高中数学奥赛辅导教材第一讲
- 格式:doc
- 大小:5.36 MB
- 文档页数:65
高中数学竞赛培训教程初等代数第一章代数基础整数是数学中最基本的数,包括正整数、负整数和零。
在代数中,我们经常使用整数来进行运算和表示未知数。
1.2 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。
在代数中,我们常常使用有理数来计算方程的根,解方程组等。
实数是包括有理数和无理数的数集。
在代数中,我们必须了解实数的性质和运算法则,才能进行更复杂的数学运算和证明。
第二章一次方程与不等式2.1 一次方程一次方程是指最高次项为一次的代数方程。
我们需要学习如何解一次方程,并利用解方程的方法解决实际问题。
2.2 一次不等式一次不等式是指最高次项为一次的不等式。
我们需要学习如何解一次不等式,并应用不等式来解决实际问题。
2.3 一次方程与一次不等式的应用一次方程与一次不等式在实际问题中的应用非常广泛。
我们需要学会如何将实际问题转化为一次方程或一次不等式,并利用解方程和解不等式的方法得出问题的解。
第三章二次方程与不等式3.1 二次方程的定义与性质二次方程是指最高次项为平方项的代数方程。
我们需要学习二次方程的基本性质,如判别式、根的性质等。
3.2 二次方程的解法解二次方程是数学中非常重要的一部分。
我们需要学会使用求根公式、配方法等解二次方程,以及利用因式分解、完全平方式解二次方程。
3.3 二次不等式的解法解二次不等式是在二次方程的基础上进一步扩展的。
我们需要学会使用判别式、区间判断等方法来解二次不等式,并应用它们来解决实际问题。
第四章分式与分式方程4.1 分式的定义与性质分式是指一个整数与一个非零整数的比值。
我们需要学习分式的基本性质,如约分、通分、化简等。
4.2 分式的运算分式的加减乘除是数学中常见的运算。
我们需要学习如何进行分式的加减乘除,并应用它们解决实际问题。
4.3 分式方程的解法分式方程是包含分式的方程。
我们需要学会解分式方程,并利用解方程的方法解决实际问题。
第五章根式与根式方程5.1 根式的定义与性质根式是指包含根号的数。
第一讲 集合与函数综合问题例1、数集M 由2003个不同的实数组成,对于M 中任何两个不同的元素a 和b,数2a +M 中任何一个数a,(2003年俄罗斯数学奥林匹克试题)分析:欲证证明:设a ,b ,c 是数集M 中任意三个两两不同的元素,由题设知2222a b c c ++++都是有理数,于是22((()(1(2)2a b a b a b +-+=-+= 是有理数.22((c c +-+=是有理数,从而1(2)2是有理数,进而11((22=+是有理数.例2、称有限集S 的所有元素的乘积为S 的“积数”.给定数集111,,,.23100M ⎧⎫=⎨⎬⎩⎭求数集M 的所有含偶数个元素的子集的“积数”之和.分析:数集M 的所有子集的积数之和为111(1)(1)(1)1.23100+++- 设数集M 的所有含偶数个元素的子集的积数和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1) 1.23100x y +=+++- 只需再建立一个关于x ,y 的方程,就可解出x ,y .解答:设数集M 的所有含偶数个元素的子集的积数之和为x ,所有含奇数个元素的子集的积数之和为y ,则111(1)(1)(1)1,23100111(1)(1)(1)1,2310099,299.1004851.200x y x y x y x y x +=+++--=----+=-== 又所以解得例3、设集合S n ={1,2,…,n}.若X 是S n 的子集,把X 中的所有数的和称为X 的“容量”(规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.(1)求证:S n 的奇子集与偶子集个数相等;(2)求证:当n ≥3时,S n 的所有奇子集的容量之和与所有偶子集的容量之和相等; (3)当n ≥3时,求S n 的所有奇子集的容量之和.(1992年全国高中数学联赛试题)分析:要证明两个集合的元素的个数一样多,一种方法是直接把这两个集合的元素个数算出来,另一种方法是在这两个集合之间建立一个一一对应.本题我们将用后一种方法来解.解答:(1)设A 是S n 的任一奇子集,构造映射f 如下:{1},1;{1},1.A A A A A A -∈∉ 若若(注:A —{1}表示从集合A 中去掉1后得到的集合) 所以,映射f 是将奇子集映为偶子集的映射.易知,若A 1,A 2是S n 的两个不同的奇子集,则f (A 1)≠f (A 2),即f 是单射. 又对S n 的每一个偶子集B ,若1∈B ,则存在A =B \{1},使得f (A )=B ;若1B ∉,则存在{1},A B = 使得f (A )=B ,从而f 是满射.所以,f 是S n 的奇子集所组成的集到S n 的偶子集所组成的集之间的一一对应,从而S n 的奇子集与偶子集个数相等,故均为11222n n -= 个.(2)设a n (b n )表示S n 中全体奇(偶)子集容量之和. 若n (≥3)是奇数,则S n 的奇子集由如下两类:(1)S n -1的奇子集;(2)S n -1的偶子集与集{n }的并,于是得a n =a n -1+(b n -1+n ²2n -2), ①又S n 的偶子集可由S n -1的偶子集和S n -1的奇子集与{n }的并构成,所以b n = b n -1+(a n -1+n ²2n -2), ② 由①,②,便得a n = b n . 若n (≥4)是偶数,同上可知a n =a n -1+(a n -1+n ²2n -2),b n = b n -1+(b n -1+n ²2n -2),由于n -1是奇数,由上面已证a n -1= b n -1,从而a n = b n . 综上即知,a n = b n ,n =3,4…(3)由于S n 的每一个元素均在2n -1个S n 的子集中出现,所以,S n 的所有子集容量之和为2n -1(1+2+…+n )=2n -2n (n +1).又由(2)知,a n =b n ,所以2312(1)2(1).2n n n a n n n n --=+=+说明(2)的证明中,建立了递推关系.这也是解决“计数”问题的一个有效方法. 例4、设A 是集合S ={1,2,…1000000}的一个恰有101个元素的子集.证明:在S中存在数t 1,t 2,…t 100,使得集合{|},1,2,,100j j A x t x A j =+∈= 中,每两个的交集为空集.(2003年国际数学奥林匹克试题)证明:考虑集合D ={x -y |x ,y ∈A },则||≤101100110101.D ⨯+=若i j A a ≠∅ ,设i j a A A ∈ ,则a =x +t i ,a=y +t j ,其中x ,y ∈A ,则t i -t j =y -x ∈D .若t i -t j ∈D ,即存在x ,y ∈A ,使得t i -t j =y -x ,从而x +t i = y +t j ,即.i j A A ≠∅ 所以,i j A A ≠∅ 的充要条件是t i -t j ∈D .于是,我们只需在集合S 中取出100个元素,使得其中任意两个差都不属于D .下面用递推方法来取出这100个元素.先在S 中任取一个元素t 1,再从S 中取一个t 2,使得122{|}.t t D t x x D +=+∈∈这是因为取定t 1后,至多有10101个S 中的元素不能作为t 2,从而在S 中存在这样的t 2.若已有k (≤99)个S 中的元素t 1,t 2,…,t k 满足要求,再取t k +1,使得t 1,…,t k 都不属于t k +1+D ={ t k +1+x |x ∈D },这是因为t 1,t 2,…,t k 取定后,至多有10101k ≤999999个S 中的数不能作为t k +1,故在S 中存在满足条件t k +1.所以,在S 中存在t 1,t 2,…,t 100,其中任意两个的差都不属于D .综上所术,命题得证.说明:条件|S |=106可以改小一些.一般地,我们有如下更强的结论:若A 是S ={1,2,…,n }的k 元子集,m 为正整数,满足条件n >(m -1)2(1),KC +则存在S 中的元素t 1,…,t m ,使A j ={x +t j |x ∈A },j =1,…m 中任意两个的交集为空集.例5、求函数y x =+的值域.(2001年全国高中数学联赛试题)≥0y x =-,所以 x 2-3x +2=y 2-2xy +x 2,即(2y -3)x =y 2-2.由上式知232,.223y y x y -≠=-且由222000022000002000002000002≥2332(1)(2)≥0,≥0.23231≤≥ 2.22[2,),,232(2)22≥0,2323≥2,32≥0,231,,,2231y y y x y y y y y y y y y y y x y y x y y x x x y x y y x y x -=--+----<-∈+∞=----=-=---+=-⎡⎫∈=⎪⎢-⎣⎭-得所以或又任取令则故所以且任取令则2200002(1)1≤0,2323y y y y --=-=--故x 0≤1,于是2000032≥0,x x y x -+=+且 综上,所求的函数的值域为31,[2,).2⎡⎫+∞⎪⎢⎣⎭说明:我们先求出了y 的范围31,[2,)2⎡⎫+∞⎪⎢⎣⎭ ,这是不是函数的值域呢?第二部分说明了对于31,[2,)2⎡⎫+∞⎪⎢⎣⎭ 中的任意一个数y 0,总存在一个x 0,使得00y x =+就证明了函数的值域是31,[2,).2⎡⎫+∞⎪⎢⎣⎭例6、求(31)(21)y x x =-+-的图象与x 轴的交点坐标.分析:仔细观察所给的式子,发现(31)(21)y x x =-+-,从而找到了解题途径.解答:因为(31)(21)y x x =-+-,令()1)f t t =,易知f (t )是奇函数,且f (t )是严格递增函数.所以y =f (3x -1)+f (2x -3).当y=0时,f (3x -1)=-f (2x -3)=f (3-2x ),所以3x -1=3-2x ,解得4.5x =故图象与x 轴的交点坐标为(4,05).例7、设a >0,211().ax r x ax x x+==+讨论函数r (x )在(0,+∞)中的单调性、最小值与最大值.解答:先讨论它的单调性. 设0<x 1<x 2<+∞212121211212212112212212212112212111()()()()1()()0≤,1()()()()1()()≤0;,1()()()()1()()≥0,r x r x ax ax x x x x a x x x x r x r x x x a x x x x a x x x r x r x x x a x x x x a x -=+-+=--<<-=--<--<-=-->--当有时有所以,在⎛ ⎝上,r (x )是严格递减的;在⎫+∞⎪⎭上,r (x )是严格递增的. 由此可知,r (x )没有最大值;当且仅当x 时,r (x )取最小值说明:此题的结论非常重要,许多问题最后可化归为讨论函数1()(())ar x ax r x x x x=+=+或的增减性来解.例8、设二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R ,a ≠0)满足条件: (1)当x ∈R 时,f (x -4)=f (2-x ),且f (x )≥x ;(2)当x ∈(0,2)时,21()≤();2x f x +(3)f (x )在R 上的最小值为0.求最大的m (m >1),使得存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x .(2002年全国高中数学联赛试题)分析:先根据题设条件(1),(2),(3),把f (x )的解析式求出来,进而再确定m 的最大值.解答:由f (x -4)=f (2-x ),t ∈R ,可知二次函数f (x )的对称轴为x =-1.又由(3)知,二次函数f (x )的开口向上,即a >0,故可设f (x )=a (x +1)2(a >0)由(1)知f (1)≥1,由(2)知f (1)≤211()12+=,所以f (1)=1,故2211(11),.41()(1).4a a f x x =+==+所以因为21()(1)4f x x =+的图象开口向上,而y =f (x +t )的图象是由y =f (x )的图象平移|t |个单位得到.要在区间[1,m ]上,使得y =f (x +t )的图象在y =x 的图象的下方,且m 最大,则1和m 应当是关于x 的方程21(1)①4x t x ++=的两个根. 令x =1代入方程①,得t =0或t =-4.当t =0时,方程①的解为x 1=x 2=1(这与m >1矛盾!);当t =-4时,方程①的解为x 1=1,x 2=9.又当t =-4时,对任意x ∈[1,9],恒有 2(1)(9)≤0,1(41)≤,4x x x x --⇔-+ 即f (x -4)≤x .所以,m 的最大值为9.说明:我们由f (x -4)= f(2-x ),x ∈R 导出f (x )的图象关于x =-1对称.一般地,若f (x -a )=f (b -x ),x ∈R ,则()()()(),2222b a b a b a b a f x f x a f b x f x -++-+=+-=--=-故f (x )的图象关于2b ax -=对称.这个性质在解题中常常用到.例9、设f 为R +→R +的函数,对任意正实数x ,f(3x)=3f(x),且f (x )=1-|x -2|,1≤x ≤3.求最小的实数x ,使得f (x )=f (2004).分析:先用递推关系推出函数f (x )的解析式,然后再求解. 解答:由已知条件得1,1≤≤2,()3,2≤≤ 3.x x f x x x -⎧=⎨-⎩当3≤x ≤6时,令,3xt =则1≤t ≤2,此时 f (x )=f (3t )=3f (t )=3(t -1) =x -3, 即得 f (x )=|x -3|,2≤x ≤6.