞⎰①,1+201x e dx x∞⎰②的敛散性为(A )①收敛,②收敛.(B )①收敛,②发散.(C )①发散,②收敛.(D )①发散,②发散.【答案】(B )【解析】11111020011(lim lim )1x x x x x x x e dx e d e e e x x--∞-∞→-∞→=-=-=--=-∞⎰⎰,收敛111111+2000011(lim lim )1lim 0x x x x x xx x x e dx e d e e e e x x++∞+∞→+∞→→+∞=-=-=--=-+=+∞⎰⎰,发散故选B.4、设函数()f x 在(,)-∞+∞内连续,其导函数的图形如图所示,则()(A )函数()f x 有2个极值点,曲线()y f x =有2个拐点.(B )函数()f x 有2个极值点,曲线()y f x =有3个拐点.(C )函数()f x 有3个极值点,曲线()y f x =有1个拐点.(D )函数()f x 有3个极值点,曲线()y f x =有2个拐点.【答案】(B )【解析】根据极值的必要条件可知,极值点可能是驻点或导数不存在的点。
2016全国研究生入学考试考研数学二解析本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设()(1231,1,1a x a a ===,当0x +→时,以上3个无穷小量按照从低阶到高阶的排序是( )()A 123,,a a a ()B 231,,a a a ()C 213,,a a a ()D 321,,a a a【答案】:B【解析】2121~x a -,562~a x ,x a 31~3,则321,,a a a 从低阶到高阶排列应为132,,a a a 。
(2)已知函数()()21,1ln ,1x x f x x x ⎧-<=⎨≥⎩,则()f x 的一个原函数是( )()()()21,1()ln 1,1x x A F x x x x ⎧-<⎪=⎨-≥⎪⎩ ()()()21,1()ln 11,1x x B F x x x x ⎧-<⎪=⎨+-≥⎪⎩()()()21,1()ln 11,1x x C F x x x x ⎧-<⎪=⎨++≥⎪⎩ ()()()21,1()ln 11,1x x D F x x x x ⎧-<⎪=⎨-+≥⎪⎩【答案】:()D【解析】:由于原函数一定是连续,可知函数()F x 在1x =连续,而()A 、()B 、()C 中的函数在1x =处均不连续,故选()D 。
(3)反常积分()1211x e dx x -∞⎰与()12012x e dx x+∞⎰的敛散性为( ) ()A ()1收敛,()2收敛 ()B ()1收敛,()2发散 ()C ()1发散,()2收敛 ()D ()1发散,()2发散【答案】B【解析】1101102=-=∞-∞-⎰xx e dx e x ,故()1收敛。
∞+∞+-=⎰11021x xe dx e x,由于1lim x x e +→=+∞,故()2发散(4)设函数()y f x =在()-+∞∞,内连续,其导数的图像,如图所示,则(A )函数()f x 有2个极值点,曲线()y f x =有2个拐点 (B )函数()f x 有2个极值点,曲线()y f x =有3个拐点 (C )函数()f x 有3个极值点,曲线()y f x =有1个拐点 (D )函数()f x 有3个极值点,曲线()y f x =有2个拐点【答案】:(B )【解析】由图可知曲线有两个点左右两边导数符号不一样,有三个点左右两边导函数单调性不一样,故有2个极值点,3个拐点.(5)设函数()i y f x =()1,2i =具有二阶连续导数,且()0i f x ''<()1,2i =,若两条曲线()i y f x =()1,2i =在点()00,x y 处具有公切线()y g x =,且在该点处曲线()1y f x =的曲率大于曲线()2y f x =的曲率,则在点0x 的某个邻域内,有( )()()()()12A f x f x g x ≤≤ ()()()()21B f x f x g x ≤≤ ()()()()12C f x g x f x ≤≤ ()()()()21D f x g x f x ≤≤【答案】A【解析】 :由于()0i f x "<可知,)(1x f 与)(2x f 均为凸函数,可知)(1x f y =,)(2x f y =的图像均在其切线下方,故)()(),(21x g x f x f ≤,由曲率公式232222232111))((1)(,))((1)(⎥⎦⎤⎢⎣⎡'+"-=⎥⎦⎤⎢⎣⎡'+"-=x f x f k x f x f k ,由21k k >可知,1020()()f x f x ""<,则)()(21x f x f <.(6)已知函数(),xe f x y x y=-,则(A )''0x y f f -= (B )''+0x y f f = (C ) ''x y f f f -= (D ) ''x y f f f += 【答案】: (D )【解析】()()''''22,,x x x xy x y e e e f f f f f x y x y x y =-=+=---. (7)设,A B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( )()A T A 与T B 相似 ()B 1A -与1B -相似()C T A A +与T B B +相似 ()D 1A A -+与1B B -+相似【答案】:()C【解析】:因为A 与B 相似,所以存在可逆矩阵P ,使得1,P AP B -=两端取转置与逆可得:()1TTTT P A PB -=,111P A P B ---=,()111P A A P B B ---+=+,可知()A 、()B 、()D 均正确,故选择()C 。
