微专题:巧解斜率和积为定值,直线过定点问题
- 格式:docx
- 大小:14.55 KB
- 文档页数:1
点P为椭圆:C:x2a2+y2b2=1的左顶点左顶点,过点P的两条直线分别与C交于两点、A、B , 两点;直线、PA、PB的斜率之积为t(t≠b2a2),则直线AB过定点(−a⋅a2t+b2a2t−b2,0) ;图一证明:证明:法一:法一:设直线AB为x=my+n .则{x=my+nx2a2+y2b2=1⇒(b2m2+a2)⋅y2+2mnb2y+b2n2−a2b2=0 .则由题得:Δ=(2mnb2)2−4⋅(b2m2+a2)⋅(b2n2−a2b2)=4a2b2⋅(a2+b2m2−n2)>0 ; 由根与系数的关系得:{y1+y2=−2mnb2b2m2+a2y1⋅y2=b2n2−a2b2b2m2+a2;设A(my1+n,y1) , B(my2+n,y2) , 又P(−a,0), kPA⋅kPB=t ,所以kPA⋅kPB=y1−0my1+n+a⋅y2−0my2+n+a=t⇔(tm2−1)⋅y1y2+tm(n+a)⋅(y1+y2)+t(n+a)2=0 ;代入{y1+y2=−2mnb2b2m2+a2y1⋅y2=b2n2−a2b2b2m2+a2得:(tm2−1)⋅b2n2−a2b2b2m2+a2+tm(n+a)⋅(−2mnb2b2m2+a2)+t(n+a)2=0 ,化简得:(a2t−b2)n2+2ta3n+ta4+a2b2=0 ,因式分解得:[(a2t−b2)n+a(a2t+b2)]⋅(n+a)=0 ,(t≠b2a2)解得:n=a⋅b2+a2tb2−a2t ,或者n=−a(此时直线过点,不符合题意,舍去)(此时直线AB过点P,不符合题意,舍去)因此直线AB过定点(−a⋅a2t+b2a2t−b2,0) ;法二:法二:椭圆:C:x2a2+y2b2=1向右平移a个单位长度,即将椭圆C的左顶点P平移到原点O,如图二;图二则此时椭圆方程为(x−a)2a2+y2b2=1 ,化简为x2a2−2xa+y2b2=0;设平移后直线AB为mx+ny=1 .联立{mx+ny=1x2a2−2xa+y2b2=0得:x2a2−2xa⋅(mx+ny)+y2b2=0;化简得:(1a2−2ma)⋅x2−2na⋅xy + +1b2⋅y2=0 ,等式两边同时除以x2齐次化得:1b2⋅(yx)2−2na⋅(yx)+1a2−2ma=0 ;设平移后A(x1,y1) , B(x2,y2) ,又平移后的直线、PA、PB的斜率之积依然为t(t≠b2a2),则kPA⋅kPB=t=y1x1⋅y2x2 .由根与系数的关系得:y1x1⋅y2x2=1a2−2ma1b2=t,解得:m=b2−a2t2ab2 ,所以平移后直线AB为b2−a2t2ab2⋅x+ny=1,过定点(2ab2b2−a2t,0) ,再平移回去即可得原直线过定点(2ab2b2−a2t−a,0) ,化简即可得直线AB过定点(−a⋅a2t+b2a2t−b2,0) ;注:如果点P为椭圆C右顶点右顶点,则直线AB过定点(a⋅a2t+b2a2t−b2,0) ;对于法一法一,因式分解是一个难点,想必到这里会劝退了一波人,不过这里有巧可钻;从图一可知,当点A或点B在无限靠近点P时,直线AB也无限接近点P,所以在解关于n的方程时,必有一增根n=−a;因此在因式分解(a2t−b2)n2+2ta3n+ta4+a2b2=0时,可以借助这一点,利用多项式除法化简即可得[(a2t−b2)n+a(a2t+b2)]⋅(n+a)=0;对于法二法二,则是利用齐次化的方法,对于解决斜率之和与斜率之积问题,齐次化的方法不失为一种简单而又巧妙的方法;。
微专题:椭圆中斜率之积为定值的问题探究微专题:解析几何中斜率之积为定值的问题探究教学重点】掌握椭圆中斜率之积为定值的运算设计和化简。
教学难点】如何理性判断问题的路径探寻及成果运用。
活动一:斜率之积为定值的路径探寻假设AB是椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$上的一条不过原点的弦,点P是弦AB的中点,且直线OP和AB的斜率都存在,求$K_{AB} \cdot K_{PO}$。
解析】设点$P(x,y)$,$A(x_1,y_1)$,$B(x_2,y_2)$,则有$\frac{1}{2}\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{a^2-b^2}$(代点作差)。
将$AB$的斜率$k_{AB}$表示为$\frac{y_1-y_2}{x_1-x_2}$,$OP$的斜率$k_{OP}$表示为$\frac{y}{x}$,则有:begin{aligned} K_{AB}&=\frac{y_1-y_2}{x_1-x_2}=\frac{(y_1-y)+(y-y_2)}{(x_1-x)+(x-x_2)} \\ &=\frac{y_1-y}{x_1-x} \cdot \frac{y-y_2}{x-x_2}=-\frac{b^2}{a^2} \cdot\frac{x-x_2}{y-y_2} \\ K_{PO}&=\frac{y}{x}=-\frac{b^2}{a^2} \cdot \frac{x_1-x_2}{y_1-y} \end{aligned}$$因此,$K_{AB} \cdot K_{PO}=\frac{b^4}{a^4} \cdot\frac{(x-x_2)(x_1-x_2)}{(y-y_2)(y_1-y)}=-\frac{b^2}{a^2}=e^2-1$。
