第12讲 相关样本(多样本)非参数检验
- 格式:ppt
- 大小:217.00 KB
- 文档页数:21
多配对样本的非参数检验
多配对样本的非参数检验室通过分析多组配对样本数据,推断样本来自的多个总体的中位数或分布是否存在显著差异。
例如手机乘客对多家航空公司是否满意的数据,分析航空公司的服务水平是否存在差异等等。
多配对样本的Friedman检验
多配对样本的Fiedman检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法,其零假设是多个配对样本来自的总体的分布无显著差异。
(思想见参考书)
多配对样本的Cochran Q检验
多配对样本的Cochran Q检验通过对多个配对样本的分析,推断样本来自的多个总体的分布是否存在显著差异,其零假设是多个配对样本来自的多个总体的分布无显著差异。
(思想见参考书)
多配对样本的Kendall协同系数检验
多配对样本的Kendall协同系数检验也是一种多配对样本的非参数检验方法,与Friedman 检验方法相结合,可方便地实现对评判者的评判标准是否一致的分析。
其零假设是评判者的评判标准不一致。
(思想见参考书)。
非参数检验符号检验法符号检验法是通过对两个相关样本的每对数据之差的符号(正号或负号)进行检验,以比较这两个样本所代表的总体的差异显著性,对应于参数检验中两相关样本差异显著性的T检验。
其基本思想是:若两总体差异不显著,则两样本差值的正号与负号应大致各占一半,即中位数为0,可见符号检验是以中数作为统计量进行假设检验的。
1、符号检验法的假设是:H0:差值的总体中位数为0;H1:差值的总体中位数不为0。
2、符号检验法的步骤为:①标记出每对数据之差的符号,正号个数记为n+,负号的个数记n-,(显然差值为0的不计算在任何一个中),这两数中最小者记为r,两数之和记为N,即:N = n+ + n-;r = min(n+,n-)②分两种情况进行检验:在双侧检验,.05水平下,若Z值落在-1.96~1.96之间,则表明两总体差异不显著;在此之外则表明差异显著。
在单侧检验,.05水平下,若Z值落在-1.645~1.645之间,则表明两总体差异不显著;在此之外则表明差异显著。
上面第二种情况采用正态分布,是因为将N分成n+和n-两部分,服从二项分布,而当N很大时,二项分布近似于正态分布。
八、多个相关样本检验K related Samples Test•(一)检验方法•三种• 1. Friedman检验:利用秩实现多个配对总体分布的检验,数据要求为等距数据。
• 2.Kendall和谐系数检验:主要评价者的评判标准是否一致或是否公平。
•3Cochran Q检验:它所处理的变量为二分变量。
•(二)分析路径• 1. Analyze-> Nonparametric Tests-> k related Samples。
• 2.在弹出的对话框中,将要比较的变量添加到test variable中,根据不同的数据选择不同的比较方法。
• 3.单击statistics按钮,选择Descriptive.•例如(1)检验10个人服用减肥药后,三次所称体重有无显著性差异。
统计学中的非参数检验方法介绍统计学是一门研究收集、分析和解释数据的科学。
在统计学中,我们经常需要进行假设检验,以确定样本数据是否代表了总体特征。
非参数检验方法是一种不依赖于总体分布假设的统计方法,它在现实世界中的应用非常广泛。
本文将介绍一些常见的非参数检验方法。
一、Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test)Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数检验方法。
它的原理是将两个相关样本的差值按绝对值大小进行排序,并为每个差值分配一个秩次。
然后,通过比较秩次总和与期望总和的差异来判断两个样本是否具有统计学上的显著差异。
二、Mann-Whitney U检验(Mann-Whitney U Test)Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。
它的原理是将两个样本的所有观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较两个样本的秩次总和来判断它们是否具有统计学上的显著差异。
三、Kruskal-Wallis检验(Kruskal-Wallis Test)Kruskal-Wallis检验是一种用于比较三个或更多独立样本的非参数检验方法。
它的原理是将所有样本的观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
四、Friedman检验(Friedman Test)Friedman检验是一种用于比较三个或更多相关样本的非参数检验方法。
它的原理类似于Kruskal-Wallis检验,但是对于相关样本,它将每个样本的观测值按照相对大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
五、秩相关系数检验(Rank Correlation Test)秩相关系数检验是一种用于检验两个变量之间相关性的非参数检验方法。
SPSS操作:多个相关样本的⾮参数检验(CochransQ检验)点击Settings→Customize tests,勾选Cochran's Q (k samples)。
点击Define Success,在Cochran's Q: Define Success对话框中,点击Combine values into success category,在Success框中填⼊1(这⾥是“成功”对应的编码,本例中即为通过体能测试,“Passed”对应的是1,所以这⾥填“1”)。
点击OK→Run,输出结果。
3.4 不符合假设4的“精确”Cochran's Q检验当不符合假设4时,需要使⽤“精确”Cochran's Q检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→K Related Samples,出现Tests for Several Related Samples对话框。
将变量initial_fitness_test、month3_fitness_test和final_fitness_test选⼊Test Variables框中。
在Test Type 下⽅去掉Friedman,然后勾选Cochran's Q。
(如果数据符合假设4,则此时点击OK,结果与3.3部分的操作结果⼀致)点击Exact,在Exact Tests对话框中,点击Exact,点击Continue→OK。
3.5 “精确”Cochran's Q检验后的两两⽐较对于符合假设4的Cochran's Q检验(3.3部分),事后的两两⽐较将在结果解释部分展⽰(4.2部分)。
对于不符合假设4的“精确”Cochran's Q检验(3.4部分)事后的两两⽐较,可采⽤经Bonferroni法校正的多重McNemar检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→2 Related Samples。
一.单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。
在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。
二.T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。
它与Z检验、卡方检验并列。
t检验t检验分为单总体检验和双总体检验。
单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。
当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
单总体t检验统计量为:双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。
双总体t 检验又分为两种情况,一是独立样本t检验,一是配对样本t检验。
独立样本t检验统计量为:S1 和S2 为两样本方差;n1 和n2 为两样本容量。
(上面的公式是1/n1 + 1/n2 不是减!)配对样本t检验统计量为:t检验的适用条件(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。
t检验步骤以单总体t检验为例说明:问题:难产儿出生体重n=35,X拔=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0 (无效假设,null hypothesis)H1:μ≠μ0(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。