姜启源数学模型
- 格式:docx
- 大小:3.61 KB
- 文档页数:2
数学模型(姜启源第三版第⼆章)1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在宿舍,432⼈住在,学⽣梦要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩树部分较⼤者。
(2)节中的Q值⽅法。
(3)⽅法:将A,B,C各宿舍的⼈数⽤正整数相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种⽅法的道理吗。
如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法两次分配的结果列表⽐较。
(4)你能提出其它⽅法吗。
⽤你的⽅法分配上⾯的名额。
2.⽤微积分的⽅法导出节的公式(2)。
3.在节中考虑8⼈艇分重量级组(桨⼿体重不超过86kg)和轻量级组(桨⼿体重不超过73kg,建⽴模型说明重量级组的成绩⽐轻量级组⼤约好5%。
4.⽤节实物交换模型中介绍的⽆差别曲线的概率,讨论以下雇员和雇主之间的协议关系:(1)以雇员⼀天的⼯作时间t和⼯资ω分别为横坐标和纵坐标,画出雇员⽆差别曲线族的⽰意图。
解释曲线为什么是你画的那种形状。
(2)如果雇主付计时⼯资,对不同的⼯资率(单位时间的⼯资)画出计时⼯资线族。
根据雇员的⽆差别曲线族和雇主的计时⼯资线族,讨论双⽅将在怎样的⼀条曲线上达成协议。
(3)雇员和雇主已经达成了⼀个协议(⼯作时间1t和⼯资1ω).如果雇主想使雇员的⼯作时间增加到2t,他有两种⽅法:⼀是提⾼计时⼯资率,在协议线的另⼀点(2t,2ω)达成新的协议;⼆是实⾏超t t-付给更⾼的超时时⼯资制,即对⼯时1t仍付原计时⼯资,对⼯时21⼯资。
试⽤作图⽅法分析哪种办法对雇主更有利,指出这个结果的条件.5.在节核武器竞赛模型中,证明由(6)式表⽰的⼄安全线=的性质。
()y f x6.在节核武器竞赛模型中,讨论以下因素引起的平衡点的变化:(1)甲⽅提⾼导弹导航系统的性能。
综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题)(1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明支球队“各队每两场比赛最小相隔场次n r 的上界”(如=5时上界为1)是n ⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是,i j 两队, 队参加的下一场比赛是,两队(≠i i k k j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,以外的2k r 支球队参赛,于是,注意到32+≥r n r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的编排出达到该上界的赛程.如对于n =8, =9可以得到: n n 1A 2A 3A 4A 5A 6A 7A 8A 每两场比赛相隔场次数 相隔场次总数1A× 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 193A 5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 9 6 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 18 7 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 177A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 178A25 16 2 19 7 22 12 × 4,4,3,2,2,2 17w w w .k h d a w .c o m 课后答案网1A 2A 3A 4A 5A 6A 7A 8A 9A 每两场比赛相隔场次数 相隔场次总数1A× 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A 6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 234,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 193,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 144,4,3,3,3,3 23 7A16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A21 17 25 13 29 9 33 × 53,3,3,3,3,3,3, 21 9A 1 32 10 23 19 14 28 5 × 3,4,3,4,3,4,3 24 可以看到, =8时每两场比赛相隔场次数只有2,3,4, =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即为偶数时每两场比赛相隔场次数只有n n n 22-n ,12-n ,2n ,n 数时只有为奇23-n ,21-n . 量赛程优劣其他指标如(4)衡的平均相隔场次 记第i 队第j 个ij c ,2,2,1,,,2,1-==n j n i ,间隔场次数为则平均相隔场次为∑∑=n i 1-=n r 21 =-j n n 1)2(ij c r 是赛程整体意义下的指标,它越大越好.可以计算=8,=9的n n r ,并讨论它是否达到上界. 相隔场次的最大偏差 定义||,r c Max f ij j i -=∑---=2)2(|n r n c Max g =1|j ijw w w .k h d a w .c o m 课后答案网f 为整个赛程相隔场次的最大偏差, 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算=8,=9的,g ,并讨论它是否达到上界.g n n f 参考文献工程数学学报第20卷第5期20032. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,取尽量简单的形式,h 如αα=)(g ;0)(=βh (),030≤β0)(h h =β)30(0>β.(1)可将作为必要条件,以030≤βα最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到 ⎪⎭⎫ ⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处.又通过计算或分析可知030=βα也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔(如0.5m), l x 从0(或处)到030≤βd D -按离散,对于计算l )20~0(00θα的平均值,得时其值最大. 020=θ(3)可设地板线是x 的二次曲线,寻求,b 使2bx ax +a α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线. 3.节水洗衣机(1996年全国大学生数学建模竞赛B 题) 该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和. w w w .k h da w .c o m 课后答案网假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数.~初始污水量,第轮加水量,~第k 轮脱水量c 0x ~k u k k x ),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x u c x n n n =+==--111,,, c x 2c x +21u x 10, 得到)()(210c u c u u c x x n n n ++= . 