中考总复习:锐角三角函数综合复习--知识讲解(提高)
- 格式:doc
- 大小:385.50 KB
- 文档页数:12
初中数学九年级锐角三角函数知识点总结28锐角三角函数一、知识框架本文介绍了锐角三角函数的知识点和概念总结,包括特殊值的三角函数、互余角的三角函数间的关系、同角三角函数间的关系以及三角函数值的变化情况。
二、知识点、概念总结1.锐角三角函数的定义:在锐角三角形中,对于角A,其对边、邻边、斜边分别为a、b、c,则有:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a2.特殊值的三角函数:对于30°、45°、60°这几个特殊角度,其三角函数值为:3.互余角的三角函数间的关系:对于角度α和其互余角90°-α,有以下关系:sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα4.同角三角函数间的关系:平方关系:sin²α+cos²α=1,tan²α+1=sec²α,cot²α+1=csc²α积的关系:sinα=tanα·cosα,cosα=cotα·sinα,tanα=sinα·secα,cotα=cosα·cscα,secα=tanα·cscα,cscα=secα·cotα倒数关系:tanα·cotα=1,sinα·cscα=1,cosα·secα=15.三角函数值:1)特殊角三角函数值2)0°~90°的任意角的三角函数值,可以查三角函数表。
3)锐角三角函数值的变化情况:i)锐角三角函数值都是正值ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大),正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大)iii)当角度在0°≤∠A≤90°间变化时,0≤sinα≤1,1≥cosA≥0,tanA>0,cotA>0。
中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。
把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。
当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。
2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。
3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。
4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。
5、正、余弦的平方关系:sin 2α+ cos 2α=1。
二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。
中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。
九年级数学锐角三角函数综合提高【本讲主要内容】锐角三角函数综合提高包括锐角三角函数较为复杂的计算及应用【知识掌握】【知识点精析】1. 了解sin cos()αα=︒-90的推导过程。
2. 用三角函数证明:sin cos 221αα+=。
3. 有关图形的计算。
4. 用三角函数解决一些实际问题。
【解题方法指导】例1. 设α是锐角,证明sin cos()αα=︒-90。
分析:构造一个直角三角形,设两个锐角分别为αα和90︒-,用三角函数定义去推导。
解:画Rt △ABC ,使∠C =90°,设∠A =α则∠B =︒-90αBA C 90o -α α∵sin α=BC ABcos()90︒-=αBC AB∴sin cos()αα=︒-90 评析:此结论可以叙述为:一个角的正弦,等于它的余角的余弦,证明此类问题时,可以通过构造直角三角形加以解决。
例2. 设α是一个锐角,求证:sin cos 221αα+=。
分析:构造一个直角三角形,用三角函数和勾股定理去证。
解:构造一个直角三角形ABC ,使∠C =90°,∠A =α则sin cos αα==BC AB AC AB,BA C α∴sin ()2222α==BC AB BC AB cos ()2222α==AC AB AC AB ∴sin cos 222222222αα+=+=+BC AB AC AB BC AC AB 由勾股定理,得BC AC AB 222+=∴sin cos 22221αα+==AB AB 评析:证明此题的前提是先学过了勾股定理。
例3. 在△ABC 中,若|sin ||cos |A B -+-=32120,则△ABC 是() A. 等腰三角形 B. 等边三角形C. 直角三角形D. 等腰直角三角形分析:由非负数的性质,求出∠A 、∠B 的度数,然后再作判断。
解:∵|sin ||cos |A B -+-=32120 ∴sin cos A B -=-=320120, ∴==sin cos A B 3212, ∵∠A 、∠B 是三角形的角∴∠A =60°,∠B =60°∴∠C =180°-60°-60°=60°∴△ABC 是等边三角形故选B评析:由非负数的性质解三角函数题,实质上是一致的。
一、三角函数的定义1. 正弦函数sinx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的纵坐标就是sinx。
2. 余弦函数cosx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的横坐标就是cosx。
3. 正切函数tanx:对于任意实数x,将sinx除以cosx就是tanx。
4. 余切函数cotx:对于任意实数x,将cosx除以sinx就是cotx。
5. 正割函数secx:对于任意实数x,将1除以cosx就是secx。
6. 余割函数cscx:对于任意实数x,将1除以sinx就是cscx。
二、三角函数的性质1. 基本关系式:sin^2x + cos^2x = 12. 周期性:sin(x+2kπ) = sinx,cos(x+2kπ) = cosx,其中k为任意整数。
3. 奇偶性:奇函数有sinx、tanx和cotx,偶函数有cosx、secx和cscx。
4. 正函数和负函数:在单位圆上,sinx和cscx为正函数,cosx和secx为负函数。