当6≤x ≤18时,令,3xt =则2≤x ≤6,于是 f (x )=f (3t )=3f (t )=3|t -3|=|x -9|.1,1≤≤2,|3|,2≤≤6,|9|,6≤≤18,|27|,18≤≤54,()|81|,54≤≤162,|243|,162≤≤486,|729|,486≤≤1458,|2187|,1458≤≤4374.x x x x x x x x f x x x x x x x x x -⎧⎪-⎪⎪-⎪-⎪=⎨-⎪⎪-⎪-⎪⎪-⎩所以f (2004)=2187-2004=183.由于162-81<183,486-243>183,而243-162<183,所以,最小的满足f (x )=f (2004)的实数x =243+183=426.说明:请读者自己证明:不存在实数x ∈(0,1),使得f (x )=183.例10、k 是实数,42421()1x kx f x x x ++=++,对任意三个实数a ,b ,c ,存在一个以f (a ),f (b ),f (c )为三边长的三角形,求k 的取值范围.分析:首先,对于任意实数x ,f (x )要恒大于0.在这个前提下,对任意三个实数a ,b ,c ,f (a ),f (b ),f (c )均能构成一个三角形的三边长,只需2f min (x )>f max (x )即可.解答:首先确定k 的范围,使得f (x )恒大于0,即只需x 4+kx 2+1恒大于0即可. 当k ≥0时,x 4+kx 2+1恒大于0;当k <0时,只需 △=k 2-4<0,即-2<k <0.所以,当k >-2时,f (x )恒大于0. (1)当k =1时,f (x )≡1满足题意. (2)当k >1时,有24222422(1)()1≥1(0),1(1)(1)()1≤1132(1),3k x f x x x x k x k x f x x x x k x -=+=++--=+++++==时等号成立当时等号成立所以,max max 2()1,(),3k f x f x +==从而由三角形的两边之和大于第三边的性质,有221,3k +⨯>解得k <4. 故1<k <4满足条件.(3)当-2<k <1时,与(2)类似,有max max 2()1,(),3k f x f x +==由221,3k +⨯>解得1.2k >-故112k-<<满足条件.综上所述,所求的k的取值范围为14. 2k-<<说明:本题的关键是把“对任意实数a,b,c,存在一个以f(a),f(b),f(c)为三边长的三角形”这一条件,转化为“2f min(x)>f max(x)”.例11、设N是非负整数集,f:N→N是一个函数,使得对任一n∈N,都有(f(2n+1))2-(f(2n))2=6f(n)+1,①f(2n)≥f(n).问:f(N)中有多少元素小于2003?解答:由题设(f(2n+1)2-(f(2n))2≥1>0,所以f(2n+1)> f(2n).又(f(2n+1)2=(f(2n))2+6 f(n)+1<(f(2n)2+6 f(2n)+9,所以f(2n+1)< f(2n)+3,故f(2n+1)< f(2n)+1或f(2n)+2.而(f(2n+1)2-(f(2n))2是奇数,所以f(2n+1)与f(2n)的奇偶性不同,从而f(2n+1)= f(2n)+1.代入①式,得f(2n)=3 f(n).令n=0,f(0)=3f(0),所以f(0)=0.令n=0代入①式,得f(1)=1,于是f(2)=3 f(1)=3.下面用数学归纳法证明:f是严格递增函数,即证f(n+1)>f(n).当n=0,1,2时,命题成立.假设对小于等于n的情形命题成立.则当n=2k(k≥1)为偶数时,有f(n+1)=f(2k+1)=f(2k)+1> f(2k)=f(n).当n=2k+1(k≥0)为奇数时,因为0≤k<k+1≤n,所以f(k+1)>f(k),从而f(k+1)≥f(k)+1,于是f(n+1)=f(2k+2)=3 f(k+1)≥3 f(k)+3= f(2k)+1+2= f(2k+1)+2> f(2k+1)= f(n)综上,f(n)是严格单调递增函数.显然,f(27)=3 f(26)=…=37 f(1)=2187>2003,而f(127)= f(126)+1=3 f(63)+4=9 f(31)+4=9 f(30)+13=27 f(15)+13=27 f(14)+40=81 f(7)+40=81 f(6)+121=243 f(3)+121=243 f(2)+364=729 f(1)+364=1093<2003,所以,共有f(0),f(1),f(2),…,f(127)这128个元素不超过2003.第二讲三角函数及反三角函数例1、化简11(,). cos()cos[(1)]nkk kk kβπαβαβ=≠∈+++∑Z分析:本题目的化简是利用一个递推模型来实现的,即找到这个题目的“源生地”.可先由产生分母cos αcos(α+β)的正切函数之和入手.sin tan()tan ,cos cos()11[tan()tan ].cos cos()sin βαβαααβαβαααββ+-=+=+-+考查即得到递推模型:1.c o s ()c o s [(1)]1{t a n [(1)]t a n ()}s i n k k k k αβαβαβαββ+++=++-+再求和,即得原式1{tan[(1)]tan()}sin k k αβαββ=++-+. 解答:略. 例2、不等式22(1)cos (cos 5)3sin 11x x x x θθθ+--+>--+对任何实数x 均成立,求θ.分析:这是一个关于x 的不等式,以解集为全体实数作为背景条件来求参数θ的范围问题.可将θ的正弦(或余弦)值表示成x 的函数f (x ),再利用f (x )的值域,对正弦(或余弦)值的制约去求得θ.解答:将不等式化成222253153sin cos 11153)1.41x x x x x x x x x x x θθπθ++-++-<=+-+-++-<+-+即利用判别式法可求得2531x y x x +=-+的值域为25[1,].3y ∈-)0,4πθ-<从而322,.44k k k πππθπ-<<+∈Z 例3、设,,1,x y z z +∈=R 试求xy +2xz 的最大值.分析:这是一个在限定条件下,求多元函数的最值问题.如何将多元函数在限定的条件中转化成单元函数,是破解这一问题的关键.可用三角法代换及平均值去求解.1,,,,z x y z +=∈R 且故可令22sin cos ,z αα=而x=cos 2αsin β,y =cos 2αcos β,其中,0,.2παβ⎛⎤∈ ⎥⎝⎦于是2222222222222222(2)cos sin (cos sin 2sin )sin (2cos )cos (cos cos 2sin )2cos sin (2cos cos cos )(cos cos 2sin )2cos sin 2cos cos cos cos cos 2sin ≤2cos 2sin .2cos xy xz x y z αβαβαββαβααββαβαβααββαβαβααβββ+=+=+=-+-=-+-⎛⎫-++ ⎪ ⎪-⎝⎭=-222222221tansin ,cos .2112212≤≤1131t t t t t t t t xy xz t tt βββ-===++++==-++令则故当133x y z ===时,取等号.即xy +2xz的最大值为3例4、已知θ1+θ2+…+θn =π,θi ≥0(i =1,2,…,n ),求sin 2θ1+sin 2θ2+…+sin 2θn 的最大值.(1985年IMO 预选题)分析:由于变量多,变式的目标难确定,不妨先将问题简单化,即先退到θ1+θ2为常数时探讨sin 2θ1+sin 2θ2的最大值的情形.这种策略往往在竞赛题解答中时用到.解答:先考查θ1+θ2=常数的情形.因为22212121222121212122212121221212212122112sin sin (sin sin )2sin sin 4sin cos cos()cos()222cos (2sin 1)1cos().22,,2sin 10;22,2sin 10;22,2sin 2θθθθθθθθθθθθθθθθθθθθθθπθθθθπθθθπθθ+=+-+-=--++-+=-+++++<-<++=-=++>上式中当时时时210.2θ->由此可得出,当122πθθ+<时,θ1与θ2有一个为零时,sin 2θ1+sin 2θ2有最大值;当122πθθ+=且|θ1-θ2|越小时,sin 2θ1+sin 2θ2值越大.n =3时,即θ1+θ2+θ3=π时,2221239sin sin sin ≤4θθθ++是容易证明的.而n ≥4时,可知θ1、θ2、θ3、θ4中必有两个角和不超过.2π 由前面的结论知,12≤2πθθ+时,sin 2θ1+sin 2θ2当θ1或θ2=0时,有最大值.于是所求的最大值可转化成三个角的和为π,其正弦值的平方的最大值问题.另一方面n =2时,θ1+θ2=π,sin 2θ1+sin 2θ2≤2.因此,sin 2θ1+sin 2θ2+…+sin 2θn 的最大值为9.4且当12345,03n πθθθθθθ======= 时,取等号.例5、如图2.1,△ABC 中,高AD =h ,BC =a ,AC =b ,AB =c .若a +h =b +c ,求∠BAC 的范围.分析:许多平面几何中的推导过程可用“三角法”进行转换,尤其是几何不等式的证明问题.经常以正、余弦定理及面积公式等结论作为依据.本题目还要从三角变换及不等式的推理中得出角的范围.解答:由,sin b c a h bc BAC ah +=+⎧⎨∠=⎩得出.sin ahbc BAC =∠令∠BAC =a .于是由22222222()2cos 22()1(1)sin 1.22sin 2cos 1cos 2sin ,cot 1.221122b c a b c bc a bc bca h a h ah a a h h h a a aαααααα+-+--==+-=-=+-+===+++得 故作CE ⊥BC ,使CE =2h .在Rt △BCE中,有BE =且AE +AB =b +c =a +h ≥BE .即2≥≤.3h a h a +得出于是41[1,],23h a +∈从而44cot [1,].[2arccot ,].2332BAC απ∈∠∈故例6、n ∈N +,x 0=0,x i >0,i =1,2,…n 且11.ni i x ==∑求证1≤.2ni π=<(1996年CMO 试题)分析:所证不等式左侧部分可用2a b+得出.右侧部分可引用θi =arcsin(x 0+x 1+…+x i ),再利用三角公式得出.解答:因11,ni ==∑由平均值不等式,有011≤ 1.2n x x x ++++=故1ni =成立.令θi =arcsin(x 0+x 1+…+x i ),i =0,1…,n .故101[0,]0.22n ππθθθθ∈=<<<= 且而11111111111sin sin 2cos sin222cos sin.2sin ,[0,],22(cos )()cos .2(1,2,,).cos i i i i i i i i i i i i i i i i i ii i i x x x x x x i n θθθθθθθθθπθθθθθθθθθ-----------+-=-=-<<∈-<=-<-= 利用可知故对上述求和有11101211.cos 2sin ,cos ni n i i i i i x x x x x πθθθθθ-=---<-==++++==∑ 但故代入上式可得出所证不等式右侧成立.例7、如图2.2,锐角△ABC 的外接圆中过A 、B 两点的切线分别与过C 的切线交于V 、T ,且AT ∩BC =P ,BV ∩AC =R .设AP 、BR 的中点分别是Q 、S .求证:∠ABQ =∠BAS ,并求当BC ︰CA ︰AB 取何值时,∠ABQ 取最大值. (第41届IMO 预选题)分析:要证∠ABQ =∠BAS ,由条件中的对称性,只要求得∠ABQ 的三角函数值与已知中的△ABC 边及角建立一个结构式即可.作QN ⊥AB 于N ,从cot BNNBQ QN∠=入手,而作PM ⊥AB 于M ,可用BN =BM +MN =111(cos )sin 222c BP B QN PM BP B +== 且是解决问题的突破点.解答:作PM ⊥AB 于M ,QN ⊥AB 于N .记BC =a ,AB =b ,AB =c ,∠A =∠BAC ,∠B =∠CBA ,∠C =∠ACB .由221sin()sin 2,1sin sin()2ABTACTAB BT C S BP c C c PC S b B b AC CT B ππ-====-又BP +CP =a ,故22211.sin ,22ac BP QN PM BP B b c===+而于是 2222222222221()21()21(cos ),2cot cot cot sin sin cos 2sin sin 3.2sin BN BM MN BM AB BM BM AB c BP B BN c b c ABQ B B QN BP B ac Ba cb ac b c ac B b c ac ac B ab C a b c ab C=+=+-=+=++∠==+=++-++++==+-=同理可得出2223cot 2sin a b c BAS ab C++∠=故∠ABQ =∠BAS .2222222223cot 2sin 3(2cos )2sin 2()43cot ≥3cot .sin sin 43cot ,sin 43cos sin )≤.a b c ABQ ab Ca b a b ab C ab C a b C C ab C C y C CC y C C θθ++∠=+++-=+=---=+=-⎫=由记=于是解得≥,y即≤ABQ ∠当且仅当a =b ,3arccos ,4C ∠=即BC ︰CA ︰AB1时取等号.第三讲 等差数列与等比数列例1、给定正整数n 和正数M ,对于满足条件2211≤n a a M ++的所有等差数列a 1,a 2,a 3,…,试求S= a n +1+a n +2+…+a 2n +1的最大值.分析:本题属于与等差数列相关的条件最值问题,而最值的求解运用的方法灵活多样,针对条件的理解不同,将有不同的解法.解答:方法一(代数法).