结论形成总结】结论1】若$AB$是椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$上的非直径的弦,点$P$是弦$AB$的中点,且直线$OP$和$AB$的斜率都存在,则$K_{AB} \cdot K_{PO}=-\frac{b^2}{a^2}=e^2-1$。
直线过定点问题解题技巧
解决直线过固定点问题的技巧如下:
1. 使用点斜式或截距式确定直线的方程。
如果直线经过给定的点P(x₀,y₀),可以通过点斜式(y-y₀)=m(x-x₀) 或截距式 y=mx+b 来确定直线的方程。
其中,m 是直线的斜率,b 是y 轴截距。
2. 使用直线的斜率和给定点的坐标计算直线的方程。
如果直线经过两个已知点 A(x₁, y₁) 和 B(x₂, y₂),可以使用斜率公式m = (y₂-y₁)/(x₂-x₁) 来计算直线的斜率。
然后,可以使用点斜式或截距式来确定直线的方程。
3. 使用向量的概念来解决问题。
如果直线 L 经过给定点 P(x₀, y₀),可以使用向量的概念来表示直线。
例如,在平面直角坐标系中,从原点 O(0,0) 到点 P(x₀, y₀) 的向量是 OP = (x₀,
y₀)。
然后,通过平移这个向量,可以得到直线 L 的方程。
4. 使用几何性质和图形的特征来解决问题。
有时,可以根据已知点和直线的特性来确定直线的方程。
例如,如果直线经过原点 O(0,0),可以确定直线的截距 b=0,并且直线的方程为
y=mx。
总之,“直线过固定点”问题的解决方法可以根据具体情况和已知条件选择不同的技巧,但无论选择哪种方法,都需要根据已知点的坐标和直线的性质来确定直线的方程。
圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I 卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】已知椭圆x 24+y 2=1,设直线l 不经过P 2(0,1)点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.Q (2,-1)2025高考数学专项复习平移齐次化解决圆锥曲线中斜率和积问题与定点问题【手电筒模型·1定+2动】直线y =kx +m 与椭圆x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,P (x 0,y 0)为椭圆上异于AB 的任意一点,若k AP ⋅k BP =定值或k AP +k BP =定值(不为0),则直线AB 会过定点.(因为三条直线形似手电筒,固名曰手电筒模型).补充:若y =kx +m 过定点,则k AP ⋅k BP =定值,k AP +k BP k=定值.2020·新高考1卷·22C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.题型一已知定点求定值C :y 2=4x ,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:∠POQ =90°.椭圆E:x22+y2=1,经过点M(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A(0,-1),证明:直线AP与AQ的斜率之和为2.A1,3 2,O为坐标原点,E,F是椭圆C:x24=y23=1上的两个动点,满足直线AE与直线AF关于直线x=1对称.证明直线EF的斜率为定值,并求出这个定值;点F(1,0)为椭圆x24+y23=1的右焦点,过F且垂直于x轴的直线与椭圆E相交于C、D两点(C在D的上方),设点A、B是椭圆E上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.:x22+y2=1,A0,-1,经过点1,1,且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.C :x 24+y 23=1,过F 作斜率为k (k ≠0)的动直线l ,交椭圆C 于M ,N 两点,若A 为椭圆C 的左顶点,直线AM ,AN 的斜率分别为k 1,k 2,求证:k k 1+k k 2为定值,并求出定值.题型二已知定值求定点全国卷理)已知椭圆x 24+y 2=1,设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.C:x24+y2=1,设直线l不经过点P2(0,1)且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:直线l过定点.C:y2=2px(p>0)上的点P(1,y0)(y0>0)到其焦点的距离为2.(1)求点P的坐标及抛物线C的方程;(2)若点M、N在抛物线C上,且k PM•k PN=-12,证明:直线MN过定点.C :x 24+y 23=1,P 1,32 ,若直线l 交椭圆C 于A ,B (A ,B 异于点P )两点,且直线PA 与PB 的斜率之积为-94,求点P 到直线l 距离的最大值.E :x 2a 2+y 2b2=1(a >b >0)的离心率为33,椭圆E 的短轴长等于4.