绝密★启用前2016年全国硕士研究生入学统一考试数学(二)(科目代码302)一.选择:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合要求的.(1) 设11)a x =,2a =,31a =.当0x +→时,以上3个无穷小量按照从低阶到高阶拓排序是(A )123,,a a a . (B )231,,a a a . (C )213,,a a a . (D )321,,a a a .(2)已知函数2(1),1,()ln ,1,x x f x x x -<⎧=⎨≥⎩则()f x 的一个原函数是 (A )2(1), 1.()(ln 1), 1.x x F x x x x ⎧-<=⎨-≥⎩(B )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨+-≥⎩(C )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨++≥⎩(D )2(1), 1.()(ln 1)1, 1.x x F x x x x ⎧-<=⎨-+≥⎩(3)反常积分121xe dx x -∞⎰①,1+201x e dx x∞⎰②的敛散性为 (A )①收敛,②收敛.(B )①收敛,②发散. (C )①收敛,②收敛.(D )①收敛,②发散.(4)设函数()f x 在(,)-∞+∞内连续,求导函数的图形如图所示,则 (A )函数()f x 有2个极值点,曲线()y f x =有2个拐点. (B )函数()f x 有2个极值点,曲线()y f x =有3个拐点. (C )函数()f x 有3个极值点,曲线()y f x =有1个拐点.(D )函数()f x 有3个极值点,曲线()y f x =有2个拐点.(5)设函数()(1,2)i f x i =具有二阶连续导数,且0()0(1,2)i f x i <=,若两条曲线()(1,2)i y f x i ==在点00(,)x y 处具有公切线()y g x =,且在该点处曲线1()y f x =的曲率大于曲线2()y f x =的曲率,则在0x 的某个领域内,有 (A )12()()()f x f x g x ≤≤ (B )21()()()f x f x g x ≤≤ (C )12()()()f x g x f x ≤≤ (D )21()()()f x g x f x ≤≤(6)已知函数(,)x e f x y x y=-,则(A )''0x y f f -= (B )''0x y f f += (C )''x y f f f -= (D )''x y f f f +=(7)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是 (A )T A 与TB 相似 (B )1A -与1B -相似 (C )T A A +与TB B +相似 (D )1A A -+与1B B -+相似(8)设二次型222123123122313(,,)()222f x x x a x x x x x x x x x =+++++的正、负惯性指数分别为1,2,则(A )1a > (B )2a <- (C )21a -<<(D )1a =与2a =-二、填空题:9~14小题,每小题4分,共24分。
2016考研数学二真题及答案一、选择题 1—8小题.每小题4分,共32分.1.当+→0x 时,若)(ln x 21+α,α11)cos (x -均是比x 高阶的无穷小,则α的可能取值范围是( )(A )),(+∞2 (B )),(21 (C )),(121 (D )),(210【详解】αααx x 221~)(ln +,是α阶无穷小,ααα211211x x ~)cos (-是α2阶无穷小,由题意可知⎪⎩⎪⎨⎧>>121αα所以α的可能取值范围是),(21,应该选(B ). 2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin+= (D )x x y 12sin +=【详解】对于xx y 1sin +=,可知1=∞→x y x lim 且01==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y = 应该选(C )3.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断. 显然x f x f x g )())(()(110+-=就是联接))(,()),(,(1100f f 两点的直线方程.故当0≥'')(x f 时,曲线是凹的,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D ) 4.曲线⎩⎨⎧++=+=14722t t y t x ,上对应于1=t 的点处的曲率半径是( )(A)5010(B)10010 (C)1010 (D)105 【详解】 曲线在点))(,(x f x 处的曲率公式321)'("y y K +=,曲率半径KR 1=. 本题中422+==t dt dy t dt dx ,,所以t t t dx dy 21242+=+=,3222122tt t dx y d -=-=,对应于1=t 的点处13-==",'y y ,所以10101132=+=)'("y y K ,曲率半径10101==KR . 应该选(C )5.设函数x x f arctan )(=,若)(')(ξxf x f =,则=→22x x ξlim( )(A)1 (B)32 (C)21 (D)31 【详解】注意(1)211xx f +=)(',(2))(arctan ,33310x o x x x x +-=→时. 