设公差为d ,a n +1=a ,则1221222211222(1)(1),2,21,≥()41()(43)102104≥(),101n n n n n n S a a a n d nd S n M a a nd nd nd S n αααααα+++++=+++=+++=++=-+=++-+ 所以另一方面由从而有||≤1)S n d α+且当时,(1)2(1)n S n n n ⎛=+⎭=+=+由于此时有22211443,(),101n S nd a a M n α+=+==+故因此max S n =+122112111()(1)21(3)21(3sin cos )21)sin(),n n n n n n S a a a a a n n a a n r n r θθθϕ++++++=+++++=+=-+=-=+- 故其中cos sin()1,rϕϕθϕ==-=因此当时,有max2S n=+方法三(判别式法).设首项为a,公差为d,则221122222222(1)(23).222.①3(1)3≤,()≤.②①②,44109≤0.③1(1)③,444109≥0.1(1),||≤1),10nn andSSnd ana a Ma a nd MS Sa a Mn naS SMn nS nad+++==-++++++-++⎡⎤⎛⎫=-⨯⨯-⎢⎥⎪++⎝⎭⎢⎥⎣⎦+=-=故因为所以将代入得因为不等式关于有解所以解之得且当max,10nS=有方法四(不等式法).因为111112222211111122111111max(1)(1)21(3).2,(3)≤(31)()≤10,3≤1,,,nnnn nnnnna an nS n anna aa a a a Ma aa a Ma aa aS+++++++++-+=+++=--++--=+====由柯西不等式得所以3等号当且仅当时取到即有说明:这是1999年全国高中数学联赛的一道试题,在解答过程中,要分清什么是常量,什么是变量,注意条件和结论的结构形式.解法一通过配方来完成,解法二运用三角代换的方法,解法三运用二次方程根的判别式来完成,解法四则主要运用了柯西不等式.本题入口宽,解法多样,对培养学生的发散思维能力很有好外.例2、n 2(n ≥4)个正整数排成几行几列:a 11 a 12 a 13 a 14 … a 1n a 21 a 22 a 23 a 24 … a 2n a 31 a 32 a 33 a 34 … a 3n … …a n 1 a n 2 a n 3 a n 4 … a nn其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等,已知2442431122131,,,.816nn a a a a a a ===+++ 求分析:由于等差数列可由首项与公差惟一确定,等比数列可由首项与公比惟一确定,如果设a 11=a ,第一行数的公差为d ,第一列数的公比为q ,容易算出a st =[a +(t -1)d ]q s -1,进而由已知条件,建立方程组,求出a ,d ,q .解答:设第一行数列公差为d ,各列数列公比为q ,则第四行数列公差是dq 3.于是可得方程组:24113421134342(3)1,1(),83,16a a d q a a d q a a dq ⎧⎪=+=⎪⎪=+=⎨⎪⎪=+=⎪⎩解此方程组,得111.2a d q ===±由于所给n 2个数都是正数,故必有q >0,从而有111.2a d q ===故对任意的1≤k ≤n ,有111112323412311[(1)].2123,22221123,22222:11111,2222222.22k k kk k k n n n n n n ka a q a k d q nS nS n S n nS --++-==+-==++++=++++=+++++=-- 故又两式相减后可得所以 说明:这是1990年全国高中学数学联赛的一道试题,涉及到等差数列、等比数列、数列求和的有关知识和方法.通过建立方程组确定数列的通项;通项确定后,再选择错位相减的方法进行求和.例3、设{a n }是由正数组成的等比数列,S n 是其前n 项之和.(1)证明:21lg lg lg ;2n n n S S S +++<(2)是否存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立?并证明你分析:对于问题(1),运用对数的性质将所证不等式转化为221,n n n S S S ++<运用等比数列求和公式时,要分q =1和q ≠1两种情况讨论;对于问题(2),充分运用已知条件,进行分析论证,可先假设存在常数C >0,使所证等式成立,然后设法推出矛盾.如果不能推出矛盾,再逆推来考虑常数C >0的存在性.解答:(1)证明:设{a n }的公比为q ,由已知得a 1>0,q >0. (i )当q =1时,S n =na 1,从而2222211111(2)(1)0.n n n S S S na n a n a a ++-=+-+=-<即有221.n n n S S S ++<(ii )当q ≠1时,1(1)1n n a q S q-=-,所以22212221121122(1)(1)(1)0.(1)(1)n n n nn n n a q q a q S S S a q q q ++++----=-=-<--由(i )与(ii )知,221n n n S S S ++<恒成立,又由于S n >0,两边取常用对数即得21lg lg lg .2n n n S S S +++<(2)不存在.要使21lg()lg()lg()2n n n S C S C S C ++-+-=-成立,则有221()()(),0.n n n nS C S C S C S C ++⎧--=-⎪⎨->⎪⎩ 分两种情况讨论: (i )当q =1时221211121()()()()[(2)][(1)]0,n n n S C S C S C na C n a C n a C a ++----=-+--+-=-<即不存在常数C >0使结论成立.(ii )当q ≠1时,若条件(S n -C ) (S n +2-C )= (S n +1-C )2成立,则(S n -C ) (S n +2-C )- (S n +1-C )222111111(1)(1)(1)111[(1)]0,n n n n a q a q a q C C C q q q a q a C q ++⎡⎤⎡⎤⎡⎤---=----⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=--= 因a 1q n ≠0,故只能有a 1-C (1-q )=0,即11a C q=-,此时由于C >0,a 1>0,必有0<q <1.但当0<q <1时,110,11nn n a a q S C S q q--=-=<--不满足S n -C >0,即不存在常数C >0,使结论综合(i )、(ii )可得,不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.说明:这是1995年的一道全国高考试题,主要考查等比数列、对数、不等式等基础知识和推理论证能力以及分析和解决问题的能力.其中第(2)问属探索性问题.探索性问题对数学思想方法的运用以及分析问题、解决问题的能力要求更高,探索性问题是高考与竞赛的热点问题.第(2)问还可以用反证法进行如下证明:假设存在常数C >0,使21lg()lg()lg(),2n n n S C S C S C ++-+-=-12221221210,①0,②0,③()()(),④④(2),⑤n n n n n n n n n n n n S C S C S C S C S C S C S S S C S S S ++++++++⎧->⎪->⎪⎨->⎪⎪--=-⎩-=+-则有由得 根据平均值不等式及①、②、③、④知212112()()2()≥2()0,n n n n n n n S S S S C S C S C S C ++++++-=-+----=因为C >0,故⑤式右端非负,而由第(1)问证明知,⑤式左端小于零,矛盾.故不存在常数C >0,使得21lg()lg()lg()2n n n S C S C S C ++-+-=-成立.例4、如图3.1,有一列曲线P 0,P 1,P 2,…,已知P 0所围成的图形是面积为1的等边三角形,P k +1由对P k 进行如下的操作得到:将P k 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k =0,1,2,…).记S n 为P n 所围成图形的面积.(1)求数列{S n }的通项公式;(2)求lim .n n S →∞分析:这是一道有关几何图形的操作性问题.采用从特殊到一般的思考方法,便容易入手.解答:如图,对P 0进行操作,容易看出P 0的每条边变成P 1的4条边,故P 1的边数为3³4,同样,对P 1进行操作,P 1的每条边变成P 2的4条边,故P 2的边数为3³42.类似地,容易得到P n 的边数为3³4n .已知P 0的面积为S 0=1,比较P 1与P 0,容易看出P 1在P 0的每条边上增加了一个小等边三角形,其面积为213,故1021131.33S S =+⨯=+再比较P 2与P 1,可知P 2在P 1的每条边上增加了一个小等边三角形,其面积为221133⨯,面P 1有3³4条边,故2143114341.333S S =+⨯⨯=++类似地有22326351144341.3333S S =+⨯⨯=+++于是猜想2135211211114441333343411493441()399144193483411()().①59559n n n kk nn k k k n n n S ----===+++++⎛⎫=+=+ ⎪⎝⎭⎡⎤-⎢⎥⎣⎦=+⨯-⎡⎤=+-=-⨯⎢⎥⎣⎦∑∑ 下面用数学归纳法证明①式.当n =1时,由上面已知①式成立.假设n =k 时,有834().559k k S =- 当n =k +1时,易知第k +1次操作后,比较P k +1与P k ,P k +1在P k 的每条边上增加了一个小等边三角形,其面积为2(1)13k +,而P k 有3³4k 条边,故12(1)12(1)13434834.5593k k k k k kk k S S S ++++=+⨯⨯⎛⎫=+=-⨯ ⎪⎝⎭综上,由数学归纳法①式得证.8348(2)lim lim .5595n n n n S →+∞→+∞⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦说明:本题是2002年全国高中数学联赛的第14题,这类问题的一般解题过程是:实验——归纳——猜想——论证,主要考查学生探索能力.例5、设a 0为常数,且a n =3n -1-2a n -1(n ∈N +) (1)证明:对任意n ≥1,101[3(1)2](1)2;5n n n n n n a a -=+-+-(2)假设对任意n ≥1有a n >a n -1,求a 0的取值范围.分析:本题中数列{a n }由递推关系确定,第一问可以用数学归纳法给予证明,也可以将数列{a n }转化为等比数列直接计算,第二问要对n 进行讨论.解答:(1)证法一:(i )当n =1时,由已知a 1=1-2a 0,等式成立; (ii )假设当n =k (k ≥1)等式成立,即101110111101[3(1)2](1)2,53223[3(1)2](1)251[3(1)2](1)2,5k k k k k k k k kk k k k k k k k k k k a a a a a a -+-+++++=+-+-=-=-+---=+-+- 则也就是说,当n =k +1时,等式也成立.根据(i)和(ii),可知等式对任何n ∈N +成立.证法二:如果设a n -λ3n =-2(a n -1-λ3n -1),用a n =3n -1-2a n -1代入,可解出1.5λ=所以135n n a ⎧⎫-⎨⎬⎩⎭ 是公式比为-2,首项为135a -的等比数列.所以10120133(12)(2)(),551[3(1)2](1)2.5n n n n n n n n a a n a a -+--=---∈=+-+-N 即 (2)解法一:由a n 通项公式得11111023(1)32(1)32,5n n n n n n n a a a -----⨯+-⨯⨯-=+-⨯所以a n >a n -1(n ∈N +)等价于1203(1)(51)()()2n n a n --+--<∈N(i )当n =2k -1,k =1,2,…时,①式即为222302303(1)(51)(),2131(),525k k k a a -----<<+即上式对k =1,2,…都成立,故有101311().5253a -<⨯+=(ii )当n =2k ,k =1,2,…时,①式即为212202203(1)(51)(),2131().525k k k a a -----<>-⨯+即为上式对k =1,2,…都成立,有2120131()0.525a ⨯->-⨯+=综上,①式对任意n ∈N +成立,有010,3a <<故a 0的取值范围为1(0,).3解法二:如果a n >a n -1(n ∈N +)成立,特别取n =1、2有a 1-a 0=1-3a 0>0,a 2-a 1=6a 0>0,因此010.3a <<下面证明当0103a <<时,对任意n ∈N +,有a n -a n -1>0.由a n 通项公式知:5(a n -a n -1)=2×3n -1+(-1)n -1³3³2n -1+(-1)n ³5³3³2n -1a 0. (i)当n =2k -1,k =1,2,…时,5(a n -a n -1)=2×3n -1+3³2n -1-5³3³2n -1a 0>2×2n -1+3³2n -1-5³2n -1 =0.(ii)当n =2k ,k =1,2,…时,5(a n -a n -1)=2×3n -1-3³2n -1+5³3³2n -1a 0>2×3n -1-3³2n -1 ≥0.故a 0的取值范围为1(0,).3说明:本题是2003年全国高考的最后一道压轴题,有一定难度.特别是第二问求参数a 0的取值范围,要转化为相关数列的最大值和最小值来进行分析讨论,请读者对这一方法务必理解透彻.例6、设{a n }为等差数列,{b n }为等比数列,且22211223312,,()b a b a b a a a ===<,又12lim ()2,n n b b b →+∞+++= 试求{a n }的首项与公差.