(1)求椭圆E 的标准方程;x 26+y 24=1(2)设A 0,-1 ,B 0,2 ,过A 且斜率为k 1的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交⊙C :x 2+y -1 2=1于异于点B 的点P ,Q ,设直线PQ 的斜率为k 2,直线BM ,BN 的斜率分别为k 3,k 4.①求证:k 3⋅k 4为定值; ②求证:直线PQ 过定点.圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I 卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】已知椭圆x 24+y 2=1,设直线l 不经过P 2(0,1)点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.Q (2,-1)【平移+齐次化处理】Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理将椭圆向下平移一个单位,(为了将P 2(0,1)平移到原点)椭圆方程化为C :x 24+(y +1)2=1,(左加右减,上减下加为曲线平移)设直线l 对应的直线l ′为mx +ny =1,椭圆方程化简为14x 2+y 2+2y =0,把一次项化成二次结构,将2y 乘上mx +ny 即可此时椭圆方程变成:14x 2+y 2+2y mx +ny =0⇒2n +1 y 2+2mxy +14x 2=0Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系由于平移不会改变直线倾斜角,即斜率和仍然为-1,而P 2点此时为原点,设平移后的A (x A ,y A ),B (x B ,y B ),即y A -0x A -0+y B -0x B -0=-1,将椭圆方程两边同除以x 2,令k =y x ,得2n +1 k 2+2mk +14=0,结合两直线斜率之和为-1,即k 1+k 2=-2m 2n +1=-1,得2m =2n +1,∴m -2n =1,Step 3:得出定点,此时别忘了,还要平移回去!∴直线l ′恒过点Q ′(2,-2),向上平移一个单位进行还原在原坐标系中,直线l 过点Q (2,-1).【手电筒模型·1定+2动】直线y =kx +m 与椭圆x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,P (x 0,y 0)为椭圆上异于AB 的任意一点,若k AP ⋅k BP =定值或k AP +k BP =定值(不为0),则直线AB 会过定点.(因为三条直线形似手电筒,固名曰手电筒模型).补充:若y =kx +m 过定点,则k AP ⋅k BP =定值,kAP +k BP k=定值.【坐标平移+齐次化处理】(左加右减,上减下加为曲线平移)Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系,Step 3:得出定点,此时别忘了,还要平移回去!【补充】椭圆E :x 2a 2+y 2b2=1(a >b >0),P (x 0,y 0)是椭圆上一点,A ,B 为随圆E 上两个动点,PA 与PB 的斜率分别为k 1,k 2.(1)k 1+k 2=0,证明AB 斜率为定值:x 0y 0⋅b 2a2(y ≠0);(2)k 1+k 2=t (t ≠0),证明AB 过定点:x 0-2y 0t,-y 0-2x 0t ⋅b 2a2 ;(3)k 1⋅k 2==b 2a 2,证明AB 的斜率为定值-y 0x 0(x 0≠0);(4)k 1⋅k 2=λλ≠b 2a 2 ,证明AB 过定点:x 0λa 2+b 2λa 2-b 2,-y 0λa 2+b 2λa 2-b 2 .以上称为手电筒模型,注意点P 不在椭圆上时,上式并不适用,常数也需要齐次化乘“12”2020·新高考1卷·22C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【详解】(1)由题意可得:c a =224a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)[方法一]:通性通法设点M x 1,y 1 ,N x 2,y 2 ,若直线MN 斜率存在时,设直线MN 的方程为:y =kx +m ,代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0,可得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,因为AM ⊥AN ,所以AM ·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,根据y 1=kx 1+m ,y 2=kx 2+m ,代入整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0,所以k 2+1 2m 