参数检验与非参数检验的区别与应用
- 格式:docx
- 大小:37.36 KB
- 文档页数:3
参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。
参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。
本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。
参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。
然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。
常见的参数检验方法有t检验、F检验和卡方检验等。
以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。
假设我们有两组样本数据,分别服从正态分布。
可以使用t检验来计算两组样本均值的差异是否显著。
t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。
参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。
此外,参数检验通常具有较好的效率和统计性质。
然而,参数检验也有一些限制和缺点。
首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。
另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。
此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。
与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。
它适用于更广泛的数据类型和样本分布。
常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。
以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。
这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。
非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。
此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。
非参数检验的场景与方法非参数检验是一种统计方法,用于对数据进行假设检验,而不需要对数据的分布做出任何假设。
相比于参数检验,非参数检验更加灵活,适用于更广泛的场景。
本文将介绍非参数检验的场景和常用的方法。
一、非参数检验的场景非参数检验适用于以下场景:1. 数据不满足正态分布:在一些实际问题中,数据的分布可能不满足正态分布假设,例如长尾分布、偏态分布等。
此时,非参数检验可以更好地适应数据的特点。
2. 样本量较小:参数检验通常要求样本量较大,以保证统计推断的准确性。
而非参数检验对样本量的要求较低,即使样本量较小,也能得到可靠的结果。
3. 数据类型不同:非参数检验可以处理不同类型的数据,包括连续型数据、离散型数据和顺序型数据等。
4. 异常值存在:在一些实际问题中,数据中可能存在异常值,而参数检验对异常值较为敏感。
非参数检验对异常值的影响较小,能够更好地处理这种情况。
二、常用的非参数检验方法1. Wilcoxon符号秩检验:适用于两个相关样本的比较。
该方法将两个样本的差值取绝对值,并赋予秩次,然后根据秩次之和来判断两个样本是否存在差异。
2. Mann-Whitney U检验:适用于两个独立样本的比较。
该方法将两个样本的数据合并后,赋予秩次,然后根据秩次之和来判断两个样本是否存在差异。
3. Kruskal-Wallis检验:适用于多个独立样本的比较。
该方法将多个样本的数据合并后,赋予秩次,然后根据秩次之和来判断多个样本是否存在差异。
4. Friedman检验:适用于多个相关样本的比较。
该方法将多个样本的数据合并后,赋予秩次,然后根据秩次之和来判断多个样本是否存在差异。
5. Kolmogorov-Smirnov检验:适用于两个样本的比较。
该方法通过计算两个样本的累积分布函数之差的最大值,来判断两个样本是否来自同一分布。
6. Chi-Square检验:适用于两个或多个分类变量的比较。
该方法通过计算观察频数与期望频数之差的平方和的比值,来判断两个或多个分类变量是否存在关联。
一.单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。
在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。
二.T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
它与Z检验、卡方检验并列。
t检验t检验分为单总体检验和双总体检验。
单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。
当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
单总体t检验统计量为:双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
双总体t 检验又分为两种情况,一是独立样本t检验,一是配对样本t检验。
独立样本t检验统计量为:S1 和S2 为两样本方差;n1 和n2 为两样本容量。
(上面的公式是1/n1 + 1/n2 不是减!)配对样本t检验统计量为:t检验的适用条件(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。
t检验步骤以单总体t检验为例说明:问题:难产儿出生体重n=35,X拔=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0 (无效假设,null hypothesis)H1:μ≠μ0(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。
SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。
当天的比例近似为2.8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。
通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果。
参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。
本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。
一、参数检验
参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。
它通常要求总体分布服从特定的概率分布,如正态分布。
参数检验的常见方法有:
1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。
2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。
3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。
4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。
参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。
但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。
二、非参数检验
非参数检验是对总体分布形态没有具体假设的情况下,通过对样本
数据进行统计推断,来对总体参数进行假设检验。
非参数检验不少于
参数检验的分析方法,常见的包括:
1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显
著差异。
2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。
3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。
非参数检验的优势在于对总体分布形态没有具体要求,适用于对总
体分布了解较少或不了解的情况。
它相对于参数检验来说更具广泛的
适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的
检验效果。
三、参数检验与非参数检验的区别
1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。
2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计
量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二
样序差等。
3. 推断效果:参数检验由于对总体分布形态有具体假设,推断效果
较好;非参数检验对总体分布形态没有具体假设,推断效果相对较差。
4. 样本量要求:参数检验对样本量要求相对较低,而非参数检验需
要更大的样本量来获取相同的推断效果。
四、参数检验与非参数检验的应用
参数检验和非参数检验在实际应用中具有各自的优势和适用场景。
参数检验适用于对总体分布有所了解的情况,常见于以下场景:
1. 检验药物是否具有显著的疗效:通过对药物治疗组和对照组的样
本数据进行参数统计推断,来判断药物的疗效。
2. 检验产品的质量是否达标:通过对产品抽样检测,对样本数据进
行参数统计推断,来判断产品质量是否满足标准要求。
非参数检验适用于对总体分布了解较少或不了解的情况,常见于以
下场景:
1. 比较两个独立样本的中位数是否存在显著差异:如对不同地区的
销售额进行比较,或对两种不同产品的用户评分进行比较。
2. 比较多个样本组的中位数是否存在显著差异:如对不同年龄段的
消费者对某产品的满意度进行比较。
综上所述,参数检验和非参数检验是统计学中常用的假设检验方法。
它们在数据分析和实证研究中起着重要的作用,根据具体的假设条件
和数据特点,可选择合适的方法进行分析。
了解参数检验和非参数检
验的区别与应用,有助于我们合理选择适用的方法,并正确解释统计
结果。