由于)(')(ξxf x f =.所以可知x x x x f f arctan )()('==+=211ξξ,22)(arctan arctan x x x -=ξ,313133302022=+--=-=→→→xx o x x x x x xarx x x x x x )()(lim )(arctan tan limlimξ. 6.设),(y x u 在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足02≠∂∂∂y x u 及02222=∂∂+∂∂yux u ,则( ). (A )),(y x u 的最大值点和最小值点必定都在区域D 的边界上; (B )),(y x u 的最大值点和最小值点必定都在区域D 的内部;(C )),(y x u 的最大值点在区域D 的内部,最小值点在区域D 的边界上;(D )),(y x u 的最小值点在区域D 的内部,最大值点在区域D 的边界上.【详解】),(y x u 在平面有界闭区域D 上连续,所以),(y x u 在D 内必然有最大值和最小值.并且如果在内部存在驻点),(00y x ,也就是0=∂∂=∂∂yux u ,在这个点处x y u y x u B yu C x u A ∂∂∂=∂∂∂=∂∂=∂∂=222222,,,由条件,显然02<-B AC ,显然),(y x u 不是极值点,当然也不是最值点,所以),(y x u 的最大值点和最小值点必定都在区域D 的边界上. 所以应该选(A ).7.行列式dc d c ba b a0000000等于 (A )2)(bc ad - (B )2)(bc ad -- (C )2222c b d a - (D )2222c b d a +-【详解】20000000000000000)(bc ad dc ba bc d cb a ad dc c ba b d c db a a dc d c ba b a --=+-=+-=应该选(B ).8.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的(A )必要而非充分条件 (B )充分而非必要条件(C )充分必要条件 (D ) 非充分非必要条件 【详解】若向量321ααα,,线性无关,则(31ααk +,32ααl +)K l k ),,(),,(3213211001αααααα=⎪⎪⎪⎭⎫ ⎝⎛=,对任意的常数l k ,,矩阵K 的秩都等于2,所以向量31ααk +,32ααl +一定线性无关.而当⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=000010001321ααα,,时,对任意的常数l k ,,向量31ααk +,32ααl +线性无关,但321ααα,,线性相关;故选择(A ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.⎰∞-=++12521dx x x .【详解】⎰⎰∞-∞-∞-=⎪⎭⎫ ⎝⎛--=+=++=++11122832421212141521πππ)(|arctan )(x x dx dx x x . 10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f .【详解】当[]20,∈x 时,C x x dx x x f +-=-=⎰2122)()(,由00=)(f 可知0=C ,即x x x f 22-=)(;)(x f 为周期为4奇函数,故1117==-=)()()(f f f . 11.设),(y x z z =是由方程4722=+++z y x eyz确定的函数,则=⎪⎭⎫ ⎝⎛2121,|dz .【详解】设4722-+++=z y x ez y x F yz),,(,1222122+=+==yz z yz y x ye F y ze F F ,,,当21==y x 时,0=z ,21-=-=∂∂z x F F x z ,21-=-=∂∂z y F F y z ,所以=⎪⎭⎫ ⎝⎛2121,|dz dy dx 2121--.12.曲线L 的极坐标方程为θ=r ,则L 在点⎪⎭⎫⎝⎛=22ππθ,),(r 处的切线方程为 .【详解】先把曲线方程化为参数方程⎩⎨⎧====θθθθθθθθsin sin )(cos cos )(r y r x ,于是在2πθ=处,20π==y x ,,πθθθθθθππ222-=-+=|sin cos cos sin |dx dy ,则L 在点⎪⎭⎫⎝⎛=22ππθ,),(r 处的切线方程为)(022--=-x y ππ,即.22ππ+-=x y13.一根长为1的细棒位于x 轴的区间[]10,上,若其线密度122++-=x x x )(ρ,则该细棒的质心坐标=x .【详解】质心坐标20113512111221021231010==++-++-==⎰⎰⎰⎰dx x x dx x x x dx x dxx x x )()()()(ρρ. 14.设二次型3231222132142x x x ax x x x x x f ++-=),,(的负惯性指数是1,则a 的取值范围是 . 【详解】由配方法可知232232231323122213214242xa x x ax x x x x ax x x x x x f )()()(),,(-+--+=++-=由于负惯性指数为1,故必须要求042≥-a ,所以a 的取值范围是[]22,-.三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限. 【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)已知函数)(x y y =满足微分方程''y y y x -=+122,且02=)(y ,求)(x y 的极大值和极小值. 