2-61+2k 2+km -k -2 -4km 1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,因为A (2,1)不在直线MN 上,所以2k +m -1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13k ≠1 ,所以直线过定点直线过定点P 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,由AM ·AN=0得:x 1-2 x 1-2 +y 1-1 -y 1-1 =0,得x 1-2 2+1-y 21=0,结合x 216+y 213=1可得:3x 12-8x 1+4=0,解得:x 1=23或x 2=2(舍).此时直线MN 过点P 23,-13 .令Q 为AP 的中点,即Q 43,13,[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为(x +2)26+(y +1)23=1,设直线MN 的方程为mx +ny =4.将直线MN 方程与椭圆方程联立得x 2+4x +2y 2+4y =0,即x 2+(mx +ny )x +2y 2+(mx +ny )y =0,化简得(n +2)y 2+(m +n )xy +(1+m )x 2=0,即(n +2)y x 2+(m +n )yx +(1+m )=0.设M x 1 ,y 1 ,N x 2,y 2 ,因为AM ⊥AN 则k AM ⋅k AN =y 1x 1⋅y 2x 2=m +1n +2=-1,即m =-n -3.代入直线MN 方程中得n (y -x )-3x -4=0.则在新坐标系下直线MN 过定点-43,-43,则在原坐标系下直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 的中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法三]:建立曲线系A 点处的切线方程为2×x6+1×y 3=1,即x +y -3=0.设直线MA 的方程为k 1x -y -2k 1+1=0,直线MB 的方程为k 2x -y -2k 2+1=0,直线MN 的方程为kx -y +m =0.由题意得k 1⋅k 2=-1.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线MA ,MB 可表示为x 26+y 23-1+λk 1x -y - 2k 1+1 k 2x -y -2k 2+1 =0(其中λ为系数).用直线MN 及点A 处的切线可表示为μ(kx -y +m )⋅(x +y -3)=0(其中μ为系数).即x 26+y 23-1+λk 1x -y -2k 1+1 k 2x - y -2k 2+1 =μ(kx -y +m )(x +y -3).对比xy 项、x 项及y 项系数得λk 1+k 2 =μ(1-k ),①λ4+k 1+k 2 =μ(m -3k ),②2λk 1+k 2-1 =μ(m +3).③将①代入②③,消去λ,μ并化简得3m +2k +1=0,即m =-23k -13.故直线MN 的方程为y =k x -23 -13,直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法四]:设M x 1,y 1 ,N x 2,y 2 .若直线MN 的斜率不存在,则M x 1,y 1 ,N x 1,-y 1 .因为AM ⊥AN ,则AM ⋅AN=0,即x 1-2 2+1-y 21=0.由x 216+y 213=1,解得x 1=23或x 1=2(舍).所以直线MN 的方程为x =23.若直线MN 的斜率存在,设直线MN 的方程为y =kx +m ,则x 2+2(kx +m )2-6=1+2k 2x -x 1 x -x 2 =0.令x =2,则x 1-2 x 2-2 =2(2k +m -1)(2k +m +1)1+2k 2.又y -m k 2+2y 2-6=2+1k 2y -y 1 y -y 2 ,令y =1,则y 1-1 y 2-1 =(2k +m -1)(-2k +m -1)1+2k 2.因为AM ⊥AN ,所以AM ⋅AN =x 1-2 x 2-2 +y 1-1 y 2-1 =(2k +m -1)(2k +3m +1)1+2k 2=0,即m =-2k +1或m =-23k -13.当m =-2k +1时,直线MN 的方程为y =kx -2k +1=k (x -2)+1.所以直线MN 恒过A (2,1),不合题意;当m =-23k -13时,直线MN 的方程为y =kx -23k -13=k x -23-13,所以直线MN 恒过P 23,-13.综上,直线MN 恒过P 23,-13,所以|AP |=423.又因为AD ⊥MN ,即AD ⊥AP ,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为Q 43,13 ,则|DQ |=12|AP |=223.