5. 三角函数的范围:sinx、cosx和tanx的范围是[-1,1],cotx、secx和cscx的范围是(-∞,∞)。
三、特殊角的三角函数值1.0°、30°、45°、60°和90°的三角函数值。
2.30°、45°、60°和90°的三角函数值的推导。
四、角度的度量转换1.度和弧度之间的转换:π弧度=180°,1°=π/180弧度。
2.角度的换算:1°=60',1'=60''。
五、倍角、半角和三倍角公式1. 倍角公式:sin2x = 2sinxcosx,cos2x = cos^2x - sin^2x,tan2x = 2tanx / (1 - tan^2x)。
2. 半角公式:sin(x/2) = ±√[(1-cosx)/2],cos(x/2) =±√[(1+cosx)/2],tan(x/2) = ±√[(1-cosx) / (1+cosx)]。
《锐角三角函数》是九年级数学中的一个重要的章节,它在高中数学中也有重要的应用。
下面是对《锐角三角函数》的知识点进行总结归纳。
一、角度的度和弧度制1.角度的度制:一个圆周分为360等份,每一份称为一度,用符号°表示。
2.角度的弧度制:弧度制通过角对应的弧长与半径的比值来表示。
弧度制度数=角度的度数×π/180二、正弦、余弦、正切关系1. 正弦函数:对于任意锐角A,正弦函数表示为sinA=对边/斜边。
2. 余弦函数:对于任意锐角A,余弦函数表示为cosA=邻边/斜边。
3. 正切函数:对于任意锐角A,正切函数表示为tanA=对边/邻边。
三、特殊角的值1. 30°特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√32. 45°特殊角的正弦、余弦、正切值:sin45°=√2/2,cos45°=√2/2,tan45°=13. 60°特殊角的正弦、余弦、正切值:sin60°=√3/2,cos60°=1/2,tan60°=√3四、三角函数的基本性质1. 同角三角函数值的关系:sinA/cosA=tanA,cosA/sinA=1/tanA,sin^2A+cos^2A=12. 三角函数的周期性:sin(A+2π)=sinA,cos(A+2π)=cosA,tan(A+π)=tanA。
3. 正负关系:在第一象限,sinA>0,cosA>0,tanA>0,在第二象限,sinA>0,cosA<0,tanA<0,在第三象限,sinA<0,cosA<0,tanA>0,在第四象限,sinA<0,cosA>0,tanA<0。
五、三角函数的应用1.解三角形:根据已知两边和夹角,用余弦定理和正弦定理求解。
中考总复习:锐角三角函数综合复习—知识讲解(提高)【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题. 【知识网络】 【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A a A c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA >0. 考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下: 要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就Ca bc是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 考点七、解直角三角形相关的知识如图所示,在Rt △ABC 中,∠C =90°, (1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则 ①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高) ②如图所示,1()2ABC S r a b c =++△. 【典型例题】类型一、锐角三角函数的概念与性质【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例2】1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的大小,可以用比例系数k表示各边.(3)要求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,根据三角函数值,用比例系数表示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可自己尝试完成.举一反三:【变式】(2015•乐山)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB==,AD==2cosA===,故选:D.类型二、特殊角的三角函数值【高清课堂:锐角三角函数综合复习 例1】2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.【思路点拨】第(2)题可以先利用关系式sin 2 A+cos 2A =1对根号内的式子进行变形,配成完全平方的形式. 【答案与解析】解 (1)tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°(2)∵12sin cos A A -2(sin cos )|sin cos |A A A A =-=-,∴12sin cos A A -cos sin (045)sin cos (4590)A A A A A A -<⎧=⎨-<<⎩°≤°°°.【总结升华】由第(2)题可得到今后常用的一个关系式:1±2sin αcos α=(sin α±cos α)2. 例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例1】 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角, ∴2α=60°,α=30°. ∴12cos sin 22βα===, ∴β=45°. ∴23tan()tan 3033β==°. 3.(2015春•凉州区校级月考)如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.