分析:题中有两个基本量{a n }中的首项a 1和公差d 是需要求的,利用222123,,a a a 成等比数列和给定极限可列两个方程,但需注意极限存在的条件.解答:设所求数列{a n }的公差为d ,因为a 1<a 2,故d =a 2-a 1>0.又{b n }为等比数列,故2422213213,,b b b a a a == 即即422111()(2),a d a a d +=+化简得2211240a a d d ++=,解得1(2,20,d a =--±<而故a 1<0.若222121(2,1);a d a q a =-==则若222121(2,1),a d a q a =-==-则但12lim ()1n n b b b →+∞+++= 存在,故|q |<1,于是21)q =不可能.从而只有1(2,d a =-于是由212lim ()1,n n b b b →+∞+++== 得21a =111)2,(2 2.a d a ===-+=所以故数列{a n }的首项公差分别为 2.说明:本题是2001年全国高中数学联赛的第13题,涉及到的知识主要是等差数列、等比数列、无穷递缩等比数列所有项的和等知识,用到方程的思想和方法,且在解题过程中要根据题意及时取舍,如由题意推出d >0,a 1<0,|q |<1等,在解题中都非常重要.例7、设S ={1,2,3,…,n },A 为至少含有两项的、公差为正的等差数列,其项都在S 中,且添加S 的其他元素于A 后均不能构成与A 有相同公差的数列,求这种A 的个数(这里只有两项的数列也看作等差数列).[分析]:可先通过对特殊的n (如n =1,2,3),通过列举求出A 的个数,然后总结规律,找出a n 的递推关系,从而解决问题;也可以就A 的公差d =1,2,…,n -1时,讨论A 的个数.解答:解法一:设A 的公差为d ,则1≤d ≥n -1,分两种情况讨论:(i )设n 为偶数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12nd n +-时,公差为d 的A 有n -d 个,故当n 为偶数时,这种A 共有2(12){12[(1)]}().224n n n n +++++++-+= 个(ii )当n 为奇数,则当1≤≤2n d 时,公差为d 的A 有d 个;当1≤≤12n d n +-时,公差为d 的A 有n -d 个,故当n 为奇数时,这种A 共有2111(12)(12)().224n n n ---+++++++= 个综合(i )、(ii )可得,所求的A 有2[]4n 个.解法二:设n 元素集S ={1,2,…,n )中满足题设的A 有a n 个,则a 1=0,a 2=1,a 3=2(A ={1,3},A ={1,2,3}),a 4=4(A={1,3},{1,4},{2,4},{1,2,3,4}),故1[].2n n na a -=+事实上,S ={1,2,…,n }比S ={1,2,…,n -1}的A 增加有公差为n -1的1个,公差为n -2的1个,…,公差为2n (n 为偶数)或12n +(n 为奇数)的增加1个,共增加[]2n个.由{a n }的递推式可得2[].4n n a =说明:这是1991年全国高中数学联赛第二试的第一题,主要考查应用等差数列和分类讨论的知识与方法解决综合问题的能力.第四讲 递归数列例1、数列{a n }定义如下:1111,(1416n n a a a +==+求它的通项公式.分析:带根号的部分不好处理,容易想到作代换:令n b =解答:设n b 211, 5.24n n b a b -==于是原递推式可化为2211111(14),241624n n n b b b +---=++ 即(2b n +1)2=(b n +3)2,由于b n 、b n +1非负,所以2b n +1=b n +3,故111222113(3),213(3)(),213(),21111.243322n n n n n n n n n n b b b b b b a +----=--=-=+-==++ 故即故说明:这是1981年IMO 的预选题,解题的关键是换元、转化. 例2、设数列{a n }和{b n }满足a 0=1,b 0=0,且11763,()87 4.n n n n n n a a b n b a b ++=+-⎧∈⎨=+-⎩N 证明: a n (n ∈N )是完全平方数.分析:二元递推式给定二数列,可先消元,化为一元递推式,进而求出通项公式,问题就好办了.证明:由a n +1=7a n +6b n -3,b n +1=8a n +7b n -4可得b n +2-14b n +1+b n =0,其特征方程λ2-14λ+1=0的根为λ1=7+27λ=-因此,(7(7,n n n b A B =++-由a 0=1,b 0=0,得b 1=4,所以0,(7(74,A B A B +=⎧⎪⎨++-=⎪⎩解得66A B ==,故10112220112220(7],1(74)8111(7(744211[(2(2].2211(2(2221[222]21[222(]22n n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n b a b b e C C C C C C C C C +----=+--=-+=++-+=+=+=++++-++=+ 从而由于2223,n n n C M -++其中,当n为偶数时,n n n nM C =为整数,当n为奇数时,11n n n n M C --=为整数.从而无论n 为奇数,还是n 为偶数,对n ∈N ,均有e n 为整数,故a n 为完全平方数.说明:如果消去b n 得到a n 的递推关系a n +1=14a n -a n -1-6(n ≥1),则求a n 的过程稍微麻烦一点.本题是2000年全国高中数学联赛二试第二题.这类题型也是二试考查的重点.例3、数列{a n }定义如下:1212110,1,(1)(1)(1),222n n n n na a a na n n a --===+-+--n ≥3.试求1221122123(1)n n n n nn n n n n f a C a C a n C a nC a ----=++++-+ 的最简表达式. 分析:仔细研究所给数列{a n }的递推式和所要化简的f n 的表达式,可以发现通过适当换元就能解决问题.123121111111211112:,0,,,()(1).!232!111(1)!!()!21(1)!()!22(1)!(1)!n n n n n n n nn kn n n k kk k n nn n k kk k k k k n a b b b b b b b n n n k g f n k C a b n n n k n k n k g g b b n k n k n k n k b b n k n k ---==++==-=-=====++--+==-+=--+-+-=-+---+-+=-+--+∑∑∑∑ 解答令则且再令故121122().(1)!n nk n k k k n k b b n k +=+-=-+=-+-∑∑∑令d n =(-2)n(b n -b n -1),则12(1),2!nn n n d d n -=+-所以d 2=2,且3222(1),2!!l nnn t l d l n ==+-=∑1112122112202(1),,!(2)(2)!2(1)(1)!!(1)(1)()!!(1)!!111(1)()(1)().!(1)!1(1)()0,(1)()0,nnnn n n n kn n n k k knn k k n n k k k k nkk k k d b b n n n k g g n k k n k k n k k n n k k n n nn k k -++=+==++===--===---+--=+---=+-+-+=-+-++-=-=∑∑∑∑∑∑因此于是又故11323344311(1)[1(1)]!(1)!11(1)!(1)!42,311!!()(2)!!111!()2!(1).2!3!!n n n n nn n k k g g n n n n n n g b b f n g n g k k n n g n n n +=+==-=----++=--+=+===-+-+=++-=-+∑∑∑ 由于则说明:这是2000年全国数学冬令营的第二题,运算量大,需要进行多次换元,将问题逐步转化.解题过程要求运算准确、细心.例4、设a 1=1,a 2=3,对一切自然数n 有a n +2=(n +3) a n +1-(n +2) a n ,求所有被11整除的a n 的值.解答:设b n +1= a n +1-a n (n ≥1),则由条件有b n +1=(n +1)( a n -a n -1)= (n +1) b n (n ≥2),故b n =nb n -1=n (n -1) b n -2=…= n (n -1)…3b 2=n ! (n ≥2).所以a n =( a n -a n -1)+( a n -1-a n -2)+…+( a 2-a 1)+a 1=b n +b n -1+…+b 2+1=1!.nk k =∑由此可算出:44188110101!33113,!46233114203,!403791311367083.k k k a k a k a k ======⨯===⨯===⨯∑∑∑当n ≥11时,注意到11!n k k =∑可被11整除,因而10111!!nn k k a k k ===+∑∑也可被11整除.故当n =4,n =8或n ≥10时,a n 均可被11整除.说明:这是1990年巴尔干地区的数学奥林匹克试题,本题中换元起了重要的作用.例5、数列{a n }按如下法则定义:1111,,24n n n a a a a +==+证明:对n >然数.分析:因为结论中涉及到根号及2n a项,因而令n b =平方就容易找到解题思路.解答:令2222122221111,,,2442116n n nnn n n na b b a a a b a +===+=++-则因为于是 22122221222211122211111111(),11242416()22(2),2[2(2)2]4(1).①n n nn n n n n n n n n b b b b b b b b b b b b +++---+=++++=+=++=+即所以因为34,24,n b b ====由①式及b 2,b 3∈N 知,当n >1时,b n ∈N .说明:这是1991年全苏数学冬令营的一道试题,通过换元,将关于a n 的问题转化为关于b n 的问题,可使问题得到顺利解决.例6、设数列{a n }满足101262,(≥1)1n n n a a a n a --+==+,求a n .分析:引入待定系数λ,设法将所给问题转化为我们所熟悉的问题.先求得数列{a n }的不动点λ1、λ2,则数列12{}n n a a λλ--为一个等比数列.解答:126(2)626(),1112n n n n n n n a a a a a a λλλλλλλ++-+----=-==++++- 令62λλλ--=-,得λ2-λ-6=0,解之得:λ1=3,λ2=-2,1111100111143(3),2(2),11331,24231{},243311()(),2244342(1)(0,1,2,)4(1)n n n n n n n n n n n n n n n n n n n n na a a a a a a a a a a a a a a a a n ++++++++--=-+=+++--=-++-+--=-=-+++-==+- 所以故即是公比为-的等比数列从而故说明:用待定系数法求一些数列的通项是非常有效的.这类问题的一般情形就是在知识梳理部分提到的第9个问题.例7、(1)已知a 1=0,a 2=4,a n +2=2a n +1-2a n ,n ∈N +,求a n .(2)已知a 1=0,a 2=2,a 3=6,a n +3=2a n +2+a n +1-2a n ,n ∈N +,求a n . (3)已知a 1=1,a 2=2,a 3=8,a n +3=6a n +2-12a n +1+8a n ,n ∈N +,求a n . (4)已知a 1=2,a 2=1,a 3=-13,a n +3=7a n +2-16a n +1+12a n ,n ∈N +,求a n . 分析:本题中四个小题均属于线性递归数列问题,可用特征根的方法来解决. 解答:(1)特征方程x 2=2x -2有两个相异的根x 1=1+i ,x 2=1-i ,则{a n }的通项公式为a n =c 1(1+i)n +c 2(1-i)n ,代入前两项的值,得122221(1)(1)0,(1)(1)4,i c i c i c i c ++-=⎧⎪⎨++-=⎪⎩ 解得c 1=-1-i ,c 2=-1+i .故31121(1)(1)2cos.4n n n n n a i i π++++=-+--=- (2)特征方程x 3=2x 2+x -2有三个相异的根x 1=1,x 2=-1,x 3=2,于是{a n }的通项公式为a n =c 1+c 2(-1)n +c 32n .代入初始值,得12312312320,42,86,c c c c c c c c c -+=⎧⎪++=⎨⎪-+=⎩ 解得c 1=-2,c 2=0,c 3=1,故a n =-2+2n .(3)特征方程x 3=6x 2-12x +8有三重根x =2,故{a n }的通项公式为c n =( c 1+c 2n +c 3n 2)²2n , 其中c 1,c 2,c 3满足方程组1231231232221,48162,824728,c c c c c c c c c -+=⎧⎪++=⎨⎪++=⎩ 解此方程组,得123311,,,44c c c ==-=故。
2019-2020年高中数学竞赛教材讲义 第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A 中,称属于A ,记为,否则称不属于A ,记作。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为,例如。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 差集,},{\B x A x x B A ∉∈=且。
