有利于难溶电解质转化为配合物的条件
- 格式:docx
- 大小:36.62 KB
- 文档页数:2
【导语】学难溶电解质的溶解平衡是化学学习中的重点内容,多做练习题,就可以帮助学⽣更好的理解知识点,下⾯⽆忧考将为⼤家带来难容电解质的溶解平衡的练习题的介绍,希望能够帮助到⼤家。
1、向含有AgCl(s)的饱和AgCl溶液中加⽔,下列叙述正确的是( )A.AgCl的溶解度增⼤B.AgCl的溶解度、Ksp均不变C.Ksp(AgCl)增⼤D.AgCl的溶解度、Ksp均增⼤2、CaCO3在下列液体中溶解度的是 ( )A.H2OB.Na2CO3溶液C.CaCl2溶液D.⼄醇3、得到较纯的FeS沉淀,应在FeCl2溶液中加⼊的试剂 ( )A.(NH4)2SB.Na2SC.H2SD.NaHS4、要除去MgCl2酸性溶液⾥少量的FeCl3,不宜选⽤的试剂是( )。
A. MgOB.MgCO3C.NaOHD.Mg(OH)25、⾮结合胆红素(VCB)分⼦中有羟基,被氧化后(⽣成羧基)与钙离⼦结合形成胆红素钙的反应,就是⼀个沉淀⽣成的离⼦反应,从动态平衡的⾓度分析能预防胆结⽯的⽅法是( )A.⼤量⾷⽤纯碱可使钙离⼦沉淀完全.,防⽌胆结⽯⽣成B.不⾷⽤含钙的⾷品C.适量服⽤低维⽣素E、低维⽣素C等抗氧化⾃由基可防治胆结⽯D.常喝⽔稀释钙离⼦,溶解沉淀6、⼯业废⽔中常含有Cu2+、Cd2+、Pb2+等重⾦属离⼦,可通过加⼊过量的难溶电解质FeS、MnS,使这些⾦属离⼦形成硫化物沉淀除去。
根据以上事实,可推知FeS、MnS具有的相关性质是 ( )A.在⽔中的溶解能⼒⼤于 CuS、CdS、PbSB.在⽔中的溶解能⼒⼩于CuS、CdS、PbSC.在⽔中的溶解能⼒与CuS、CdS、PbS相同D.⼆者均具有较强的吸附性7、在100mL 0.01mol•L-1KCl溶液中,加⼊lmL 0.01mol•L-1 AgNO3溶液,下列说法正确的是(AgCl的Ksp=1.8×10—10mol•L-1) ( )A.有AgCl沉淀析出B.⽆AgCl沉淀析出C.⽆法确定D.有沉淀但不是AgCl8、向5mL NaCl溶液中滴⼊⼀滴AgNO3溶液,出现⽩⾊沉淀,继续滴加⼀滴KI溶液并振荡,沉淀变为黄⾊,再滴⼊⼀滴Na2S 溶液并振荡,沉淀⼜变成⿊⾊。
沉淀溶解平衡1、定义:在一定条件下,当难容电解质的溶解速率与溶液中的有关离子重新生成沉淀的速率相等,此时溶液中存在的溶解和沉淀间的动态平衡,称为沉淀溶解平衡。
例如:2、沉淀溶解平衡的特征:(1)逆:沉淀溶解平衡是可逆过程。
(2)等:(3)动:动态平衡,溶解的速率和沉淀的速率相等且不为零。
(4)定:达到平衡时,溶液中各离子的浓度保持不变,(5)变:当外界条件改变时,溶解平衡将发生移动,达到新的平衡。
3、沉淀溶解平衡的影响因素(1)内因:难溶电解质本身的性质。
(2)外因a.浓度:加水稀释,沉淀溶解平衡向溶解的方向移动,但不变。
b.温度:多数难溶电解质溶于水是吸热的,所以升高温度,沉淀溶解平衡向溶解的方向移动,同时变大。
c.同离子效应:向沉淀溶解平衡体系中,加入含原体系中某离子的物质,平衡向沉淀生成的方向移动,但不变。
d.其他:向沉淀溶解平衡体系中,加入可与体系巾某些离子反应生成更难溶的物质或气体的物质,平衡向溶解的方向移动,不变。
沉淀溶解平衡的应用:沉淀的生成意义:在涉及无机制备、提纯工艺的生产、科研、废水处理等领域中,常利用生成沉淀来达到分离或除去某些离子的目的。
方法调节pH法:如工业原料氯化铵中含杂质氯化铁,使其溶解于水,再加入氨水调节pH至7~8,可使转变为沉淀而除去。
加沉淀剂法:如以等作沉淀剂,使某些金属离子如等生成极难溶的硫化物等沉淀,也是分离、除杂常用的方法。
说明:化学上通常认为残留在溶液中的离子浓度小于时即沉淀完全。
沉淀的溶解意义:在实际工作中,常常会遇到需要使难溶物质溶解的问题、根据平衡移动原理,对于在水中难溶的电解质,如果能设法不断地移去沉淀溶解平衡体系中的相应离子,使平衡就会向沉淀溶解的方向移动,使沉淀溶解。
