高中数学 2.5 等比数列的前n项的和学案 新人教A版必修5
- 格式:doc
- 大小:162.50 KB
- 文档页数:3
明目标、知重点 1.掌握等比数列的前n 项和公式及公式推导思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1)na 1(q =1). (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和公式的变式若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中A =a 1q -1.3.错位相减法推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.[情境导学]国际象棋起源于古代印度.相传国王要奖赏象棋的发明者,问他想要什么.发明者说:“请在象棋的第一个格子里放1颗麦粒,第二个格子放2颗麦粒,第三个格子放4颗麦粒,以此类推,每个格子放的麦粒数都是前一个格子的两倍,直到第64个格子.请给我足够的麦粒以实现上述要求”.国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g ,据查目前世界年度小麦产量约6亿吨,根据以上数据,判断国王是否能实现他的诺言. 探究点一 等比数列前n 项和公式的推导思考1 在情境导学中,如果把各格所放的麦粒数看成是一个数列,那么这个数列是怎样的一个数列?通项公式是什么?答 所得数列为1,2,4,8,…,263.它首项为1,公比为2的等比数列,通项公式为a n =2n -1. 思考2 在情境导学中,国王能否满足发明者要求的问题,可转化为一个怎样的数列问题? 答 转化为求通项为a n =2n-1的等比数列前64项的和.思考3 类比求等差数列前n 项和的方法,能否用倒序相加法求数列1,2,4,8,…,263的和?为什么?答 不能用倒序相加法,因为对应各项相加后的和不相等. 思考4 如何求等比数列{a n }的前n 项和S n?答 设等比数列{a n }的首项是a 1,公比是q ,前n 项和为S n . S n 写成:S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① 则qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n .② 由①-②得:(1-q )S n =a 1-a 1q n . 当q ≠1时,S n =a 1(1-q n )1-q;当q =1时,由于a 1=a 2=…=a n ,所以S n =na 1.小结 (1)千粒麦子的质量约为40 g,1.84×1019粒麦子相当于7 000多亿吨,而目前世界年度小麦产量约6亿吨,所以国王是无法满足发明者要求的. 0(2)等比数列{a n }的前n 项和S n 可以用a 1,q ,a n 表示为 S n=⎩⎪⎨⎪⎧na 1,q =1,a 1-a nq1-q ,q ≠1.例1 求下列等比数列前8项的和: (1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.解 (1)因为a 1=12,q =12,所以S 8=12[1-(12)8]1-12=255256.(2)由a 1=27,a 9=1243,可得1243=27·q 8.又由q <0,可得q =-13.所以S 8=27[1-(-13)8]1-(-13)=1 64081.反思与感悟 涉及等比数列前n 项和时,要先判断q =1是否成立,防止因漏掉q =1而出错. 跟踪训练1 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2. 因此S n =a 1(1-q n )1-q=2n +1-2.探究点二 等比数列前n 项和的实际应用例2 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今起,大约几年可使总销售量达到30 000台(结果保留到个位)?解 根据题意,每年销售量比上一年增加的百分率相同.所以,从今年起,每年的销售量组成一个等比数列{a n },其中a 1=5 000,q =1+10%=1.1,S n =30 000. 于是得到5 000(1-1.1n )1-1.1=30 000.整理,得1.1n =1.6.两边取对数,得n lg 1.1=lg 1.6. 用计算器算得n =lg 1.6lg 1.1≈0.200.041≈5(年).答 大约5年可以使总销量达到30 000台.反思与感悟 解应用题先要认真阅读题目,尤其是一些关键词:“平均每年的销售量比上一年的销售量增加10%”.理解题意后,将文字语言向数字语言转化,建立数学模型,再用数学知识解决问题.跟踪训练2 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟上升的高度, 由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为 S n =a 1+a 2+…+a n =a 1(1-q n )1-q=25×⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=125×⎣⎡⎦⎤1-⎝⎛⎭⎫45n <125. 故这个热气球上升的高度不可能超过125 m. 探究点三 错位相减法求和思考 教材中推导等比数列前n 项和的方法叫错位相减法.这种方法也适用于一个等差数列{a n }与一个等比数列{b n }对应项之积构成的新数列求和.如何用错位相减法求数列{n2n }前n项和?答 设S n =12+222+323+…+n2n ,则有12S n =122+223+…+n -12n +n2n +1,两式相减,得S n -12S n =12+122+123+…+12n -n 2n +1,即12S n =12(1-12n )1-12-n 2n +1=1-12n -n2n +1. ∴S n =2-12n -1-n2n =2-n +22n .例3 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 分x =1和x ≠1两种情况.当x =1时,S n =1+2+3+…+n =n (n +1)2.