定义7 集合},,{b a R x b x a x <∈<<记作开区间,集合},,{b a R x b x a x <∈≤≤记作闭区间,R 记作定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。
第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 差集,},{\B x A x x B A ∉∈=且。
定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。
数学竞赛完整课程教案高中1. 学生能够掌握数学竞赛中常见的解题技巧和方法;2. 学生能够熟练运用数学知识解决竞赛中的问题;3. 学生能够提升自信心和解决问题的能力。
教学内容:1. 数论2. 代数3. 几何4. 统计教学过程:第一课:数论1. 介绍数论的基本概念和常见的解题技巧;2. 给出一些数论题目并引导学生解决;3. 分析解题思路和方法,引导学生总结经验。
第二课:代数1. 讲解代数的基本知识和解题技巧;2. 给出一些代数题目供学生练习;3. 分析解题思路和方法,帮助学生提升解题能力。
第三课:几何1. 引导学生理解几何知识和解题技巧;2. 给出一些几何题目供学生练习;3. 分析解题思路和方法,帮助学生提升几何解题能力。
第四课:统计1. 讲解统计知识和解题技巧;2. 给出一些统计题目供学生练习;3. 分析解题思路和方法,帮助学生提升统计解题能力。
第五课:综合练习1. 给出一些综合性的竞赛题目供学生练习;2. 帮助学生分析解题思路和方法;3. 鼓励学生多练习,提高解题速度和准确性。
评价方法:1. 平时的课堂练习;2. 期中和期末的考试;3. 数学竞赛的模拟比赛。
教学资源:1. 数学竞赛教材和习题集;2. 电子教学资源;3. 纸质习题和答案。
教学建议:1. 鼓励学生多练习,勤奋钻研;2. 注重引导学生理解数学知识,而不是死记硬背;3. 鼓励学生互相合作,相互学习。
以上是数学竞赛完整课程教案的高中范本,希朅能对您有所帮助。
第一讲集合概念及集合上的运算知识、方法、技能高中一年级数学(上)(试验本)课本中给出了集合的概念;一般地,符合某种条件(或具有某种性质)的对象集中在一起就成为一个集合.在此基础上,介绍了集合的元素的确定性、互异性、无序性.深入地逐步给出了有限集、无限集,集合的列举法、描述法和子集、真子集、空集、非空集合、全集、补集、并集等十余个新名词或概念以及二十几个新符号.由此形成了在集合上的运算问题,形成了以集合为背景的题目和用集合表示空间的线面及其关系,表面平面轨迹及其关系,表示充要条件,描述排列组合,用集合的性质进行组合计数等综合型题目.赛题精讲Ⅰ.集合中待定元素的确定充分利用集合中元素的性质和集合之间的基本关系,往往能解决某些以集合为背景的高中数学竞赛题.请看下述几例.例1:求点集}lg lg )9131lg(|),{(33y x y x y x +=++中元素的个数.【思路分析】应首先去对数将之化为代数方程来解之. 【略解】由所设知,9131,0,033xy y x y x =++>>及 由平均值不等式,有,)91()31()(3913133333xy y x y x =⋅⋅≥++ 当且仅当333331,91,9131====y x y x 即(虚根舍去)时,等号成立. 故所给点集仅有一个元素.【评述】此题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之.例2:已知.}.,22|{},,34|{22B A x x x y y B x x x y y A ⋂∈+--==∈+-==求R R【思路分析】先进一步确定集合A 、B.【略解】,11)2(2≥--=x y 又.33)1(2≤++-=x y∴A=}.31|{},3|{},1|{≤≤-=⋂≤=-≥y y B A y y B y y 故【评述】此题应避免如下错误解法:联立方程组⎪⎩⎪⎨⎧+--=+-=.22,3422x x y x x y 消去.0122,2=+-x x y 因方程无实根,故φ=⋂B A . 这里的错因是将A 、B 的元素误解为平面上的点了.这两条抛物线没有交点是实数.但这不是抛物线的值域.例3:已知集合|}.|||1|||),{(},0,|||||),{(y x xy y x B a a y x y x A +=+=>=+= 若B A ⋂是平面上正八边形的顶点所构成的集合,则a 的值为 . 【思路分析】可作图,以数形结合法来解之.【略解】点集A 是顶点为(a ,0),(0,a ),(-a ,0),(0,-a )的正方形的四条边构成(如图Ⅰ-1-1-1).将||||1||y x xy +=+,变形为,0)1|)(|1|(|=--y x所以,集合B 是由四条直线1,1±=±=y x 构成.欲使B A ⋂为正八边形的顶点所构成,只有212<<>a a 或这两种情况.(1)当2>a 时,由于正八形的边长只能为2,显然有,2222=-a故 22+=a .(2)当21<<a 时,设正八形边长为l ,则,222,2245cos -=-=︒l l l 这时,.221=+=la综上所述,a 的值为,222或+如图Ⅰ-1-1-1中).0,22(),0,2(+B A【评述】上述两题均为1987年全国高中联赛试题,题目并不难,读者应从解题过程中体会此类题目的解法.Ⅱ.集合之间的基本关系充分应用集合之间的基本关系(即子、交、并、补),往往能形成一些颇具技巧的集合综合题.请看下述几例.例4:设集合},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A 则在下列关系中,成立的是( )A .D CB A ≠≠≠⊂⊂⊂ B .φφ=⋂=⋂DC B A ,C .D C C B A ≠⊂⋃=, D .φ=⋂=⋃D C B B A , 【思路分析】应注意数的特征,即.,612613,21221Z ∈+=++=+n n n n n【解法1】∵},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A ∴D C C B A ≠⊂⋃=,.故应选C. 【解法2】如果把A 、B 、C 、D 与角的集合相对应,令}.|63{},|2{},|{},|2{Z Z Z Z ∈+=∈+='∈='∈='n n D n n C n n B n n A ππππππ 结论仍然不变,显然A ′为终边在坐标轴上的角的集合,B ′为终边在x 轴上的角的集合,C ′为终边在y 轴上的角的集合,D ′为终边在y 轴上及在直线x y 33±=上的角的集合,故应选(C ). 【评述】解法1是直接法,解法2运用转化思想把已知的四个集合的元素转化为我们熟悉的的角的集合,研究角的终边,思路清晰易懂,实属巧思妙解.例5:设有集合B A B A x x B x x x A ⋃⋂<==-=和求和},2|||{}2][|{2(其中[x ]表示不超过实数x 之值的最大整数).【思路分析】应首先确定集合A 与B.从而 .2,.21A x ∈≤≤-显然 ∴}.22|{≤<-=⋃x x B A若 },2,1,0,1{][,2][,2--∈+=⋂∈x x x B A x 则从而得出 ).1]([1)1]([3-=-===x x x x 或 于是 }3,1{-=⋂B A【评述】此题中集合B 中元素x 满足“|x |<3”时,会出现什么样的结果,读者试解之.例6:设})],([|{},),(|{),,()(2R R R ∈==∈==∈++=x x f f x x B x x f x x A c b c bx x x f 且, 如果A 为只含一个元素的集合,则A=B.【思路分析】应从A 为只含一个元素的集合入手,即从方程0)(=-x x f 有重根来解之.【略解】设0)(},|{=-∈=x x f A 则方程R αα有重根α,于是,)()(2α-=-x x x f)],([..)()(2x f f x x x x f =+-=从而α即 ,)()]()[(222x x x x x +-+-+-=ααα 整理得,0]1)1[()(22=++--ααx x 因α,x 均为实数.,01)1(2αα=≠++-x x 故 即.}{A B ==α【评述】此类函数方程问题,应注意将之转化为一般方程来解之.例7:已知N N M a y x y x N x y y x M =⋂≤-+=≥=求}.1)(|),{(},|),{(222成立时,a 需满足的充要条件.【思路分析】由.,M N N N M ⊆=⋂可知【略解】.M N N N M ⊆⇔=⋂由).1()12(1)(22222a y a y y x a y x -+-+-≤≤-+得于是,若0)1()12(22≤-+-+-a y a y ①必有.,2M N x y ⊆≥即而①成立的条件是 ,04)12()1(422max ≤-----=a a y 即 ,0)12()1(422≤-+-a a 解得 .411≥a【评述】此类求参数范围的问题,应注意利用集合的关系,将问题转化为不等式问题来求解.例8:设A 、B 是坐标平面上的两个点集,}.|),{(222r y x y x C r ≤+= 若对任何0≥r 都有B C A C r r ⋃⊆⋃,则必有B A ⊆.此命题是否正确【思路分析】要想说明一个命题不正确,只需举出一个反例即可.【略解】不正确.反例:取},1|),{(22≤+=y x y x A B 为A 去掉(0,0)后的集合. 容易看出,B C A C r r ⋃⊆⋃但A 不包含在B 中.【评述】本题这种举反例判定命题的正确与否的方法十分重要,应注意掌握之.Ⅲ.有限集合中元素的个数有限集合元素的个数在课本P 23介绍了如下性质:一般地,对任意两个有限集合A 、B ,有).()()()(B A card B card A card B A card ⋂-+=⋃我们还可将之推广为:一般地,对任意n 个有限集合,,,,21n A A A 有)(1321n n A A A A A card ⋃⋃⋃⋃⋃-)]()([)]()()()([3121321A A card A A card A card A card A card A card n ⋂+⋂-++++= )]()]([)]()(1232111n n n n n n A A A card A A A card A A card A A card ⋂⋂++⋂⋂+⋂++⋂++--- ).()1(311n n A A A card ⋂⋂⋂⋅-+--应用上述结论,可解决一类求有限集合元素个数问题.【例9】某班期末对数学、物理、化学三科总评成绩有21个优秀,物理总评19人优秀,化学总评有20人优秀,数学和物理都优秀的有9人,物理和化学都优秀的有7人,化学和数学都优秀的有8人,试确定全班人数以及仅数字、仅物理、仅化学单科优秀的人数范围(该班有5名学生没有任一科是优秀).【思路分析】应首先确定集合,以便进行计算.【详解】设A={数学总评优秀的学生},B={物理总评优秀的学生},C={化学总评优秀的学生}.则.8Ccard=BC⋂card=⋂=cardcardAcardB=AcardCB=A)(,20,9()⋂,7))(,21)(((=,19)∵) CBcard⋂cardAcardcardB-A⋂=⋃⋃++-C-⋂(()()))card)(((BA)cardB(AcardCC⋂+∴.36 Acard⋂B),(C⋃C⋃⋂⋂B-cardcardABCA=1921208+)9-(-+(=)这里,)card⋃⋃是数、理、化中至少一门是优秀的人数,BA(CAB⋃的范围(Ccard⋃⋂是这三科全优的人数.可见,估计))(CBAcard⋂的问题与估计)⋂的范围有关.card⋂AB(C注意到7BCC⋂ABcardcard,可知A⋂BCcardAcard(),()}≤(),⋂min{⋂⋂)(=(36≤)⋃≤CcardB43⋃A0≤(7card. 因而可得.⋂)⋂AB≤C又∵.5cardUBCAcardA⋃C card其中BCAcardB⋃)((),)()(=⋃+⋃=⋃⋃∴.card这表明全班人数在41~48人之间.≤U41≤48)(仅数学优秀的人数是).⋂card⋃AB(C∴) Acard-⋃BcardA⋃C⋂=⋃B⋃⋃⋃-=B)()C)()((B(cardcardcardCBACAB-Ccard+C⋂cardcardBC(-()32=).⋃⋃)(可见,11)3≤⋃(B10cardA⋂≤C()card同理可知,⋃4≤⋂B≤CA≤ABcard故仅数学单科优秀的学生在4~11之间,仅物理⋃C⋂.5≤12()单科优秀的学生数在3~10之间,仅化学单科优秀的学生在5~12人之间.第二讲映射及映射法知识、方法、技能1.映射的定义设A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有惟一的元素和它对应,这样的对应叫做从集合A到集合B的映射,记作.f→A:B(1)映射是特殊的对应,映射中的集合A,B可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A到B的映射与从B到A的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A和集合B,以及集合A到B的对应法则f,三者缺一不可.(4)对于一个从集合A到集合B的映射来说,A中的每一个元素必有惟一的,但B中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射是集合A到集合B的映射,一般地,设A、B是两个集合,.f→:BA如果在这个映射下,对于集合A中的不同元素,在集合B中有不同的象,而且B中每一个元素都有原象,那么个这个映射叫做A到B上的一一映射.3.逆映射如果f是A与B之间的一一对应,那么可得B到A的一个映射g:任给Bb∈,规定)(,其中a是b在f下的原象,称这个映射g是f的逆映射,并bag=将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的.