所以存在定点Q ,使得|DQ |为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为mx +ny =4,再通过与椭圆方程联立,构建齐次式,由韦达定理求出m ,n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线MN :y =kx +m ,再利用过点A ,M ,N 的曲线系,根据比较对应项系数可求出m ,k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解x 1-2 x 2-2 以及y 1-1 y 2-1 的计算.题型一已知定点求定值C :y 2=4x ,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:∠POQ =90°.【解析】直线PQ :x =my +4,P x 1,y 1 ,Q x 2,y 2由x =my +4,得1=x -my4则由x =my +4y 2=4x ,得:y 2=4x ⋅x -my 4,整理得:y x 2+m y x -1=0,即:y 1x 1⋅y 2x 2=-1.所以k OP ⋅k OQ =y 1y 2x 1x 2=-1,则OP ⊥OQ ,即:∠POQ =90°椭圆E :x 22+y 2=1,经过点M (1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A (0,-1),证明:直线AP 与AQ 的斜率之和为2.【解析】设直线PQ :mx +n (y +1)=1,P x 1,y 1 ,Q x 2,y 2 则m +2n =1.由mx +n (y +1)=1x 22+y 2=1,得:x 22+[(y +1)-1]2=1.则x 22+(y +1)2-2(y +1)[mx +n (y +1)]=0,故(1-2n )y +1x 2-2m y +1x +12=0.所以y 1+1x 1+y 2+1x 2=2m 2n -1=2.即k AP +k AQ =y 1+1x 1+y 2+1x 2=2.A 1,32 ,O 为坐标原点,E ,F 是椭圆C :x 24=y 23=1上的两个动点,满足直线AE 与直线AF 关于直线x =1对称.证明直线EF 的斜率为定值,并求出这个定值;【答案】(提示:k 1+k 2=0答案:12)点F (1,0)为椭圆x 24+y 23=1的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足∠ACD =∠BCD ,试问直线AB 的斜率是否为定值,请说明理由.解法1常规解法依题意知直线AB 的斜率存在,设AB 方程:y =kx +m A x 1,y 1 ,B x 2,y 2代入椭圆方程x 24+y 23=1得:4k 2+3 x 2+8kmx +4m 2-12=0(*)∴x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3由∠ACD =∠BCD 得k AC +k BC =0∵C 1,32 ,∴y 1-32x 1-1+y 2-32x 2-1=kx 1+m -32x 1-1+kx 2+m -32x 2-1=0∴2kx 1x 2+m -32-k x 1+x 2 -2m +3=0∴2k ⋅4m 2-124k 2+3+m -32-k -8km 4k 2+3-2m +3=0整理得:(6k -3)(2k +2m -3)=0∴2k +2m -3=0或6k -3=0当2k +2m -3=0时,直线AB 过定点C 1,32,不合题意∴6k -3=0,k =12,∴直线AB 的斜率是定值12解法2齐次化:设直线AB 的方程为m (x -1)+n y -32 =1椭圆E 的方程即:3[(x -1)+1]2+4y -32 +322=12即:4y -32 2+12y -32+6(x -1)+3(x -1)2=0联立得:(4+12n )y -32 2+(12m +6n )y -32 (x -1)+(6m +3)(x -1)2=0即(4+12n )y -32x -1 2+(12m +6n )y -32x -1+(6m +3)=0∴由∠ACD =∠BCD 得k AC +k BC =y 1-32x 1-1+y 2-32x 2-1=-(12m +6n )(4+12n )=0即:n =-2m∴直线AB 的斜率为-m n =12,是定值.:x 22+y 2=1,A 0,-1 ,经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.解法1常规解法:证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2=2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和2.解法2齐次化:上移一个单位,椭圆E和直线L:x 22+y -1 2=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.C :x 24+y 23=1,过F 作斜率为k (k ≠0)的动直线l ,交椭圆C 于M ,N 两点,若A 为椭圆C 的左顶点,直线AM ,AN 的斜率分别为k 1,k 2,求证:k k 1+kk 2为定值,并求出定值.