方法生成弱电解质:加入适当的物质,使其与沉淀溶解平衡体系中的某离子反应生成弱电解质。
如向沉淀中加入溶液,结合生成使的溶解平衡向右移动。
生成配合物:加入适当的物质,使其与沉淀反应生成配合物。
溶度积与溶度积规则一、溶度积定义:在一定条件下,难溶强电解质)(s B A n m 溶于水形成饱和溶液时,在溶液中达到沉淀溶解平衡状态(动态平衡),各离子浓度保持不变(或一定),其离子浓度幂的乘积为一个常数,这个常数称之为溶度积常数,简称溶度积,用K SP 表示。
二、溶度积表达式:)(s B A n m )()(aq nB aq mA m n -++n m m n sp B c A c K )()(-+⋅= (适用对象:饱和溶液)① sp K 只与温度有关,而与沉淀的量和溶液中的离子的浓度无关。
② 一般来说,对同种类型难溶电解质(如AgCl 、AgBr 、AgI 、4BaSO ),sp K 越小,其溶解度越小,越易转化为沉淀。
不同类型难溶电解质,不能根据sp K 比较溶解度的大小。
三、溶度积规则—离子积在一定条件下,对于难溶强电解质)(s B A n m )()(aq nB aq mA m n -++在任一时刻都有nm m n c B c A c Q )()(-+⋅= (适用对象:任一时刻的溶液)可通过比较溶度积与溶液中有关离子浓度幂的乘积----离子积(c Q )的相对大小判断难溶电解质在给定条件下的沉淀生成或溶解情况:sp c K Q >,溶液过饱和,有沉淀析出,直至溶液饱和,达到新的平衡; sp c K Q =,溶液为饱和溶液,沉淀与溶解处于平衡状态;sp c K Q <,溶液未饱和,向沉淀溶解的方向进行,无沉淀析出,若加入过量难溶电解质,难溶电解质溶解直至溶液饱和。
化学上通常认为残留在溶液中的离子浓度小于L mol 5101-⨯时,沉淀就达完全(2011年浙江)13、海水中含有丰富的镁资源。
某同学设计了从模拟海水中制备MgO 的实验方案:模拟海水中的离子浓度(L mol ⋅)+Na+2Mg+2Ca -Cl-3HCO439.0 050.0 011.0 560.0 001.0溶液NaOH Lmol mL 0.10.13.8250.10=pH C L 模拟海水过滤 ①滤液M沉淀物X.11=pH NaOH 调到固体加过滤 ②滤液N沉淀物YMgO注:溶液中某种离子的浓度小于511.010mol L --⨯⋅,可认为该离子不存在;实验过程中,假设溶液体积不变。
《难溶电解质的沉淀溶解平衡》知识清单一、沉淀溶解平衡的概念在一定温度下,当难溶电解质溶于水形成饱和溶液时,溶解速率和沉淀速率相等的状态,叫做沉淀溶解平衡。
例如,我们将一定量的氯化银(AgCl)固体放入水中,氯化银会在水分子的作用下溶解,同时溶解的银离子(Ag⁺)和氯离子(Cl⁻)又会结合生成氯化银沉淀。
开始时,溶解速率较大,沉淀速率较小。
随着溶解的进行,溶液中离子浓度逐渐增大,沉淀速率逐渐加快,溶解速率逐渐减慢。
当溶解速率和沉淀速率相等时,就达到了沉淀溶解平衡状态。
此时,溶液中的离子浓度不再发生变化,但溶解和沉淀这两个过程仍在不断进行,只不过速率相等。
二、沉淀溶解平衡的特征1、动:沉淀溶解平衡是一种动态平衡,溶解和沉淀这两个过程仍在不断进行。
2、等:溶解速率和沉淀速率相等。
3、定:达到平衡时,溶液中各离子的浓度保持不变。
4、变:当外界条件改变时,沉淀溶解平衡会发生移动。
三、沉淀溶解平衡的表达式对于难溶电解质 AmBn 在水溶液中的沉淀溶解平衡,其表达式为:AmBn(s) ⇌ mAn⁺(aq) + nBm⁻(aq) 例如,氯化银的沉淀溶解平衡表达式为:AgCl(s) ⇌ Ag⁺(aq) + Cl⁻(aq)四、影响沉淀溶解平衡的因素1、内因难溶电解质本身的性质是决定沉淀溶解平衡的主要因素。
不同的难溶电解质,在相同条件下,溶解度差别很大。
2、外因(1)温度大多数难溶电解质的溶解过程是吸热的,升高温度,平衡向溶解方向移动,溶解度增大;少数难溶电解质的溶解过程是放热的,升高温度,平衡向沉淀方向移动,溶解度减小。