任给b a f A a =∈)(,设,则a b f =-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b)=a ,所以,f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f . 赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a f f f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f-→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=x y y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B : },36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A }.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例. 例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC的小平行四边形.把AB边和AC边各延长一等分,分别到B′,C′,连接B′C′.将A′B′的n条平行线分别延长,与B′C′相交,连同B′,C′共有n+2个分点,从B′至C′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B′C′于i,j,k,l.记A={边不平行于BC的小平行四边形},ijllkB=nijk<,1|),2}.,{(+<<≤≤把小平行四边形的四条边延长且交C'边于四点的过程定义为一B'个映射:B:.Af→下面我们证明f是A与B的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C'的四点亦不全同.所以,四点B'组),,,(l k j i亦不相同,从而f是A到B的1-1的映射.任给一个四点组2jkli≤njkli,过i,j点作AB的平,(+,),1<,<<≤行线,过k,l作AC的平行线,必交出一个边不平行于BC的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i)骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii)骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖;(iii)骨牌是竖放的.现在假设仅发生(2)中的(ii)和(iii)时,我们记X为下面5×6个方格中的空格集合,Y为上面5×6个方格中的骨牌集合,作映射Yϕ,由于每个空格(X中的)上方都有骨牌(Y中的),且不:X→同的空格对应于不同的骨牌.所以,这个映射是单射,于是有X)cardcard≤,对一切N()(Yn成立.∈【解法1】存在,首先有一条链.1→2→3→5→8→13→21→…①链上每一个数n的后继是)f,f满足(n(((②n=)))fnnff+即每个数是它产面两个数的和,这种链称为f链.对于①中的数m>n,由①递增易知有≥((③f-)-)mnmfn我们证明自然数集N可以分析为若干条f链,并且对任意自然数m>n,③成立(从而)ff>+),并且每两条链无公共元素).方法n(n()1是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f链,满足③,而k+1是第一个不在已有链中出现的数,定义+k=kf④f)11(+)(这链中其余的数由②逐一确定.对于m>n,如果m、n同属于新链,③显然成立,设m、n中恰有一个属于新链.若m属于新链,在m=k+1时,mf-f=fnk-=-+f-≥+m1)(),1n(nk)(n)(设对于m,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(([由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。
第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛中出现的问题.第一节 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n 2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10 【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22yx y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21, *)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n 2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-. 当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间.即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++≥∈R },{(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 MN ≠∅, 则 a 的取值范围是. 【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, a 的取值范围:令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x = 所以,当211a <= 时, M N =∅. ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =3a >时, M N =∅. ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤≤,即[13a ∈ 时, M N ≠∅.故填[1.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a又1041=+a a ,可得94=a ,并且422a a =或.423a a =若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍)此时有}.81,25,9,1{},9,5,3,1{==B A 若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A 〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系.〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性.【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f 取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”.〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1;{1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ② 所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ=,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立. 【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A.31 B.32 C.1 D.34 2. (2006年陕西预赛)b a ,为实数,集合M=x x f a P ab →=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( )A.1-B.0C.1D.1± 3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是 A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++ 5. 集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S , S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈- (1)证明:三个集合中至少有两个相等.(2)三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1)当a 取何值时,C B A )(为含有两个元素的集合?(2)当a 取何值时,C B A )(为含有三个元素的集合?4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈, {}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证该校的班级数不多于12-P 个.【参考答案】A 组1.解: N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得.为此,只要考虑在第一象限的面积就可以了.由题意可得,N M 的图形在第一象限的面积为A =613121=-.因此N M 的图形面积为32. 所以选B.2.解:由M=P,从而1,0==a a b ,即0,1==b a ,故.1=+b a 从而选C. 3. 解:M N ≠∅相当于点(0,b )在椭圆2223x y +=上或它的内部221,322b b ∴≤∴-≤≤.故选A. 4.解: 用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得 32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈= M ' 中的最大数为107]2400[]6666[=.在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396.而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C. 5.解:A=φ时,有1种可能;A 为一元集时,B 必须含有其余2元,共有6种可能;A 为二元集时,B 必须含有另一元.共有12种可能;A 为三元集时,B 可为其任一子集.共8种可能.故共有1+6+12+8=27个.从而选A.6.解:被7除余2的数可写为7k +2. 由100≤7k +2≤600.知14≤k ≤85.又若某个k 使7k +2能被57整除,则可设7k +2=57n . 即57256227778n n n nk n -+--===+. 即n -2应为7的倍数. 设n =7m +2代入,得k =57m +16. ∴14≤57m +16≤85. ∴m =0,1.于是所求的个数为85-(14-1)-2=70. 7.解:依题意可得{13}A x x =<<,设1()2x f x a -=+,2()2(7)5g x x a x =-++ 要使A B ⊆,只需()f x ,()g x 在(1,3)上的图象均在x 轴的下方,则(1)0f ≤,(3)0f ≤, (1)0g ≤,(3)0g ≤,由此可解得结果.8.解:由于1995=15⨯133,所以,只要n >133,就有15n >1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15⨯9=135, … 15⨯133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870.另一方面,把k 与15k 配对,(k 不是15的倍数,且1≤k ≤133)共得133—8=125对,每对数中至多能取1个数为A 的元素,这说明所求数≤1870,综上可知应填1870.9.解:考虑M 的n +2元子集P={n -l ,n ,n +1,…,2n }.P 中任何4个不同元素之和不小于(n -1)+n +( n +1)+( n +2)=4 n +2,所以k ≥n +3.将M 的元配为n 对,B i =(i ,2 n +1-i ),1≤i ≤n . 对M 的任一n +3元子集A ,必有三对123,,i i i B B B 同属于A(i 1、I 2、I 3两两不同).又将M 的元配为n -1对,C I (i ,2n -i ),1≤i ≤n -1.对M 的任一n +3元子集A ,必有一对4i C 同属于A ,这一对4i C 必与123,,i i i B B B 中至少一个无公共元素,这4个元素互不相同,且和为2 n +1+2 n =4 n +1,最小的正整数k = n +310.10.解: ⑴∵k ,1k -∈Z 且21k -=22(1)k k --,∴21k -∈A ;⑵假设42 ()k A k Z -∈∈,则存在,x y Z ∈,使42k -=22x y -即()()2(21)x y x y k -+=- (*)由于x y -与x y +具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立.由此,42()k A k Z -∉∈.11.解:{}13A x x =-≤<,()(){}30B x x a x a =--<. 当0a >时,{}03B x a x a =<<<,由AB ≠∅得03a <<; 当0a <时,{}30B x a x a =<<<,由A B ≠∅得1a >-; 当0a =时,{}20B x x =<=∅,与A B ≠∅不符.综上所述,()()1,00,3a ∈-.12.解:由④若x ,y ∈P ,则x +y ∈P 可知,若x ∈P ,则)( N k P kx ∈∈(1)由①可设x ,y ∈P ,且x >0,y <0,则-y x =|y |x (|y |∈N )故x y ,-y x ∈P ,由④,0=(-y x )+x y ∈P .