将椭圆沿着AO 方向平移,平移后的椭圆方程为(x −2)24+y 23=1⇒x 24+y 23+x =0设直线MN 方程为mx +ny =1,代入椭圆方程得x 24+y 23+x (mx +ny )=0,两侧同时除以x 2得13y x 2−n y x +1−4m 4=0,k 1+k 2=3n ,k 1k 2=34−3m ,k =k MN=−mn,因为mx +ny =1过定点F (3,0)⇒m =13,所以k k 1+kk 2=4题型二已知定值求定点全国卷理)已知椭圆x 24+y 2=1,设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32 ,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2):解法1常规解法:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A+k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .解法2齐次化:下移1个单位得E :x 24+y +1 2=1⇒x 24+y 2+2y =0,设平移后的直线:A B :mx +ny =1,齐次化:x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .C :x 24+y 2=1,设直线l 不经过点P 2(0,1)且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:直线l 过定点.不平移齐次化【解析】设直线l :mx +n (y -1)=1......(1)由C :x 24+y 2=1,得x 24+[(y -1)+1]2=1即:x 24+(y -1)2+2(y -1)=0......(2)由(1)(2)得:x 24+(y -1)2+2(y -1)[mx +n (y -1)]=0整理得:(1+2n )y -1x2+2m ⋅y -1x +14=0则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=-2m1+2n =-1,则2m =2n +1,代入直线l :mx +n (y -1)=1,得:l :(2n +1)x +2n (y -1)=2显然,直线过定点(2,-1).C :y 2=2px (p >0)上的点P (1,y 0)(y 0>0)到其焦点的距离为2.(1)求点P 的坐标及抛物线C 的方程;(2)若点M 、N 在抛物线C 上,且k PM •k PN =-12,证明:直线MN 过定点.答案:(2)(9,-2)C :x 24+y 23=1,P 1,32 ,若直线l 交椭圆C 于A ,B (A ,B 异于点P )两点,且直线PA 与PB 的斜率之积为-94,求点P 到直线l 距离的最大值.解法1齐次化:公共点P 1,32 ,左移1个单位,下移32个单位,C :x +124+y +3223=1A B:mx +ny =1,3x 2+6x +4y 2+3y =0,4y 2+3x 2+6x +2y mx +ny =0,12n +4 y 2+62m +n xy +6m +3 x 2=0,等式两边同时除以x 2,12n +4 y x2+62m +n yx+6m +3 =0,k PA ⋅k PB =-94,6m +312n +4=-94,-12m -94n =1,mx +ny =1过-12,-94 ,右移1个单位,上移32个单位,过Q 12,-34,∴P 到直线l 的距离的最大值为PQ 的值为1-12 2+32--34 2=854,由于854>12,∴点P 到直线l 距离的最大值854已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为33,椭圆E 的短轴长等于4.由k 3⋅k 4=k BP ⋅k BQ ,即t -t 2=-2,∴t =22+83,此时Δ2=4 k 29>0,∴PQ 的方程为y =k 2x +22(1)求椭圆E 的标准方程;x 6+y 24=1(2)设A 0,-1,B 0,2,过A 且斜率为k 1的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交⊙C :x 2+ y -12=1于异于点B 的点P ,Q ,设直线PQ 的斜率为k 2,直线BM ,BN 的斜率分别为k 3,k 4.①求证:k 3⋅k 4为定值;②求证:直线PQ 过定点.3答案:(2)-2;(3) 0,2【小问1详解】4c=33 由题意 a b 2+c 2=a 22b = 解得2==ba c =2所以椭圆的标准方程为:x 6+62y 24=1;【小问2详解】2①设MN 的方程为y =k 1x -1,与x 6+y 24=1联立得: 3k 2 1+2x 2-6k 1x -9=0,x 1+x 2=6k 13k 21+293k 21+2 1+1>0设M (x 1,y 1),N (x 2,y 2),则 x 1x 2=- Δ1=72 2k 2,∴k 3⋅k 4=y 1-2x 1⋅y 2-2x 2= k 1x 1-3 2x 2-3 k x 1x 2=k 21x 1x 2-3k 1(x 1+x 2)+9x 1x 2=-2【法二】平移坐标系+齐次化处理将坐标系中的图像整体向下平移2个单位,2平移后的椭圆方程为:x 6+ 22y +4=1,整理得:2x 2+3y 2+12y =0,设平移后的直线MN 的方程为:mx +ny =1,代入点 0,-3得mx -y3=1,y则有2x 2+3y 2+12y mx - 3=0,整理得:-y 2+12mxy +2x 2=0y令k =x,将-y 2+12mxy +2x 2=0两边同除x 2,得-k 2+12mk +2=0,故k 3⋅k 4=-2y m '说明:因为平移后k 3=x m 'y n ',k 4=x n ',而式子-y 2+12mxy +2x 2=0中x ,y 的值对应平移后的m '和n '所以同除x 2后得到的就是一个以k 3和k 4为根一个关于k 的一元二次方程.