【详解】解:把方程化为标准形式得到2211x dxdyy -=+)(,这是一个可分离变量的一阶微分方程,两边分别积分可得方程通解为:C x x y y +-=+333131,由02=)(y 得32=C , 即32313133+-=+x x y y . 令01122=+-=y x dx dy ,得1±=x ,且可知3222222211212)()()(y x y y x dx y d +--+-=; 当1=x 时,可解得1=y ,01<-="y ,函数取得极大值1=y ; 当1-=x 时,可解得0=y ,02>="y ,函数取得极小值0=y . 17.(本题满分10分)设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy yx y x x )sin(22π【详解】由对称性可得432112121212022222222-==+=+++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰D DD Ddr r r d dxd y x dxdyy x y x y x dxd y x y x y dxd y x y x x πθπππππsin )sin()sin()()sin()sin(18.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足x x e y e z yzx z 222224)cos (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u xcos =,则)cos ()(y e f u f z x==,y e u f y e u f xz e u f xzxx y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z xx x cos )('sin )(",sin )('-=∂∂-=∂∂2222; x x x e y e f e u f yzx z 222222)cos (")("==∂∂+∂∂ 由条件xx e y e z yz x z 222224)cos (+=∂∂+∂∂, 可知u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程.对应齐次方程的通解为:u u e C e C u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*. 故非齐次方程通解为u e C eC u f u u412221-+=-)(.将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (1) []b a x a x dt t g xa,,)(∈-≤≤⎰0;(2)⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.【详解】(1)证明:因为10≤≤)(x g ,所以[]b a x dt dt t g dx xax axa,)(∈≤≤⎰⎰⎰10.即[]b a x a x dt t g xa,,)(∈-≤≤⎰0.(2)令⎰⎰⎰-=+xa dtt g a axadu u f du u g u f x F )()()()()(,则可知0=)(a F ,且⎪⎭⎫ ⎝⎛+-=⎰xa dt t g a f x g x g x f x F )()()()()(',因为,)(a x dt t g xa-≤≤⎰0且)(x f 单调增加,所以)()()(x f a x a f dt t g a f xa=-+≤⎪⎭⎫ ⎝⎛+⎰.从而0=-≥⎪⎭⎫ ⎝⎛+-=⎰)()()()()()()()()('x f x g x g x f dt t g a f x g x g x f x F xa ,[]b a x ,∈也是)(x F 在[]b a ,单调增加,则0=≥)()(a F b F ,即得到⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.20.(本题满分11分) 设函数[]101,,)(∈+=x xxx f ,定义函数列 )()(x f x f =1,))(()(x f f x f 12=,ΛΛ)),(()(,x f f x f n n 1-=设n S 是曲线)(x f y n =,直线01==y x ,所围图形的面积.求极限n n nS ∞→lim .【详解】x xxx x xx f x f x f x x x f 21111111121+=+++=+=+=)()()(,)(,Λ,)(x x x f 313+=, 利用数学归纳法可得.)(nxxx f n +=1))ln(()()(nn n dx nx n dx nx x dx x f S n n +-=+-=+==⎰⎰⎰1111111110101,111=⎪⎭⎫⎝⎛+-=∞→∞→n n nS n n n )ln(lim lim . 21.(本题满分11分)已知函数),(y x f 满足)(12+=∂∂y yf,且y y y y y f ln )()(),(--+=212,求曲线0=),(y x f 所成的图形绕直线1-=y 旋转所成的旋转体的体积.【详解】由于函数),(y x f 满足)(12+=∂∂y yf ,所以)(),(x C y y y x f ++=22,其中)(x C 为待定的连续函数.又因为y y y y y f ln )()(),(--+=212,从而可知y y y C ln )()(--=21, 得到x x y y x C y y y x f ln )()(),(--++=++=212222.