(2)2∉P .若2∈P ,则P 中的负数全为偶数,不然的话,当-(12+k )∈P (N k ∈)时,-1=(-12-k )+k 2∈P ,与③矛盾.于是,由②知P 中必有正奇数.设),( 12,2N n m P n m ∈∈--,我们取适当正整数q ,使12|2|->-⋅n m q ,则负奇数P n qm ∈-+-)12(2.前后矛盾B 组1.证明:设任意的r ∈Q ,r ≠0,由②知r ∈S ,或-r ∈S 之一成立.再由①,若r∈S ,则S r ∈2;若-r ∈S ,则S r r r ∈-⋅-=)()(2.总之,S r ∈2. 取r =1,则1∈S .再由①,2=1+1∈S ,3=1+2∈S ,…,可知全体正整数都属于S .设S q p ∈,,由①S pq ∈,又由前证知S q ∈21,所以21qpq q p ⋅=∈S .因此,S 含有全体正有理数.再由①知,0及全体负有理数不属于S .即S 是由全体正有理数组成的集合.2.证明:(1)若j i S y S x ∈∈,,则i k S x y x y S x y ∈-=--∈-)(,,所以每个集合中均有非负元素.当三个集合中的元素都为零时,命题显然成立.否则,设321,,S S S 中的最小正元素为a ,不妨设1S a ∈,设b 为32,S S 中最小的非负元素,不妨设,2S b ∈则b -a ∈3S .若b >0,则0≤b -a <b ,与b 的取法矛盾.所以b =0.任取,1S x ∈因0∈2S ,故x -0=x ∈3S .所以⊆1S 3S ,同理3S 1S ⊆.所以1S =3S .(2)可能.例如1S =2S ={奇数},3S ={偶数}显然满足条件,1S 和2S 与3S 都无公共元素.3.解:C B A )(=)()(C B C A .C A 与C B 分别为方程组(Ⅰ)⎩⎨⎧=+=+1122y x y ax (Ⅱ)⎩⎨⎧=+=+1122y x ay x 的解集.由(Ⅰ)解得(y x ,)=(0,1)=(212a a +,2211aa +-);由(Ⅱ)解得 (y x ,)=(1,0),(2211a a +-,212a a +) (1)使C B A )(恰有两个元素的情况只有两种可能: ①⎪⎪⎩⎪⎪⎨⎧=+-=+111012222a a a a ②⎪⎪⎩⎪⎪⎨⎧=+-=+011112222aa a a 由①解得a =0;由②解得a =1.故a =0或1时,C B A )(恰有两个元素.(2)使C B A )(恰有三个元素的情况是:212a a +=2211a a +- 解得21±-=a ,故当21±-=a 时,C B A )(恰有三个元素.4.解: (1)设1212,min P A P B d P P ∈∈=(即集合A 中的点与集合B 中的点的距离的最小值), 则称d 为A 与B 的距离.⑵解法一:∵A 中点的集合为圆22(2)(2)1,x y +++=圆心为(2,2)M --,令(,)P x y 是双曲线上的任一点,则2MP =22(2)(2)x y +++=224()8x y x y ++++=2()24()x y xy x y +-+++8=2()4()28x y x y ++++令t x y =+,则2MP =22428(2)24t t t ++=++当2t =-时,即102xy x y =-⎧⎨+=-⎩有解,∴min MP =∴1d = 解法二:如图,P 是双曲线上的任一点, Q 为圆22(2)(2)1x y +++=上任一点,圆心为M .显然,P M MP +Q Q ≥(当P M 、Q 、三点共线时取等号)∴min 1d MP =-.5.解:记!18=n 时,由于1,2,……18都是n 的约数,故此时.19)(=n f 从而.19M ∈ 若存在P n ∈,使99)(=n f ,则对于小于99的正整数k ,均有n k |,从而n n |11,|9,但是1)11,9(=,由整数理论中的性质9×11=99是n 的一个约数,这是一个矛盾!从而.99M ∉6.证明:假设该校共有m 个班级,他们的建议分别组成集合m A A A ,,,21 。
宜阳一高数学竞赛辅导讲座11.数学方法选讲同学们在阅读课外读物的时候;或在听老师讲课的时候;书上的例题或老师讲解的例题他都能听懂;但一遇到没有见过面的问题就不知从何处入手..看来;要提高解决问题的能力;要能在竞赛中有所作为;首先得提高分析问题的能力;这就需要学习一些重要的数学思想方法..例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”;足够的“退”;退到最原始而又不失去重要性的地方;是学好数学的一个诀窍..从简单情况考虑;就是一种以退为进的一种解题策略..1. 两人坐在一张长方形桌子旁;相继轮流在桌子上放入同样大小的硬币..条件是硬币一定要平放在桌子上;后放的硬币不能压在先放的硬币上;直到桌子上再也放不下一枚硬币为止..谁放入了最后一枚硬币谁获胜..问:先放的人有没有必定取胜的策略2.线段AB上有1998个点包括A;B两点;将点A染成红色;点B染成蓝色;其余各点染成红色或蓝色..这时;图中共有1997条互不重叠的线段..问:两个端点颜色相异的小线段的条数是奇数还是偶数为什么 +3.1000个学生坐成一圈;依次编号为1;2;3;…;1000..现在进行1;2报数:1号学生报1后立即离开;2号学生报2并留下;3号学生报1后立即离开;4号学生报2并留下……学生们依次交替报1或2;凡报1的学生立即离开;报2的学生留下;如此进行下去;直到最后还剩下一个人..问:这个学生的编号是几号例题解析1.分析与解:如果桌子大小只能容纳一枚硬币;那么先放的人当然能够取胜..然后设想桌面变大;注意到长方形有一个对称中心;先放者将第一枚硬币放在桌子的中心;继而把硬币放在后放者所放位置的对称位置上;这样进行下去;必然轮到先放者放最后一枚硬币..2.分析:从最简单的情况考虑:如果中间的1996个点全部染成红色;这时异色线段只有1条;是一个奇数..然后我们对这种染色方式进行调整:将某些红点改成蓝点并注意到颜色调整时;异色线段的条数随之有哪些变化..由于颜色的调整是任意的;因此与条件中染色的任意性就一致了..解:如果中间的1996个点全部染成红色;这时异色线段仅有1条;是一个奇数..将任意一个红点染成蓝色时;这个改变颜色的点的左右两侧相邻的两个点若同色;则异色小线段的条数或者增加2条相邻的两个点同为红色;或者减少2条相邻的两个点同为蓝色;这个改变颜色的点的左右两侧相邻的两个点若异色;则异色小线段的条数不变..综上所述;改变任意个点的颜色;异色线段的条数的改变总是一个偶数;从而异色线段的条数是一个奇数..3.解:如果有2n个人;那么报完第1圈后;剩下的是2的倍数号;报完第2圈后;剩下的是22的倍数号……报完第n圈后;剩下的是2n的倍数号;此时;只剩下一人;是2n号..如果有2n+d1≤d<2n人;那么当有d人退出圈子后还剩下2n人..因为下一个该退出去的是2d+1号;所以此时的第2d+1号相当于2n人时的第1号;而2d号相当于2n人时的第2n号;所以最后剩下的是第2d号..由1000=29+488知;最后剩下的学生的编号是488×2=976号..宜阳一高数学竞赛辅导讲座2二、从极端情况考虑从问题的极端情况考虑;对于数值问题来说;就是指取它的最大或最小值;对于一个动点来说;指的是线段的端点;三角形的顶点等等..极端化的假设实际上也为题目增加了一个条件;求解也就会变得容易得多.. 5.新上任的宿舍管理员拿着20把钥匙去开20个房间的门;他知道每把钥匙只能打开其中的一个门;但不知道哪一把钥匙开哪一个门;现在要打开所有关闭的20个门;他最多要开多少次6.有n名n≥3选手参加的一次乒乓球循环赛中;没有一个全胜的..问:是否能够找到三名选手A;B;C;使得A胜B;B胜C;C胜A7.nn≥3名乒乓球选手单打比赛若干场后;任意两个选手已赛过的对手恰好都不完全相同..试证明;总可以从中去掉一名选手;而使余下的选手中;任意两个选手已赛过的对手仍然都不完全相同..例题解析5. 解:从最不利的极端情况考虑:打开第一个房间要20次;打开第二个房间需要19次……共计最多要开20+19+18+…+1=210次..6. 解:从极端情况观察入手;设B是胜的次数最多的一个选手;但因B没获全胜;故必有选手A胜B..在败给B的选手中;一定有一个胜A的选手C;否则;A胜的次数就比B多一次了;这与B是胜的次数最多的矛盾..所以;一定能够找到三名选手A;B;C;使得A胜B;B胜C;C胜A..7. 证明:如果去掉选手H;能使余下的选手中;任意两个选手已赛过的对手仍然都不完全相同;那么我们称H为可去选手..我们的问题就是要证明存在可去选手..设A是已赛过对手最多的选手..若不存在可去选手;则A不是可去选手;故存在选手B和C;使当去掉A 时;与B赛过的选手和与C赛过的选手相同..从而B和C不可能赛过;并且B和C中一定有一个不妨设为B与A赛过;而另一个即C未与A赛过..又因C不是可去选手;故存在选手D;E;其中D和C赛过;而E和C未赛过..显然;D不是A;也不是B;因为D与C赛过;所以D也与B赛过..又因为B和D赛过;所以B也与E赛过;但E未与C赛过;因而选手E只能是选手A..于是;与A赛过的对手数就是与E赛过的对手数;他比与D赛过的对手数少1;这与假设A是已赛过对手最多的选手矛盾..故一定存在可去选手..宜阳一高数学竞赛辅导讲座3三、从整体考虑从整体上来考察研究的对象;不纠缠于问题的各项具体的细节;从而能够拓宽思路;抓住主要矛盾;一举解决问题..9.右图是一个4×4的表格;每个方格中填入了数字0或1..按下列规则进行“操作”:每次可以同时改变某一行的数字:1变成0;0变成1..问:能否通过若干次“操作”使得每一格中的数都变成110.有三堆石子;每堆分别有1998;998;98粒..现在对这三堆石子进行如下的“操作”:每次允许从每堆中各拿掉一个或相同个数的石子;或从任一堆中取出一些石子放入另一堆中..按上述方式进行“操作”;能否把这三堆石子都取光如行;请设计一种取石子的方案;如不行;请说明理由..11.我们将若干个数x;y;z;…的最大值和最小值分别记为maxx;y;z;…和minx;y;z;…..已知a+b+c+d+e+f+g=1;求minmaxa+b+c;b+c+d;c+d+e;d+e+f;e+f+g例题解析9. 解:我们考察表格中填入的所有数的和的奇偶性:第一次“操作”之前;它等于9;是一个奇数;每一次“操作”;要改变一行或一列四个方格的奇偶性;显然整个16格中所有数的和的奇偶性不变..但当每一格中所有数字都变成1时;整个16格中所有数的和是16;为一偶数..故不能通过若干次“操作”使得每一格中的数都变成1..10. 解:要把三堆石子都取光是不可能的..按“操作”规则;每次拿掉的石子数的总和是3的倍数;即不改变石子总数被 3除时的余数..而1998+998+98=3094;被3除余1;三堆石子被取光时总和被3除余0..所以;三堆石子都被取光是办不到的..11. 解:设 M=maxa+b+c;b+c+d;c+d+e;d+e+f;e+f+g..因为a+b+c;c+d+e;e+f+g都不大于M;所以练习题1.方程x1+x2+x3+…+xn-1+xn=x1x2x3…xn-1xn一定有一个自然数解吗为什么2.连续自然数1;2;3;…;8899排成一列..从1开始;留1划掉2和3;留4划掉5和6……这么转圈划下去;最后留下的是哪个数3.给出一个自然数n;n的约数的个数用一个记号An来表示..例如当n=6时;因为6的约数有1;2;3;6四个;所以A6=4..已知a1;a2;…;a10是 10个互不相同的质数;又x为a1;a2;…;a10的积;求 Ax..宜阳一高数学竞赛辅导讲座4 1.有..解:当n=2时;方程x1+x2=x1x2有一个自然数解:x1=2;x2=2;当n=3时;方程x1+x2+x3=x1x2x3有一个自然数解:x1=1;x2=2;x3=3;当n=4时;方程x1+x2+x3+x4=x1x2x3x4有一个自然数解:x1=1;x2=1;x3=2;x4=4..一般地;方程x1+x2+x3+…+xn-1+xn=x1x2x3…xn-1xn有一个自然数解:x1=1;x2=1;…;xn-2=1;xn-1=2;xn=n..2 .3508..解:仿例3..当有3n个数时;留下的数是1号..小于8899的形如3n的数是38=6561;故从1号开始按规则划数;划了8899-6561=2338个数后;还剩下6561个数..下一个要划掉的数是2388÷2×3+1=3507;故最后留下的就是3508..3.1024..解:质数a1有2个约数:1和a;从而Aa1=2;2个质数a1;a2的积有4个约数:1;a1;a2;a1a2;从而Aa1×a2=4=22;3个质数a1;a2;a3的积有8个约数:1;a1;a2;a3;a1a2;a2a3;a3a1;a1a2a3;从而Aa 1×a 2×a 3=8=23;……于是;10个质数a 1;a 2;…;a 10的积的约数个数为Ax=210=1024..6.把1600粒花生分给100只猴子;请你说明不管怎样分;至少有4只猴子分的花生一样多..7.有两只桶和一只空杯子..甲桶装的是牛奶;乙桶装的是酒精未满..现在从甲桶取一满杯奶倒入乙桶;然后从乙桶取一满杯混合液倒入甲桶;这时;是甲桶中的酒精多;还是乙桶中的牛奶多 为什么8.在黑板上写上1;2;3;…;1998..按下列规定进行“操作”:每次擦去其中的任意两个数a 和b;然后写上它们的差大减小;直到黑板上剩下一个数为止..问:黑板上剩下的数是奇数还是偶数 为什么6.假设没有4只猴子分的花生一样多;那么至多3只猴子分的花生一样多..我们从所需花生最少情况出发考虑:得1粒、2粒、3粒……32粒的猴子各有3只;得33粒花生的猴子有1只;于是100只猴子最少需要分得花生3×0+1+2+…+32+33=1617粒;现在只有1600粒花生;无法使得至多3只猴子分的花生一样多;故至少有4只猴子分的花生一样多..7.一样多..提示:从整体看;甲、乙两桶所装的液体的体积没有发生变化..甲桶里有多少酒精;就必然倒出了同样体积的牛奶入乙桶..所以;甲桶中的酒精和乙桶中的牛奶一样多..8.奇数..解:黑板上开始时所有数的和为S=1+2+3+…+1998=1997001;是一个奇数;而每一次“操作”;将a+b变成了a-b;实际上减少了2b;即减少了一个偶数..因为从整体上看;总和减少了一个偶数;其奇偶性不变;所以最后黑板上剩下一个奇数..。