②设PQ 的方程为y =k 2x +t ,与x 2+ y -12=1联立 k 22+1x 2+2k 2 t -1x +t t -2=0,2k 2t -1k 22+1t -2tk 22+1 2-t 2+2t >0设P (x 3,y 3),Q (x 4,y 4)则 x 3x 4= Δ2=4 k 2 x 3+x 4=-∴k BP ⋅k BQ =y 3-2x 3⋅y 4-2x 4= k 2x 3+t -2 2x 4+t -2 k x 3x 4=k 22x 3x 4+k 2 t -2 x3+x 4+ t -22x 1x 2=k 2 2t t -2-2k 2 2 t -2 t -1+ k 2 2+1 t -22t t -2=k 22t -2k 22 t -1 2+1 t -2 + k 2t =t -2t 3,故直线PQ 恒过定点 0,23.。
椭圆中的一类问题(1)平面上一动点(,)P x y 与两点(2,0),(2,0)A B -的连线的斜率之积是34-,求点P 的轨迹方程.221(2)43x y x +=≠± (2)椭圆22143x y +=上任一点P 与两点(2,0),(2,0)A B -的连线的斜率之积是 1234k k =-你发现了什么? 222122221x y b k k a b a+=⇔=-大胆猜想、类比圆与双曲线探究:(1)椭圆22221x y a b+=上任一点P 与两点(,0),(,0)A a B a -的连线的斜率之积是 22b a-(2)椭圆22221x y a b+=上任一点P 与椭圆上两定点0000(,),(,)A x y B x y --的连线的斜率之积是 22b a-(3)P 是椭圆22221x y a b+=上一点,直线2y x =与椭圆相交于两点,A B ,则直线,PA PB 的连线的斜率之积是 22b a -(4)椭圆222210)x y a b a b+=>>(上任一点P 与两点(,0),(,0)A a B a -的连线的斜率之积是34-,则椭圆的离心率(5)一椭圆上任一点P 与椭圆上两定点0000(,),(,)A x y B x y --的连线的斜率之积是43-,则椭圆的离心率展示1:已知直线y =12x 与椭圆C :22182x y +=交于D ,E 两点,过D 点作斜率为k 的直线l 1.直线l 1与椭圆C 的另一个交点为P ,与直线x =4的交点为Q ,过Q 点作直线EP 的垂线l 2.求证:直线l 2恒过一定点.展示2:已知椭圆C :x 24+y 23=1上一点P (1,32),过点P 的直线12,l l 与椭圆C 分别交于点A ,B (不同于P ), 且它们的斜率k 1,k 2,满足k 1k 2=-34.(1)求证:直线AB 过定点; (2)求△PAB 面积的最大值.(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
微专题:解析几何中斜率之积为定值(2221ab k k -=•)的问题探究【教学重点】掌握椭圆中2221ab k k -=•的形成的路径探寻及成果运用理性判断【教学难点】运算的设计和化简活动一:2221ab k k -=•形成的路径探寻1. 若AB 是椭圆)0(12222>>=+b a by a x 上的不过原点的弦,点P 是弦AB 的中点,且直线OP,AB的斜率都存在,求PO ABK K •.【解析】 :设点()0,y x P,()11,y x A ,()22,y x B ,则有;;)2(1)1(1222222221221=+=+bya xb y a x (代点作差)将①式减②式得,,,所以所以,即22ab K K POAB-=•.【结论形成总结】【结论1】 若AB 是椭圆)0(12222>>=+b a by a x 上的非直径的弦,点P 是弦AB 的中点,且直线OP,AB 的斜率都存在,则1222-=-=•e ab K K POAB .2.已知AB 是椭圆)0(12222>>=+b a by a x 上过原点的弦,点P 是椭圆异于A,B 的任意一点,若直线PA,PB 的斜率都存在,记直线PA,PB 的斜率分别为21k k ,.求21k k •的值。
【解法1】:设()0,y x P,()11,y x A 又因为A,B 是关于原点对称,所以点B 的坐标为()11-,-y x B ,所以212021201010101021x x y y x x y y x x y y k k --=++•--=•.又因为点()00,y x P ,()11,y x A 在椭圆上,所以有;;)2(1)1(1221221220220=+=+b y a x b y a x两式相减得,2221202120-ab x x y y =--,所以2221ab k k -=•.【方法小结】本解法从设点入手,利用“点在曲线上”代点作差使用“点差法”。