当x ≠1时,S n =x +2x 2+3x 3+…+nx n , xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n +1)2 (x =1),x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).反思与感悟 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪训练3 求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1), 则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)·a n ② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)·a n , (1-a )S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -1) =1-(2n -1)a n +2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0),n 2(a =1),1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).1.等比数列1,x ,x 2,x 3,…的前n 项和S n 为( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1,n , x =1 D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1,n , x =1答案 C解析 当x =1时,S n =n ; 当x ≠1时,S n =1-x n 1-x.2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172答案 C解析 方法一 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q +a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152. 3.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( ) A .179 B .211 C .243 D .275 答案 B解析 ∵q 4=a 5a 1=1681=(23)4,且q >0,∴q =23,∴S 5=a 1-a 5q 1-q =81-16×231-23=211.4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为________. 答案 11a (1.15-1)解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a . ∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1). [呈重点、现规律]1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减的方法求和.一、基础过关1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12答案 D解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3,得q 2+q -6=0. ∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13C.19 D .-19答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.5.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q ⇒q 3=3.∴a 4=a 1·q 3=1×3=3.6.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,那么a n =________. 答案 2n -1解析 a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2,a 3-a 2=22,…a n-a n -1=2n -1.各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1.7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q . 解 当q =1时,S n =na 1,S 3+S 6=3a 1+6a 1=9a 1=S 9≠2S 9; 当q ≠1时,a 1(1-q 3)1-q +a 1(1-q 6)1-q =2×a 1(1-q 9)1-q ,得2-q 3-q 6=2-2q 9, ∴2q 9-q 6-q 3=0,解得q 3=-12或q 3=1(舍去),∴q =-342.8.求和:1×21+2×22+3×23+…+n ×2n . 解 设S n =1×21+2×22+3×23+…+n ×2n 则2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1 ∴-S n =21+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )×2n +1-2 ∴S n =(n -1)·2n +1+2. 二、能力提升9.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米 B .299米 C .199米 D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝⎛⎭⎫128=2993964≈300(米). 10.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)答案 C解析 先根据等比数列的定义判断数列{a n }是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算.由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-(-13)101-⎝⎛⎭⎫-13=3(1-3-10).11.