(2)浓度增大离子浓度,平衡向沉淀方向移动;减小离子浓度,平衡向溶解方向移动。
①加水稀释:平衡向溶解方向移动。
②加入相同的离子:平衡向沉淀方向移动。
(3)同离子效应在难溶电解质的饱和溶液中,加入含有相同离子的强电解质,会使平衡向沉淀方向移动,溶解度减小。
例如,在氯化银的饱和溶液中加入氯化钠固体,由于溶液中氯离子浓度增大,平衡向生成氯化银沉淀的方向移动,氯化银的溶解度减小。
难溶电解质的溶解平衡编稿:宋杰审稿:张灿丽【学习目标】1、知道难溶物在水中的溶解情况及沉淀溶解平衡的建立过程,能描述沉淀溶解平衡;2、知道沉淀转化的本质;3、知道沉淀溶解平衡在生产、生活中的应用。
【要点梳理】要点一、沉淀溶解平衡1.物质的溶解性电解质在水中的溶解度,有的很大,有的很小,但仍有度。
在20℃时溶解性与溶解度的关系如下:溶解性易溶可溶微溶难溶溶解度>10 g 1 g~10 g 0.01 g~1 g <0.01 g2.难溶物的溶解平衡难溶电解质的离子进入溶液的速率和从溶液里转回到电解质固体表面沉积的速率相等,溶液里的离子处于饱和及固态电解质的量保持不变的状态,叫做难溶电解质的沉淀溶解平衡状态,简称沉淀溶解平衡。
例如:AgCl(s) Ag+(aq)+Cl―(aq)未溶解的固体溶液中的离子PbI2(s) Pb2+(aq)+2I―(aq)未溶解的固体溶液中的离子3.溶解平衡特征。
(1)“动”——动态平衡,溶解的速率和沉淀的速率都不为0;(2)“等”——v溶解=v沉淀;(3)“定”——达到平衡时,溶液中离子的浓度保持不变;(4)“变”——当改变外界条件时,溶解平衡将发生移动,达到新的平衡。
4.沉淀溶解平衡常数——溶度积。
(1)定义:在一定条件下,难溶强电解质A m B n溶于水形成饱和溶液时,溶质的离子与该固态物质之间建立动态平衡,叫做沉淀溶解平衡。
这时,离子浓度幂的乘积为一常数,叫做溶度积K sp。
(2)表达式:A mB n(s)m A n+(aq)+n B m―(aq)K sp=[c(A n+)]m·[c(B m―)]n要点诠释:溶度积(K sp)的大小只与难溶电解质的性质和温度有关,与浓度无关。
(3)溶度积规则:通过比较溶度积与溶液中有关离子浓度幂的乘积——离子积Q c的相对大小,可以判断难溶电解质在给定条件下沉淀能否生成或溶解;Q c>K sp,溶液过饱和,有沉淀析出,直至溶液饱和,达到新的平衡;Q c=K sp,溶液饱和,沉淀与溶解处于平衡状态;Q c<K sp,溶液未饱和,无沉淀析出,若加入过量难溶电解质,难溶电解质溶解直至溶液饱和。
有利于难溶电解质转化为配合物的条件
难溶电解质的转化为配合物是一种复杂的化学反应,为了获得最佳的转化效果,我们必须掌握其优化条件。
首先,温度对于难溶电解质转化为配合物有着重要的影响。
一般来说,温度越低,配合物形成的速度就越慢,这就意味着需要更长的反应时间才能完成反应。
因此,温度的选择要根据实际情况进行调整,一般可以选择20-45℃的范围。
其次,pH值也是影响难溶电解质转化为配合物的重要因素。
难溶电解质的pH值一般在7左右,如果pH值太低或太高,就会影响反应的速度,使其反应速度变慢,从而影响最终的转化效果。
因此,在反应过程中要尽可能保持pH值的稳定。
再者,难溶电解质的浓度也是影响转化效果的重要因素。
一般来说,难溶电解质的浓度越高,其转化效果越好,反应的速度也越快,但是由于反应的速度有其自然的极限,当难溶电解质的浓度过高后,反应的速度会变慢,因此在选择浓度时要根据实际情况进行调整,一般可以选择
0.1-
0.5mol/L的范围。
此外,反应物的种类也是影响难溶电解质转化为配合物的因素。
不同的反应物有不同的反应速度,因此在反应过程中,要根据反应物的种类进行调整,以获得最佳的转化效果。
总之,难溶电解质转化为配合物的条件包括温度、pH值、浓度以及反应物的种类,要想获得最佳的转化效果,必须对这些条件进行合理的调整。