微专题34例题导引例题答案:⎝⎛⎭⎫0,-35. 变式联想变式1解析: (1) 设点P (x 0,y 0),则点Q (-x 0,-y 0),点A (-2,0),所以直线AP 的方程为y =y 0x 0+2(x +2),所以点M ⎝ ⎛⎭⎪⎫0,2y 0x 0+2, 所以AM →=⎝ ⎛⎭⎪⎫2,2y 0x 0+2. 同理可得N ⎝ ⎛⎭⎪⎫0,2y 0x 0-2,AN →=⎝ ⎛⎭⎪⎫2,2y 0x 0-2,所以AM →·AN →=4+4y 20x 20-4. 又点P 在椭圆C 上,故x 204+y 203=1, 即x 20-4=-43y 20, 所以AM →·AN →=4+4y 20x 20-4=1(定值). (2)设点P (x 1,y 1),点Q (x 2,y 2).设直线AP 的方程为y =k 1(x +2),联立⎩⎪⎨⎪⎧y =k 1(x +2),x 24+y 23=1,消去y 并整理得(3+4k 21)x 2+16k 21x +16k 21-12=0,所以-2+x 1=-16k 213+4k 21,x 1=6-8k 213+4k 21,y 1=12k 13+4k 21, 所以点P ⎝ ⎛⎭⎪⎫6-8k 213+4k 21,12k 13+4k 21. 因为k 1·k 2=-1,所以点Q ⎝ ⎛⎭⎪⎫6k 21-83k 21+4,-12k 13k 21+4.当k 21=1时,6-8k 213+4k 21=-27=6k 21-83k 21+4, 点P 和点Q 的横坐标相同,直线PQ 的方程为x =-27, 由此可见,如果直线PQ 经过定点R ,则点R 的横坐标一定为-27; 当k 21≠1时,k PQ =12k 13+4k 21--12k 13k 21+46-8k 213+4k 21-6k 21-83k 21+4=7k 14(1-k 21), 直线PQ 的方程为y -12k 13+4k 21=7k 14(1-k 21)(x -6-8k 213+4k 21), 令x =-27,得y =7k 14(1-k 21)⎝ ⎛⎭⎪⎫-27-6-8k 213+4k 21+12k 13+4k 21=0, 所以直线PQ 过定点R ⎝⎛⎭⎫-27,0 变式2答案: (1) 设点A (x 1,y 1),B (x 2,y 2),M (x ,y ),则x 212+y 21=1①,x 222+y 22=1②. 因为OM →=cos θOA →+sin θOB →,故⎩⎪⎨⎪⎧x =x 1cos θ+x 2sin θ,y =y 1cos θ+y 2sin θ.又因为点M 在椭圆上,故 (x 1cos θ+x 2sin θ)22+(y 1cos θ+y 2sin θ)2=1,整理得⎝⎛⎭⎫x 212+y 21cos 2θ+⎝⎛⎭⎫x 222+y 22sin 2θ+2(x 1x 22+y 1y 2)cos θsin θ=1. 将①②代入上式,得⎝⎛⎭⎫x 1x 22+y 1y 2cos θsin θ=0, 因为cos θsin θ≠0,所以x 1x 22+y 1y 2=0, 所以k OA ·k OB =y 1y 2x 1x 2=-12为定值. (2)3.串讲激活串讲答案:定点(1,0).新题在线例题答案:(1)x 24+y 22=1;(2)x ±y -1=0; (3)证明:设直线l :y =k (x -1), 代入椭圆整理得(2k 2+1)k 2-4k 2x +2k 2x +2k 2-4=0,设E (x 1,k (x 1-1)),F (x 2,k (x 2-1)),∴x 1,2=4k 2±16k 4-4(2k 2+1)(2k 2-4)2(2k 2+1), ∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-42k 2+1, 直线AE 的方程为y =k (x 1-1)x 1+2(x +2), 令x =3,解得 M (3,5k (x 1-1)x 1+2),同理,得 N (3,5k (x 2-1)x 2+2) ∵Q 为M ,N 的中点,∴y Q =5k 2(x 1-1x 1+2+x 2-1x 2+2)=5k -15k 2·x 1+x 2+4x 1x 2+2x 1+2x 2+4, 将 x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-42k 2+1, 代入上式整理得y Q =-53k, ∴k ′=-53k 3-1=-56k, ∴k ·k ′=-56为定值.。
微专题:巧解斜率和积为定值,直线过定点问题
正文部分
这次,要好好表扬下数学课代表王同学。
因为直线的斜率和或积为定值,直线过定点这类问题,利用常规方法做,很复杂,主要难点在计算量上。
但是,利用他提供的这种巧设直线的方法,这类问题一下子都变得很简单的。
其实,以前他就提出过这个方法,当时我没有特别留意,今天,遇到一道计算量比较大的同类题,用他的这个方法做,简单了很多很多。
这次,我把这类问题和方法整理出来,成为一个微专题,大家也可以比较下常规方法和巧设直线的方法。