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 答案 13解析 由已知4S 2=S 1+3S 3,即4(a 1+a 2)=a 1+3(a 1+a 2+a 3).∴a 2=3a 3, ∴{a n }的公比q =a 3a 2=13.12.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2013年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%. (1)以2013年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2013年最多出口多少吨?(保留一位小数) 参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910).∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910,∴a ≤12.3.故2013年最多出口12.3吨. 三、探究与拓展13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.高中数学-打印版精心校对 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n2n -1,①S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n2n=1-(12+14+…+12n -1)-2-n2n=1-(1-12n -1)-2-n 2n =n2n .所以S n =n 2n -1.当n =1时也成立. 综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.。
高中数学《等比数列的前n项和》教案6新人教A版必修5第一篇:高中数学《等比数列的前n项和》教案6 新人教A版必修5 《等比数列的前n项和》教案获嘉县第一中学肖玉等比数列的前n项和教学目的:1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题教学重点:等比数列的前n项和公式推导教学难点:灵活应用公式解决有关问题授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教材分析:本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件.也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法教学过程:一、复习引入:首先回忆一下前两节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:2.等比数列的通项公式: an=q(q≠0)an-1an=a1⋅qn-1(a1⋅q≠0),an=am⋅qn-m(a1⋅q≠0)3.{an}成等比数列⇔an+1=q(n∈N+,q≠0)an “an≠0”是数列{an}成等比数列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列.5.等比中项:G为a与b的等比中项.即G=±6.性质:若m+n=p+q,am⋅an=ap⋅aq7.判断等比数列的方法:定义法,中项法,通项公式法8.等比数列的增减性:当q>1, a1>0或01, a1<0,或00时, {an}是递减数列;当q=1时, {an}是常数列;当q<0时, {an}是摆动数列;二、讲授新课一:求和公式: G.P{an}的首项为a1,公比为q,前n项和Sn.则Sn=a1+a2+又an=a1qn-1+anab(a,b同号).∴Sn=a1+a1q+a1q2++a1qn-1(1)在(1)式的两边同时乘以q得: qSn=a1q+a1q2++a1qn-1+a1qn(2) 将上面两式相减,即(1)-(2)得:(1-q)Sn=a1-a1qn接下来对q进行分类讨论(1)当q=1时,Sn=a1+a1++a1=na1(2)当q≠1时,S1(1-qn)a1-anqn=a1-q=1-q ⎧na1∴S=⎪q=1n⎨⎪a1(1-qn)q⎩1-q≠1 另外:当q≠1时,Sa1-a1qnn=1-q =a11-q-a11-q⋅qn=A+Aqn 其中A=a11-q三、例题讲解: 例1:求等比数列1,1,1248, 的前8项和.解:由题知:a111=2,q=21⎛1 S2 ⎝1-⎫28⎪⎭12558==1-11-256=2562例2:已知等比数列{an}中, Sn=2⋅3n+a,求首项解: Sn是等比数列得前n项和.∴a=-2 ∴Sn=2⋅3n-2∴a1=S1=2⋅3-2=4例3:求和:2+23+25++22n+3a1。
《等比数列的前n项和》教学设计一、教材分析1.在教材中的地位与作用在《数列》一章中,《等比数列的前n项和》是一项重要的基础内容,从知识体系来看,它不仅是《等差数列的前n项和》与《等比数列》的顺延,也是前面所学《函数》的延续,实质上是一种特殊的函数,而且还为后继深入学习提供了知识基础,错位相减法是一种重要的数学思想方法,是求解一类混合数列前n项和的重要方法,因此,本节具有承上启下的作用;从知识结构和人文价值来看,等比数列与等差数列是平行结构关系,两者之间存在着一定联系,可以进行类比,拓展学生发现、创新的能力,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是增强学生应用意识和数学能力的良好载体;从知识的应用价值来看,它是从大量现实和数学问题中抽象出来的一个模型,前n项和公式的推导过程中蕴涵了基本的数学思想方法,如分类讨论、错位相减等在数列求和问题中时常出现。
等比数列的前n项和在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
2.教材编排与课时安排提出问题→问题解决→等比数列前n项和公式推导→强化公式运用(例题与练习)。
教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程,并充分揭示公式的结构特征和内在联系。