在最终污物量与初始污物量之比小于给定的清洁度条件下,求各轮加水量,使总用水量最小,即0/x x n k u ),,1(n k =∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n 等价于)()(21c u c u u Min n u k +++++ α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第轮加水量n ~2u u k =(常数),第1轮加水量.c u u +=1令,问题简化为cx u =nx Min u n , ε<⎪⎭⎫ ⎝⎛+n x t s 11.. 其解为,即,而0→x 0→u ∞→n n .这与实际上是不合理的.应该加上对u 的限制:.则得n ,其中 21v u v ≤≤max min n n ≤≤max min n n ≤≤,1+)/1ln(2min ⎥⎦⎤⎢⎣⎡+=c v n αn 这样,为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,1997w w w .k h d a w .c o m 课后答案网4.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxI d .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的. 按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,20015. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题)设为第i 架飞机与第j 架飞机的碰撞角(即ij a )8arcsin(ij ij r a =其中为这两架飞机连线的长度),ij r ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量. 本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:w w w .k h d a w .c o m 课后答案网∑=61i i Min θ s.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i 为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL :1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J)));8] );9] @FOR(LINK(I,J)|I#NE#J: 10] (@SIN(alpha*3.14159265/180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endataEND计算结果如下:w w w .k h d a w .c o m 课后答案网ij a j=1 2 3 4 5 6i=1 0.000 0 5.3912 32.231 05.091 8 20.963 4 2.234 5 2 5.391 2 0.000 0 4.8046.613 5 5.807 9 3.815 9 3 32.231 0 4.804 0 0.0004.364 7 22.833 7 2.125 5 45.091 86.613 5 4.36470.000 0 4.4.537 2.989 8 5 20.963 4 5.807 922.8337 4.537 70.000 0 2.309 8 6 2.234 5 3.815 9 2.125 5 2.989 82.309 80.000 0 ij β也可类似地利用LINGO 求得,计算结果如下: ij β j=1 2 3 4 5 6 i=1 0.000 0 109.263 6 -128.250 0 24.1798173.065 1 14.474 9 2 109.263 6 0.000 0-88.871 1 -42.2436-92.304 8 9.000 03 -128.250 0 -88.871 1 0.000 012.4763-58.786 2 0.310 84 24.179 8 -42.243 6 12.476 30.000 0 5.969 2-3.525.65 173.065 1 -92.304 8 -58.78625.969 20.000 0 1.914 4614.474 9 9.000 00.310 8-3.5256 1.914 4 0.000 0w w w .k h d a w .c o m 课后答案网于是,该飞机管理的数学规划模型可如下输入LINGO 求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2….. …2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddata END[注] alpha,beta 中数据略去,见上面表格. 求解结果如下: OPTIMUM FOUND AT STEP 197 SOLUTION OBJECTIVE V ALUE= 3.630 V ARIABLE V ALUE REDUCED COST CITA(1) 0.2974033E-06 -1.000 000 CITA(2) -0.1424833E-05 -0.715 033 4 w w w .k h d a w .c o m 课后答案网CITA(3) 2.557 866 1.000 000 CITA(4) -0.3856641E-04 0.0000000E+00CITA(5) 0.2098838E-05 -1.000 000CITA(6) 1.071 594 0.0000000E+00………. (以下略)由此可知最优解为: (其它调整角度为0). ︒︒≈≈07.1,56.263θθ 评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,19966. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整. 目标函数之降落伞的费用,可以根据表1数据拟合伞面费用与伞的半径r 的关系。
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
姜启源数学模型
姜启源数学模型是指以姜启源为主导的一种数学建模方法。
姜启源是中国工程院院士、中国科学院数学与系统科学研究院院长,他在数学模型领域有着丰富的经验和深厚的造诣。
数学模型是一种将现实问题抽象化、形式化的方法,通过建立数学模型来描述和解决实际问题。
姜启源数学模型的特点是综合运用数学、统计学、计算机科学等多学科知识,通过数学建模的方法解决实际问题。
姜启源数学模型的应用领域非常广泛,包括但不限于工程、经济、环境、医学等各个领域。
在工程领域,姜启源数学模型可以用于优化设计、预测分析、风险评估等方面。
在经济领域,姜启源数学模型可以用于市场预测、投资决策、风险控制等方面。
在环境领域,姜启源数学模型可以用于气候变化模拟、环境保护规划等方面。
在医学领域,姜启源数学模型可以用于疾病传播模拟、药物研发等方面。
姜启源数学模型的建立过程一般包括问题分析、数学建模、模型求解和模型验证等步骤。
首先,需要对实际问题进行深入的分析,明确问题的目标和约束条件。
然后,根据问题的特点,选择合适的数学方法和模型类型。
接下来,通过数学方法将实际问题转化为数学问题,并进行数学建模。
然后,利用数学工具和计算机进行模型求
解,并对结果进行分析和解释。
最后,需要对模型进行验证,检验模型的准确性和可靠性。
姜启源数学模型的优势在于能够将复杂的实际问题转化为简单的数学问题,并通过数学方法进行求解。
这种模型可以提供决策支持和问题解决的方法,帮助人们更好地理解和解决实际问题。
姜启源数学模型的应用可以提高效率、降低成本、减少风险,对社会和经济发展具有重要意义。
姜启源数学模型的发展离不开数学研究和科学技术的支持。
近年来,随着数学建模方法和计算机技术的不断发展,姜启源数学模型在各个领域得到了广泛应用和推广。
同时,姜启源也致力于培养和引进优秀的科研人才,推动数学建模在中国的发展和应用。
姜启源数学模型是一种综合运用数学、统计学、计算机科学等多学科知识的数学建模方法。
它在工程、经济、环境、医学等领域具有广泛的应用前景,能够为实际问题的解决提供有效的方法和工具。
随着科学技术的不断进步和数学建模方法的不断发展,相信姜启源数学模型将在未来发挥更大的作用,为社会进步和经济发展做出更大的贡献。