令0=),(y x f ,可得x x y ln )()(-=+212.且当1-=y 时,2121==x x ,. 曲线0=),(y x f 所成的图形绕直线1-=y 旋转所成的旋转体的体积为πππ)ln (ln )()(45222121212-=-=+=⎰⎰dx x x dx y V22.(本题满分11分)设⎪⎪⎪⎭⎫⎝⎛---=302111104321A ,E 为三阶单位矩阵. (1) 求方程组0=AX 的一个基础解系; (2) 求满足E AB =的所有矩阵.【详解】(1)对系数矩阵A 进行初等行变换如下:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---=310020101001310011104321134011104321302111104321A ,得到方程组0=AX 同解方程组⎪⎩⎪⎨⎧==-=43424132xx x x x x得到0=AX 的一个基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=13211ξ.(2)显然B 矩阵是一个34⨯矩阵,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=444333222111z y x z y x z y x z y x B 对矩阵)(AE 进行进行初等行变换如下:⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛---=141310013120101621001141310001011100014321101134001011100014321100302101011100014321)(AE由方程组可得矩阵B 对应的三列分别为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011214321c x x x x ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321043624321c y y y y ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011134321c z z z z , 即满足E AB =的所有矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛++-+-++-+-----=321321321321313431212321162c c cc c c c c c c c c B 其中321c c c ,,为任意常数. 23.(本题满分11分)证明n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111ΛM M M ΛΛ与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100ΛM M M ΛΛ相似.【详解】证明:设=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111ΛM M M ΛΛ,=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100ΛM M M ΛΛ. 分别求两个矩阵的特征值和特征向量如下:1111111111--=---------=-n n A E λλλλλλ)(ΛM M MΛΛ,所以A 的n 个特征值为0321====n n λλλλΛ,;而且A 是实对称矩阵,所以一定可以对角化.且⎪⎪⎪⎪⎪⎭⎫⎝⎛00Λλ~A ; 1002010--=---=-n n nB E λλλλλλ)(ΛM M M ΛΛ所以B 的n 个特征值也为0321====n n λλλλΛ,;。
2016年数学(二)真题解析一、选择题(1)【答案】(B ).[解] 因为 5 〜• (— —X j = — —x 2 , g 〜丘' Vx =x 6 , as 〜三工, 所以以上三个无穷小量从低阶到高阶的次序为,应选(E ).(2)【答案】(D ).【解】F (_z )=]\x (In x — 1) + C + I9 2彳1・((工 一 ])2 工<]取C=o 得/'(工)的一个原函数为F (^)=■, '八… 、「应选(D ).(In jc — 1) + 19 工乍 1.(3)【答案】【解】(B).fo因为'+°°1 1—e * Ax = 一 e r x 1丄 1―e T d:r = 一 e r x=—(0 — 1) =1,=+°°,°+°°1 丄-ve x Ax 发散9应选(B).0 XJ 01 丄二扌山收敛,-°° X(4)【答案】(E ).【解】 如图所示,f\x )的零点从左到右依次为工1(< 1),工2,工3・/■'(工)> 0, /(jc ) <0, /(^) <0, /a ) <0,'/■‘(工)< o,、f'(工)> 0,值点;八工)> 0,fO >o,故f (J7)有两个极值点.f"⑺在工=1处不存在,又切线水平对应的点为工。
及工3,即 /"(工。
)=0,7""(工3)=0.由由“〃(工) ") fjf"⑺f )即y =/(x )有三个拐点,应选(E ).所以*0x <L x },Hi <C x VIzi V 工 < 1,得工= \ <Z X x 21 < H V 「,F得xX 2 V z V H 3得工=x x 为f (工)的极大值点=X 2为f (工)的极小1不是/■&)的极值点;由由由、3'得工=g 不是y (z )的极值点,工 > 工3由< 0,> 0,> 0,< 0,< 0,> 0,了 V ]' 得(1 ,/(1))为曲线y = f (工)的拐点;1 < H < X q、。