二、教学目标分析依据课程标准,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:【知识与技能】理解等比数列的前n项和公式的推导方法;掌握等比数列的前n 项和公式并能运用公式解决一些简单问题,一是已知等比数列基本量而求其前n项和;二是已知前n项和而逆向求解数列基本量;三是基本思想方法(错位相减法)的运用。
1. 进一步熟练掌握等比数列的通项公式和前项和公式;复习2:等比数列的通项公式. n a = = .二、新课导学 ※ 学习探究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++, 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1. 等比数列前n 项,前2n 项,前3n 项的和分别是n S , 2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S . ※ 动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S . 练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n . 三、当堂检测1. 等比数列{}n a 中,33S =,69S =,则9S =( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ). A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数 A. 922- B. 821- C. 822- D. 721-4. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .5. 等比数列的前n 项和12nn s =-,求通项n a .6. 设a 为常数,求数列a ,2a 2,3a 3,…,na n,…的前n 项和;中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
高中数学 2.5 等比数列的前 n 项和 (1) 学案新人教 A 版必修 5学 目1. 掌握等比数列的前n 和公式; 2. 能用等比数列的前 n 和公式解决.学 重 点1. 重点: 等比数列的前 n 和公式的推2. 点:等比数列的前 n 和公式 用一、 前回复 1:什么是数列前 n 和?等差数列的数列前 n 和公式是什么?复 2:已知等比数列中, a 33 , a 6 81 ,求 a 9 , a 10 .二、新 探究※ 学 探究 探究任 : 等比数列的前 n 和故事:“国王 国 象棋的 明者的 励”新知: 等比数列的前 n 和公式等比数列 a 1, a 2 , a 3 ,L a n L 它的前 n 和是 S n a 1 a 2 a 3 L a n ,公比 q ≠ 0,公式的推 方法一:S n a 1a 1 q a 1q 2L a 1q n 2 a 1q n 1 ,(1 q )S nqS n当 q 1 , S n①或 S n②当 q =1 , S n 公式的推 方法二:由等比数列的定 ,a 2 a 3 La na 2 a 3 L a n S n a 1 q ,a 1a 2an 1q ,有a 2 L a n 1S na na 1即S n a 1 q .∴ (1 q) S n a 1a n q ( 同上)S na n公式的推 方法三:S n a 1 a 2 a 3 L a n = a 1 q(a 1 a 2 a 3 L a n 1 ) = a 1 qS n 1 = a 1 q( S n a n ) .∴(1 q )S n a 1 a n q ( 同上):求等比数列1 , 1 , 1,⋯的前 8 的和.2 4 8※ 一1 已知 a =27, a =1 , q <0,求 个等比数列前5 的和.19243式: a 1 3 , a 5 48 . 求此等比数列的前 5 和 .12 某商 今年 售 算机 5000 台,如果平均每年的 售量比上一年的 售量增加10%,那么从今年起,大 几年可使 售量达到30000 台 ( 果保留到个位 )?※ 模仿1. 等比 数列中, a 3 3 ,S 3 9 , 求a 1 及q.2 22. 一个球从 100m 高出 自由落下,每次着地后又 回到原来高度的一半再落下,当它 第10次着地 ,共 的路程是多少?(精确到 1m ) 三、 提升※ 学 小1. 等比数列的前 n 和公式;2. 等比数列的前 n 和公式的推 方法;3. “知三求二” ,即:已知等比数列之a 1 ,a n , q, n, S n 五个量中任意的三个,列方程可以求出其余的两个 . ※ 知 拓展1. 若 q1, *qmN , S,S S,S S ,构成新的等比数列,公比.mm2mm3m2m2. 若三个数成等比数列,且已知 ,可 三个数a, a, aq . 若四个同符号的数成等q比数列,可 四个数 a a 3.q 3 , , aq,aq q3. 明等比数列的方法有:( 1)定 法:a n 1 q ;( 2)中 法:a n 1 2a n ga n 2 .a n4. 数列的前 n 和构成一个新的数列,可用 推公式S 1 a 1表示 .S n S n 1 a n ( n 1)当堂1. 数列 1, a , a2, a 3 ,⋯, a n 1 ,⋯的前 n 和 ( ) .A.1 a n B.1 a n 1 C.1 a n2 D. 以上都不1 a1 a1 a2. 等比数列中,已知 a 1 a 2 20 , a 3 a 4 40 , a 5 a 6() .A. 30B. 60C. 80D. 1603. { a n } 是由正数 成的等比数列,公比2,且 a 1 a 2 a 3a 30 230,那么 a 3 a 6 a 9 a 30() .A. 210B. 220C. 1D.2 604. 等 比数列的各 都是正数,若a 1 81, a 516 , 它的前5 和.5. 等比数列的前 n 和 S n3n a , a = .后作1. 等比数列中,已知a 1 1,a 464, 求 q 及 S 4 .22.在等比数列a n中,a1a633,a2 ga532 ,求 S6 .课后反思3。