第一讲 集合概念及集合上的运算知识、方法、技能高中一年级数学(上)(试验本)课本中给出了集合的概念;一般地,符合某种条件(或具有某种性质)的对象集中在一起就成为一个集合.在此基础上,介绍了集合的元素的确定性、互异性、无序性.深入地逐步给出了有限集、无限集,集合的列举法、描述法和子集、真子集、空集、非空集合、全集、补集、并集等十余个新名词或概念以及二十几个新符号.由此形成了在集合上的运算问题,形成了以集合为背景的题目和用集合表示空间的线面及其关系,表面平面轨迹及其关系,表示充要条件,描述排列组合,用集合的性质进行组合计数等综合型题目.赛题精讲Ⅰ.集合中待定元素的确定充分利用集合中元素的性质和集合之间的基本关系,往往能解决某些以集合为背景的高中数学竞赛题.请看下述几例.例1:求点集}lg lg )9131lg(|),{(33y x y x y x +=++中元素的个数. 【思路分析】应首先去对数将之化为代数方程来解之. 【略解】由所设知,9131,0,033xy y x y x =++>>及 由平均值不等式,有,)91()31()(3913133333xy y x y x =⋅⋅≥++ 当且仅当333331,91,9131====y x y x 即(虚根舍去)时,等号成立. 故所给点集仅有一个元素.【评述】此题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之.例2:已知.}.,22|{},,34|{22B A x x x y y B x x x y y A ⋂∈+--==∈+-==求R R【思路分析】先进一步确定集合A 、B.【略解】,11)2(2≥--=x y 又.33)1(2≤++-=x y∴}.31|{},3|{},1|{≤≤-=⋂≤=-≥y y B A y y B y y 故【评述】此题应避免如下错误解法:联立方程组⎪⎩⎪⎨⎧+--=+-=.22,3422x x y x x y 消去.0122,2=+-x x y 因方程无实根,故φ=⋂B A . 这里的错因是将A 、B 的元素误解为平面上的点了.这两条抛物线没有交点是实数.但这不是抛物线的值域.例3:已知集合|}.|||1|||),{(},0,|||||),{(y x xy y x B a a y x y x A +=+=>=+= 若B A ⋂是平面上正八边形的顶点所构成的集合,则a 的值为 . 【思路分析】可作图,以数形结合法来解之.【略解】点集A 是顶点为(a ,0),(0,a ),(-a ,0),(0,-a )的正方形的四条边构成(如图Ⅰ-1-1-1).将||||1||y x xy +=+,变形为,0)1|)(|1|(|=--y x所以,集合B 是由四条直线1,1±=±=y x 构成.欲使B A ⋂为正八边形的顶点所构成,只有212<<>a a 或这两种情况.(1)当2>a 时,由于正八形的边长只能为2,显然有,2222=-a故 22+=a .(2)当21<<a 时,设正八形边长为l ,则,222,2245cos -=-=︒l l l 这时,.221=+=l a 综上所述,a 的值为,222或+如图Ⅰ-1-1-1中).0,22(),0,2(+B A 【评述】上述两题均为1987年全国高中联赛试题,题目并不难,读者应从解题过程中体会此类题目的解法.Ⅱ.集合之间的基本关系充分应用集合之间的基本关系(即子、交、并、补),往往能形成一些颇具技巧的集合综合题.请看下述几例.例4:设集合},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A 则在下列关系中,成立的是( )图Ⅰ-1-1-1A .D CB A ≠≠≠⊂⊂⊂ B .φφ=⋂=⋂DC B A , C .D C C B A ≠⊂⋃=, D .φ=⋂=⋃D C B B A , 【思路分析】应注意数的特征,即.,612613,21221Z ∈+=++=+n n n n n 【解法1】∵},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A ∴D C C B A ≠⊂⋃=,.故应选C. 【解法2】如果把A 、B 、C 、D 与角的集合相对应,令}.|63{},|2{},|{},|2{Z Z Z Z ∈+=∈+='∈='∈='n n D n n C n n B n n A ππππππ 结论仍然不变,显然A ′为终边在坐标轴上的角的集合,B ′为终边在x 轴上的角的集 合,C ′为终边在y 轴上的角的集合,D ′为终边在y 轴上及在直线x y 33±=上的角的集合,故应选(C ).【评述】解法1是直接法,解法2运用转化思想把已知的四个集合的元素转化为我们熟悉的的角的集合,研究角的终边,思路清晰易懂,实属巧思妙解.例5:设有集合B A B A x x B x x x A ⋃⋂<==-=和求和},2|||{}2][|{2(其中[x ]表示不超过实数x 之值的最大整数).【思路分析】应首先确定集合A 与B.从而 .2,.21A x ∈≤≤-显然 ∴}.22|{≤<-=⋃x x B A若 },2,1,0,1{][,2][,2--∈+=⋂∈x x x B A x 则从而得出 ).1]([1)1]([3-=-===x x x x 或 于是 }3,1{-=⋂B A【评述】此题中集合B 中元素x 满足“<3”时,会出现什么样的结果,读者试解之.例6:设})],([|{},),(|{),,()(2R R R ∈==∈==∈++=x x f f x x B x x f x x A c b c bx x x f 且, 如果A 为只含一个元素的集合,则.【思路分析】应从A 为只含一个元素的集合入手,即从方程0)(=-x x f 有重根来解之.【略解】设0)(},|{=-∈=x x f A 则方程R αα有重根α,于是,)()(2α-=-x x x f)],([..)()(2x f f x x x x f =+-=从而α即 ,)()]()[(222x x x x x +-+-+-=ααα 整理得,0]1)1[()(22=++--ααx x 因α,x 均为实数 .,01)1(2αα=≠++-x x 故 即.}{A B ==α【评述】此类函数方程问题,应注意将之转化为一般方程来解之.例7:已知N N M a y x y x N x y y x M =⋂≤-+=≥=求}.1)(|),{(},|),{(222成立时,a 需满足的充要条件.【思路分析】由.,M N N N M ⊆=⋂可知【略解】.M N N N M ⊆⇔=⋂由).1()12(1)(22222a y a y y x a y x -+-+-≤≤-+得于是,若0)1()12(22≤-+-+-a y a y ①必有.,2M N x y ⊆≥即而①成立的条件是 ,04)12()1(422max≤-----=a a y 即 ,0)12()1(422≤-+-a a 解得 .411≥a 【评述】此类求参数范围的问题,应注意利用集合的关系,将问题转化为不等式问题来求解. 例8:设A 、B 是坐标平面上的两个点集,}.|),{(222r y x y x C r ≤+=若对任何0≥r 都有B C A C r r ⋃⊆⋃,则必有B A ⊆.此命题是否正确?【思路分析】要想说明一个命题不正确,只需举出一个反例即可.【略解】不正确.反例:取},1|),{(22≤+=y x y x A B 为A 去掉(0,0)后的集合.容易看出,B C A C r r ⋃⊆⋃但A 不包含在B 中.【评述】本题这种举反例判定命题的正确与否的方法十分重要,应注意掌握之.Ⅲ.有限集合中元素的个数有限集合元素的个数在课本P 23介绍了如下性质:一般地,对任意两个有限集合A 、B ,有 ).()()()(B A card B card A card B A card ⋂-+=⋃我们还可将之推广为:一般地,对任意n 个有限集合,,,,21n A A A 有)(1321n n A A A A A card ⋃⋃⋃⋃⋃-)]()([)]()()()([3121321A A card A A card A card A card A card A card n ⋂+⋂-++++= )]()]([)]()(1232111n n n n n n A A A card A A A card A A card A A card ⋂⋂++⋂⋂+⋂++⋂++--- ).()1(311n n A A A card ⋂⋂⋂⋅-+--应用上述结论,可解决一类求有限集合元素个数问题.【例9】某班期末对数学、物理、化学三科总评成绩有21个优秀,物理总评19人优秀,化学总评有20人优秀,数学和物理都优秀的有9人,物理和化学都优秀的有7人,化学和数学都优秀的有8人,试确定全班人数以及仅数字、仅物理、仅化学单科优秀的人数范围(该班有5名学生没有任一科是优秀).【思路分析】应首先确定集合,以便进行计算.【详解】设{数学总评优秀的学生},{物理总评优秀的学生},{化学总评优秀的学生}. 则.8)(,7)(,9)(,20)(,19)(,21)(=⋂=⋂=⋂===A C card C B card B A card C card B card A card ∵)()()()()()()(A C card C B card B A card C card B card A card C B A card ⋂-⋂-⋂-++=⋃⋃ ),(C B A card ⋂⋂+ ∴.3689201921)()(=--++=⋂⋂-⋃⋃C B A card C B A card 这里,)(C B A card ⋃⋃是数、理、化中至少一门是优秀的人数,)(C B A card ⋂⋂是这三科全优的人数.可见,估计)(C B A card ⋃⋃的范围的问题与估计)(C B A card ⋂⋂的范围有关.注意到7)}(),(),(min{)(=⋂⋂⋂≤⋂⋂A C card C B card B A card C B A card ,可知 7)(0≤⋂⋂≤C B A card . 因而可得.43)(36≤⋃⋃≤C B A card 又∵.5)(),()()(=⋃⋃=⋃⋃+⋃⋃C B A card U card C B A card C B A card 其中 ∴.48)(41≤≤U card 这表明全班人数在41~48人之间. 仅数学优秀的人数是).(C B A card ⋃⋂ ∴)()()()()(B card C B A card C B card C B A card C B A card -⋃⋃=⋃-⋃⋃=⋃⋂.32)()()(-⋃⋃=⋂+-C B A card C B card C card 可见,11)(4≤⋃⋂≤C B A card 同理可知 ,10)(3≤⋃⋂≤C A B card.12)(5≤⋃⋂≤A B C card 故仅数学单科优秀的学生在4~11之间,仅物理单科优秀的学生数在3~10之间,仅化学单科优秀的学生在5~12人之间.第二讲 映射及映射法知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的.任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b),所以,f(a),从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得 ⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出1,9,8,6;由(Ⅱ)解出12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=xy y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A }.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设{1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,(其中2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也图Ⅰ-1-2-1为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于的小平行四边形.把边和边各延长一等分,分别到B ′,C ′,连接 B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有2个分点,从B ′至C ′依次记为1,2,…,2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记{边不平行于的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作的平行线,过k ,l 作的平行线,必交出一个边不平行于的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于和的两类小平行四边形,得到所有平行四边形的总数是.342+n C例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设{1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;()骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖;()骨牌是竖放的.现在假设仅发生(2)中的()和()时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→… ①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())(( ②即每个数是它产面两个数的和,这种链称为f 链. 对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()( ③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(( [由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。