【思路点拨】(1)过A 作AD ⊥BC 于点D ,利用面积公式求出高AD 的长,从而求出BD 、CD 、AC 的长,此时再求tanC 的值就不那么难了.(2)同理作AC 边上的高,利用面积公式求出高的长,从而求出sinA 的值. 【答案与解析】 解:(1)过A 作AD ⊥BC 于点D . ∵S △ABC =BC •AD=84, ∴×14×AD=84,∴AD=12. 又∵AB=14, ∴BD==9.∴CD=14﹣9=5. 在Rt △ADC 中,AC==13,∴tanC==;(2)过B 作BE ⊥AC 于点E . ∵S △ABC =AC •EB=84, ∴BE=,∴sin ∠BAC===.【总结升华】考查了锐角三角函数的定义,注意辅助线的添法和面积公式,以及解直角三角形公式的灵活应用. 举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到)【答案】过点C 作CD ⊥AB 于点D.EABCCD 就是连接两岸最短的桥.设CD=x (千米). 在直角三角形BCD 中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD 中,∠ACD=30°,所以AD=CD ×tan ∠ACD=x ·tan30°=x.因为AD+DB=AB ,所以x+x=3,x=≈答:从C 处连接两岸的最短的桥长约为. 类型三、解直角三角形及应用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长. 【思路点拨】解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程. 【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°.∵4cos 5CD DCE CE =∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高相同,∴AD:DB =:2:3ACD CDB S S =△△.即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k =+==.∴AB =AD+DB =AD+32AD =541. 【总结升华】在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等. 5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到).(参考数据:sin10°≈°≈°≈°≈°≈°≈ 【思路点拨】本题是求四边形一边长的问题,可以通过添加辅助线构造直角三角形来解. 【答案与解析】解:如图所示,延长CD 交PB 于F ,则DF ⊥PB . ∴DF =DB ·sinl5°≈50× CE =BF =DB ·cos15°≈50× ∴AE =CE ·tan10°≈× ∴≈答:树高约为. 【总结升华】一些特殊的四边形,可以通过切割补图形的方法将其转化为若干个直角三角形来解. 举一反三:【变式】如图所示,正三角形ABC 的边长为2,点D 在BC 的延长线上,CD =3.(1)动点P 在AB 上由A 向B 移动,设AP =t ,△PCD 的面积为y ,求y 与t 之间的函数关系式及自变量t 的取值范围;(2)在(1)的条件下,设PC =z ,求z 与t 之间的函数关系式. 【答案】解:(1)作PE ⊥BC 于E ,则BP =AB-AP =2-t(0≤t <2). ∵∠B =60°, ∴1133sin (2)2222PCD S CD PE CD BP B t ===-△, 即3333(02)42y t t =-+≤<. (2)由(1)不难得出,3(2)2PE t =-,1(2)2BE t =-. ∴112(2)(2)22EC BC BE t t =-=--=+. ∵22222231(2)(2)2444PC PE EC t t t t =+=-++=-+.∴224(02)z t t t =-+≤<.6.如图(1)所示,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子与地面的倾斜角α为60°.(1)求AO 与BO 的长.(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.①如图(2)所示,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD =2:3,试计算梯子顶端A 沿NO 下滑了多少米;②如图(3)所示,当A 点下滑到A ′点,B 点向右滑行到B ′点时,梯子AB 的中点P 也随之运动到P ′点,若∠POP ′=15°,试求AA ′的长.【思路点拨】(1)在直角△AOB 中,已知斜边AB ,和锐角∠ABO ,即可根据正弦和余弦的定义求得OA ,OB 的长;(2)△APO 和△P′A′O 都是等腰三角形,根据等腰三角形的两底角相等,即可求得∠PAO 的度数, 和∠P′A′O 的度数,在直角△ABO 和△A′B′O 中,根据三角函数即可求得OA 与OA′,即可求得AA′的长.【答案与解析】解:(1)Rt △AOB 中,∠O =90°,α=60°,∴∠OAB =30°.又AB =4米,∴OB =12AB =2米.OA =AB ·sin 60°=4×2=米). (2)①设AC =2x ,BD =3x ,在Rt △COD 中,OC =2x ,OD =2+3x ,CD =4,根据勾股定理:OC 2+OD 2=CD 2,∴2222)(23)4x x ++=.∴213(120x x +-=.∵x ≠0,∴13120x +-=.∴1213x =.24213AC x ==.即梯子顶端A 沿NO 下滑了2413米. ②∵点P 和点P ′分别是Rt △AOB 的斜边AB 与Rt △A ′OB ′的斜边A ′B ′的中点,∴PA =PO ,P ′A ′=P ′O .∴∠PAO =∠AOP ,∠P ′A ′O =∠A ′OP ′.∴∠P ′A ′O-∠PAO =∠POP ′=15°.∵∠PAO =30°,∴∠P ′A ′O =45°.∴A ′O =A ′B ′·cos 45°=42⨯=∴AA ′=OA-A ′O =米.【总结升华】解答本题的关键是理解题意.此题的妙处在于恰到好处地利用了直角三角形斜边上的中线等于斜边的一半,从而求出∠P′A′O=45°,让我们感受到了数学题真的很有意思,做数学题是一种享受.。