2.5 等比数列的前n 项和(一)自主学习知识梳理1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧= (q ≠1)(q =1).(2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和的一个常用性质:在等比数列中,若等比数列{a n }的公比为q ,当q =-1,且m 为偶数时,S m =S 2m =S 3m=0,此时S m 、S 2m -S m 、S 3m -S 2m 不成等比数列;当q ≠-1或m 为奇数时,S m 、S 2m -S m 、S 3m -S 2m 成等比数列.3.推导等比数列前n 项和的方法叫__________法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.自主探究阅读教材后,完成下面等比数列前n 项和公式的推导过程.方法一:设等比数列a 1,a 2,a 3,…,a n ,…,它的前n 项和是S n =a 1+a 2+a 3+…+a n .由等比数列的通项公式可将S n 写成S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① ①式两边同乘以q 得qS n =________________________________.②①-②,得(1-q )S n =____________,由此得q ≠1时,S n =__________,因为a n =________,所以上式可化为S n =________.当q =1时,S n =__________.方法二:由等比数列的定义知a 2a 1=a 3a 2=…=a na n -1=q .当q ≠1时, a 2+a 3+…+a n a 1+a 2+…+a n -1=q ,即S n -a 1S n -a n =q .故S n =____________.当q =1时,S n =____________.方法三:S n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +…+a 1q n -2) =a 1+qS n -1=a 1+q (S n -a n )当q ≠1时,S n =____________=____________. 当q =1时,S n =________.对点讲练知识点一 有关等比数列前n 项和的计算例1 在等比数列{a n }中,S 3=72,S 6=632,求a n .总结涉及等比数列前n项和时,要先判断q=1是否成立,防止因漏掉q=1而出错.变式训练1在等比数列{a n}中,a1+a n=66,a3a n-2=128,S n=126,求n和q.知识点二利用等比数列前n项和的性质解题例2在等比数列{a n}中,已知S n=48,S2n=60,求S3n.总结通过两种解法比较,可看出,利用等比数列前n项和的性质解题,思路清晰,过程较为简捷.变式训练2等比数列的前n项和为S n,若S10=10,S20=30,S60=630,求S70的值.知识点三 错位相减法的应用例3 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0,n ∈N *).总结 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用这一思路和方法.变式训练3 求数列1,3a,5a 2,7a 3,…,(2n -1)a n -1的前n 项和.1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.教材中的推导方法叫做错位相减法,这种方法是我们应该掌握的重要方法之一.它适合数列{a n b n }的求和,其中{a n }代表等差数列,{b n }代表等比数列,即一个等差数列与一个等比数列对应项的乘积构成的新数列的求和可用此法.课时作业一、选择题1.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( ) A .63 B .64 C .127 D .1282.设等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .333.已知公比为q (q ≠1)的等比数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为( )A.q n S nB.S n q nC.1S n q n -1D.S n a 21qn -1 4.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( )A .514B .513C .512D .510 5.在等比数列中,S 30=13S 10,S 10+S 30=140,则S 20等于( ) A .90 B .70 C .40 D .30题 号 1 2 3 4 5 答 案二、填空题6.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=________.7.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________. 8.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________. 三、解答题 9.设等比数列{a n }的公比q <1,前n 项和为S n .已知a 3=2,S 4=5S 2,求{a n }的通项公式.10.已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.§2.5 等比数列的前n 项和(一)知识梳理1.(1)a 1(1-q n )1-q a 1-a n q 1-qna 13.错位相减 自主探究a 1q +a 1q 2+a 1q 3+…+a 1qn -1+a 1q na 1-a 1q na 1(1-q n )1-q a 1q n -1 a 1-a n q 1-qna 1a 1-a n q1-qna 1 a 1-a n q 1-q a 1(1-q n )1-q na 1 对点讲练例1 解 由已知S 6≠2S 3,则q ≠1,又S 3=72,S 6=632,即⎩⎪⎨⎪⎧a 1(1-q 3)1-q=72, ①a 1(1-q 6)1-q =632. ②②÷①得1+q 3=9,∴q =2.可求得a 1=12,因此a n =a 1q n -1=2n -2.变式训练1 解 ∵a 3·a n -2=a 1·a n , ∴a 1a n =128,解方程组⎩⎪⎨⎪⎧a 1a n =128,a 1+a n=66,得①⎩⎪⎨⎪⎧ a 1=64,a n =2,或②⎩⎪⎨⎪⎧a 1=2,a n=64.将①代入S n =a 1-a n q 1-q=126,可得q =12,由a n =a 1q n -1可解得n =6.将②代入S n =a 1-a n q1-q ,可得q =2,由a n =a 1q n -1可解得n =6.故n =6,q =12或2.例2 解 方法一 因为S 2n ≠2S n ,所以q ≠1,由已知得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48a 1(1-q2n)1-q=60①②②÷①得1+q n =54,即q n =14.③将③代入①得a 11-q =64,所以S 3n =a 1(1-q 3n )1-q=64×⎝⎛⎭⎫1-143=63. 方法二 因为{a n }为等比数列,且q ≠1, 所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),所以S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.变式训练2 解 设b 1=S 10,b 2=S 20-S 10,…,则b 7=S 70-S 60.因为q ≠1,所以S 10,S 20-S 10,S 30-S 20,…,S 70-S 60成等比数列,所以b 1,b 2,…,b 7成等比数列,首项为b 1=10,公比为q =b 2b 1=2010=2.求得b 7=10·26=640.由S 70-S 60=640,得S 70=1 270.例3 解 (1)当x =1时,S n =1+2+3+…+n =n (n +1)2.(2)当x ≠1时,S n =x +2x 2+3x 3+…+nx n ,①xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1,②①-②得,(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x-nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n +1)2 (x =1)x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).变式训练3 解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1),则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1,① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)a n ,② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)a n , (1-a )S n =1-(2n -1)a n+2(a +a 2+a 3+a 4+…+a n -1)=1-(2n -1)a n+2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0)n 2(a =1)1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).课时作业1.C [设公比为q ,则由a 1=1,a 5=16得a 5=a 1q 4, 即16=q 4,由q >0,得q =2.则S 7=a 1(1-q 7)1-q =1-271-2=127.]2.D [由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q=1+q 3=9, ∴q =2,S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q =1+q 5=1+25=33.] 3.D [数列⎩⎨⎧⎭⎬⎫1a n 也是等比数列,且首项为1a 1,公比为1q ,其前n 项和为:1a 1⎝⎛⎭⎫1-1q n 1-1q=1a 21q n -1·a 1(q n -1)q -1=S na 21qn -1.] 4.D [由a 1+a 4=18和a 2+a 3=12,得方程组⎩⎪⎨⎪⎧ a 1+a 1q 3=18a 1q +a 1q 2=12,解得⎩⎪⎨⎪⎧a 1=2q =2或⎩⎪⎨⎪⎧a 1=16q =12.∵q 为整数,∴q =2,a 1=2,S 8=2(28-1)2-1=29-2=510.]5.C [q ≠1 (否则S 30=3S 10),∵⎩⎪⎨⎪⎧S 30=13S 10S 10+S 30=140,∴⎩⎪⎨⎪⎧S 10=10S 30=130,∴⎩⎪⎨⎪⎧a 1(1-q 10)1-q =10a 1(1-q 30)1-q=130,∴q 20+q 10-12=0.∴q 10=3或q 10=-4(舍去),∴S 20=a 1(1-q 20)1-q=S 10(1+q 10)=10×(1+3)=40.] 6.152解析 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q+a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 7.10解析 ∵S n =a 1-a n q1-q ,∴-341=1+512q1-q ,∴q =-2,又∵a n =a 1q n -1,∴-512=(-2)n -1, ∴n =10.8.2n -1解析 当n =1时,S 1=2a 1-1, ∴a 1=2a 1-1, ∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1) ∴a n =2a n -1,∴{a n }是等比数列,∴a n =2n -1,n ∈N *.9.解 方法一 由已知a 1≠0,S n =a 1(1-q n )1-q ,则⎩⎪⎨⎪⎧a 1q 2=2, ①a 1(1-q 4)1-q=5×a 1(1-q 2)1-q , ② 由②得1-q 4=5(1-q 2).∴(q 2-4)(q 2-1)=0.又q <1.∴q =-1或q =-2.当q =-1时,a 1=2,a n =2×(-1)n -1.当q =-2时,a 1=12,a n =12×(-2)n -1.方法二 ∵S 4=5S 2,∴a 1+a 2+a 3+a 4=5(a 1+a 2).∴a 3+a 4=4(a 1+a 2).(1)当a 1+a 2=0,即a 2=-a 1, 即q =-1时,a 3+a 4=0适合;∵a 3=2,∴a 1=2(-1)2=2,∴a n =2×(-1)n -1.(2)当a 1+a 2≠0时,a 3+a 4a 1+a 2=4.即q 2=4.又q <1,∴q =-2,a 1=2(-2)2=12,此时,a n =12×(-2)n -1. 10.(1)解 由S 1=13(a 1-1),得a 1=13(a 1-1),∴a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明 当n ≥2时,a n =S n -S n -1 =13(a n -1)-13(a n -1-1), 得a n a n -1=-12,又a 2a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.。
第一课时 2.5等比数列的前n 项和教学要求:探索并掌握等比数列的前n 项和的公式;结合等比数列的通项公式研究等比数列的各量;在具体的问题情境中,发现数列的等比关系,能用有关知识解决相应问题。
教学重点:等比数列的前n 项和的公式及应用教学难点:等比数列的前n 项和公式的推导过程。
教学过程:一、复习准备:提问: 等比数列的通项公式;等比数列的性质;等差数列的前n 项和公式;二、讲授新课:1. 教学:思考:一个细胞每分钟就变成两个,那么经过一个小时,它会分裂成多少个细胞呢?分析:11,a =公比221q ==,因为11n n a a q -=,一个小时有60分钟 5959601125764607523a a q ===思考:那么经过一个小时,一共有多少个细胞呢?()1231n n s a a a a =+++()211121.........2n n s a a q a q a q -⋅=+++()2q =()2121.........3n n qs a q a q a q ⋅=++()()31-=()111n n q s a a q -=- 111(1)11n n n a a q a q s q q--==-- 又因为111n n n a q a q q a q -== 所以11n n a a q s q -=-,则602011212s -=-=1152921504 则一个小时一共有1152921504个细胞2. 练习:列1(解略)列2(解略)在等比数列{}n a 中:()1已知163,96,a a ==求6,q s ()2已知51,11,2q s =-=求15,a a 在等比数列{}n a 中,162533,32a a a a +==,则6s ?三、小结:等比数列的前n 项和公式四、作业:P66, 1题。
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。
广东省阳东广雅学校2014高中数学 2.5 等比数列的前n 项的和学案 新人教A
版必修5
【学习目标】
1、探索并学会等比数列前n 项和公式的推导思路与方法
2、学会灵活应用等比数列前n 项和公式与性质解决一些相关问题
【学习重难点】
1、等比数列前n 项和公式的推导方法
2、掌握公式的有关性质及灵活应用
【自学过程】
1.等比数列的前n 项和公式
(1) 当1=q 时,n S =
(2) 当1≠q 时, n S = =
对于等比数列相关量n n S n q a a ,,,,1,只三求二
2.等比数列前n 项和的性质
(1) 数列{}n a 是等比数列,公比1-≠q ,n S 是其前n 项和,则 ,,,232n n n n n S S S S S --
仍构成等比数列
(2) 若数列{}n a 前n 项和公式为n S =)1(n q a -)1q 0,0(≠≠≠且q a 则数列{}n a 为
(3) 在等比数列中,若项数为)(,2*N n n ∈,奇偶与S S 分别为偶数项与奇数项的和,则 奇偶
S S =
【教学过程】 【例题讲解】
【例1】.在等比数列{}n a 中,若546431S ,4
5,10和求a a a a a =
+=+
【变式】:1. 在等比数列{}n a 中,126,128,66121===+-n n n S a a a a ,求n 和q 。
2.一个等比数列的首项是1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数
【例2】.各项均为正数的等比数列{}n a ,若403010S ,70,10求==S S
【变式】:等比数列{}n a 中,2019181784,3,1a a a a S S +++==求
【例3】数列{}n a 为首项是正数的等比数列,前n 项和为80,前2n 项和为6560,在前n 项中数值最大者为54,求通项n a
【变式】:数列{}n a 为各项都是正数的等比数列,项数是偶数,它所有项的和等于偶数项和的4倍,且第二项与第四项的积是第三项与第四项和的9倍,问数列{}n a lg 的前多少项和最大。
【反思与总结】
【当堂测试】
1. 数列1,a ,2a ,3a ,…,1n a -,…的前n 项和为( ). A. 11n a a -- B. 111n a a +-- C. 2
11n a a
+-- D. 以上都不对 2. 等比数列中,已知1220a a +=,3440a a +=,则56a a +=( ).
A. 30
B. 60
C. 80
D. 160
3. 设{}n a 是由正数组成的等比数列,公比为2,且30123302a a a a ⋅⋅⋅=,那么36930a a a a ⋅⋅⋅=( ).
A. 102
B. 202
C. 1
D. 602
4. 等比数列{}n a 中,33S =,69S =,则9S =( ). A. 21 B. 12 C. 18 D. 24
5. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ).
A. 11
B. 10
C. 12
D. 9
6. 等比数列的各项都是正数,若1581,16a a ==,则它的前5项和为 .
7. 等比数列的前n 项和3n n S a =+,则a = .
8. 在等比数列中,若332422S a S a +=+,则公比q = . 9. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .。